Fachbereich Physik, Universität Kassel

Dr. Alexander Uvarov

mi
Alexander Uvarov
Dr. rer. nat. (Ph.D)

   Personal Data
       - contact
       - curriculum vitae

   Research
      - research interests
      - PhD thesis
      - list of publications
      - conferences
      - scient. seminars
      - scient. links

   Other
      - private homepage








Ph.D. thesis

click here to get the print (.pdf) version of the PhD talk                    

click here to get the print (.pdf) version of the PhD thesis                 


The thesis have been published online in the Kasseler Online Bibliothek Repository & Archiv (KOBRA)

PhD_thesis-cover_page

PhD_thesis-DIPLOMA

  Abstract

Being very important in life, the macromolecules are the point of interest of a lot of disciplines including biophysics, chemical physics, material science, etc.  During the last few years, therefore, a novel semi--phenomenological approach has been developed starting from the microscopic view point on the system 'macromolecule+solvent' and using the Hamiltonian mechanics as well as the master equations for the phase--space distribution functions of the macromolecules. Since then, the phenomenological approach has been employed very succesfully to investigate the structure and transport properties of macromolecules in solution. Within the framework of the semi--phenomenological approach, in particular, (i) the role of the macromolecule--solvent interaction on the translational motion of macromolecules in solution as well as (ii) the diffusion properties of the various macromolecules have been investigated for different thermodynamic regimes of the solvent. Apart our investigations in the translational motion of the macromolecules in solution, however, (iii) the properties of the rotational (orientational) motion of macromolecules, which is immobilized on a surface, have been also studied with respect to the various intermolecule and macromolecule--surface interactions.
Compared with often expensive MD calculations, a great gain in efficiency is obtained by several orders of magnitude and may thus allow investigations on more complex systems for which other numerical techniques will remain unfeasible in the near future. Special attention of this thesis work, moreover, was placed on the flexibility of our approach which makes it possible to implement future investigations in the field of the macromolecular solution.

Keywords:  bead, diffusion, Fokker--Planck equation, friction, hydrodynamic interaction,  macromolecules, transport.
  Zusammenfassende

Motiviert durch die Lebenswissenschaften (Life sciences)haben sich Untersuchungen zur Dynamik von Makromolekülen in Lösungen in den vergangenen Jahren zu einem zukunfts\-weisenden Forschungsgebiet  etabliert, dessen Anwendungen von der Biophysik über die physikalische Chemie bis hin zu den Materialwissenschaften reichen. Neben zahlreichen experimentellen Forschungsprogrammen zur räumlichen Struktur und den Transporteigenschaften grosser Moleküle, wie sie heute praktisch an allen (Synchrotron--) Strahlungsquellen und den Laboren der Biophysik anzutreffen sind, werden gegenwärtig daher auch umfangreiche theoretische Anstrengungen unternommen, um das Diffusions\-verhalten von Makromolekülen besser zu erklären.
Um neue Wege für eine quantitative Vorhersagen des Translations--  und Rotationsverhaltens grosser Moleküle zu erkunden, wurde in dieser Arbeit ein semi--phänomenologischer Ansatz verfolgt. Dieser Ansatz erlaubte es, ausgehend von der Hamiltonschen Mechanik des Gesamtsystems `Molekül + Lösung', eine Mastergleichung für die Phasenraumdichte der Makromolek\"u{}le herzuleiten, die den Einfluss der Lösung mittels effektiver Reibungstensoren erfasst. Im Rahmen dieses Ansatzes gelingt es z.B.  (i) sowohl den Einfluss der Wechselwirkung zwischen den makromolekularen Gruppen (den sogenannten molekularen beads) und den Lösungsteilchen zu analysieren als auch (ii) die Diffusionseigenschaften für veschiedene thermodynamische Umgebungen zu untersuchen. Ferner gelang es auf der Basis dieser Näherung, die Rotationsbewegung von grossen Molekülen zu beschreiben, die einseitig auf einer Oberfläche festgeheftet sind.
Im Vergleich zu den aufwendigen molekulardynamischen (MD) Simulationen  grosser Moleküle zeichnet sich die hier dargestellte Methode vor allem durch ihren hohen `Effizienzgewinn' aus, der für komplexe Systeme leicht mehr als fünf Grössenordnungen betragen kann.
Dieser Gewinn an Rechenzeit erlaubt bspw. Anwendungen, wie sie mit MD Simulationen wohl auch zukünftig nicht oder nur sehr zögerlich aufgegriffen werden können. Denkbare Anwendungsgebiete dieser Näherung betreffen dabei nicht nur \textit{dichte} Lösungen, in denen auch die Wechselwirkungen der molekularen beads zu benachbarten Makromolekülen eine Rolle spielt, sondern auch Untersuchungen zu ionischen Flüssigkeiten oder zur Topologie grosser Moleküle.

Keywords: Diffusion, Fokker--Planck Gleichung, hydrodynamische Wechselwirkung, Makromolekül, molekulare beads, Reibung, Transporteigenschaften von Molekülen.

The thesis have been published online in the
Kasseler Online Bibliothek Repository & Archiv (KOBRA)



  Publications

First of all I'd like to extend my gratitude to my supervisor Prof. Dr. Stephan Fritzsche for all the encouragement and permanent support during these years. He always put off a lot of time for our discussions and his help and suggestions were very important for my research. In addition to words, he taught me how to do science with his example. Moreover, the friendly relations which have been settled down between us within these year were also extremely for me.
I also want to thank Prof. Dr. Burkhard Fricke for accepting me in the theoretical physic group at the University of Kassel and for giving me unique opportunity to fulfill this thesis work. Actually, I have really enjoyed the friendly environment of the theoretical physic group in Kassel and would like to thanks my past and present colleagues from the university: Dr. Wolf--Dieter Sepp, Dr. Josef Anton, Dr. Andrey Surzikov, Dr. Ekaterina Rykhlinskaia, Dr. Peter Koval, Dr. Thorsten Inghoff, Dr. Cristina Sarpe-Tudoran, Tomas Radtke, Lesya Borowska as well as Larisa Tatarinova.
A special place of my acknowledgment I wish to reserve for the peoples from the Institute of Molecular and Atomic Physics (Minsk, Belarus), including Dr. Alexander  Pavlovich Blokhin, Dr. Maxim Feliksovich Gelin and Dr. Iavn Ivanovich Kalosha as well as, of course, Academ. Prof. Dr. Vitaliy Anatol'evich Tolkachev. These scientists introduced me to the word of the macromolecular physics and gave rise to my first experience of the scientific research.
Of course, I'd like to thank effusively both Dr. Olexander Rabinovych as well as Dr. Fedor Mayorov. Apart from being a really good friends, these two colleagues acquainted me with many interesting russian--kazakh--germany peoples (rusakoff and rusachek) who are far from physical science but very attractive persons like Tatjana Rieb (I still can not to get into the way of this surname! I guess Bezk sounds much more better.) I also thank Tatarov's married couple: Viktoriya [Vikusya] for the really interested discussions and for the perfect cooking; Evgeniy [Jeka] who liberalized me in the chemistry and the soccer. In these areas, unfortunately, my knowledge is still far from ideal. One collective thanks to all my another friends from Kassel, Minsk, ..., without other people even physics would be useless!

I would like to express my very special gratefulness to both my  sisters---Tanusham--- and nieces---Uliya and Katya--- for their love. Special thanks, moreover, to the parents of my wife: Yarosh Larisa Genrikhovna [LG] and Yarosh Grigoriy Nikolaevich [GN] for their very important support.
Finally two special thanks. Last, and certainly not least, I must express heartfelt gratitude to my wife Katrin [Katusha] for her everlasting and contagious smile. Her perseverance has been boundless, her support selfless! My thanks also to my son Dmitriy [Korol' and/or Zlopastiy Brandoshmig], for his presence in my life, for the gladness which he get me all the time.

To my family I dedicate this thesis.

Alexander Uvarov; Kassel, July 2006