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Abstract

This thesis provides an analysis of the oscillation frequency ∆ms of the B
0
s -B

0
s system.

A dataset collected in 2024 using proton-proton collisions at the LHCb detector with
an integrated luminosity equivalent to 1.73 fb−1 is used. The analysis is performed
using the B0

s →D−
s (K+K−π−)π+ decay channel. Flavour tagging algorithms are used to

distinguish between mixed and unmixed signal candidates. The oscillation frequency ∆ms

is determined with a decay time fit accounting for effects of the decay time resolution
and the calibrated mistag probability. The oscillation frequency of the B0

s -B
0
s system is

measured to a value of ∆ms = (17.792± 0.011) ps−1. This value agrees with the current
world average within its uncertainties.

Kurzfassung

Diese Bachelorarbeit umfasst die Messung der Oszillationsfrequenz ∆ms des B
0
s -B

0
s Sys-

tems anhand des B0
s →D−

s (K+K−π−)π+ Zerfallskanals. Dafür wurde ein aktueller
Datensatz von Proton-Proton Kollisionen am LHCb Detektor aus 2024 aufgenommen,
welcher einer integrierten Luminosität von 1,73 fb−1 entspricht. Um oszillierte und nicht-
oszillierte Mesonen zu unterscheiden werden Algorithmen eingesetzt, die den anfänglichen
Zustand der B0

s Mesonen bestimmen. Die Oszillationsfrequenz wird durch das Anpassen
einer Wahrscheinlichkeitsdichtefunktion an die Verteilung der Zerfallszeit des B0

s mesons
gemessen. Dabei werden Effekte der Zerfallszeitauflösung und die Wahrscheinlichkeit für
eine falsche Bestimmung des anfänglichen Zustandes berücksichtigt. Die Oszillationsfre-
quenz ergibt sich zu einem Wert von ∆ms = (17, 792± 0, 011) ps−1 , welcher innerhalb
der Fehlergrenzen mit dem weltweiten Durchschnittswert übereinstimmt.
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1 Introduction

The Standard Model of particle physics is able to describe the fundamental particles of
our universe and their interaction via three out of the four fundamental forces [1]. It is
the most complete theory to date combining the electromagnetic, the weak and the strong
interaction. But there are limits of the Standard Model in terms of observations seen
in nature that cannot be described by this theory. An example for this is the particle
anti-particle asymmetry in our observed universe. This asymmetry is deeply connected to
CP-violation and although the Standard Model incorporates CP-violation to some extend
through the Cabbibo-Kobayashi-Maskawa mechanism [2,3], it is not able account for the
extend of the asymmetry in matter. This motivates the search for physics beyond the
Standard Model. CP-violation was fist observed in the decay of neutral K mesons [4]
in 1964, while modern particle physics searches for CP-violation primarily in the decays
of the B mesons. The LHCb experiment is a dedicated b- and c-physics experiment
probing the Standard Model with measurements of CP-violation using particles containing
b-quarks and c-quarks. An important observable in terms of CP-violation is the neutral
B0

s meson oscillation frequency ∆ms. This quantity is needed in measurements of CP-
violation to reduce systematic uncertainties in the B0

s -B
0
s system. Furthermore the B0

s

oscillation frequency ∆ms combined with the B0 oscillation frequency ∆md provides a
constraint on the Cabbibo-Kobayashi-Maskawa [2] matrix. Measurements of the oscillation
frequency ∆ms have been carried out for many years. The first measurement was executed
with the collider detector at Fermilab in 2006 [5] and were followed by Run1 and Run2
measurements of the LHCb detector [6–10]. A recent software and hardware upgrade of
the LHCb detector gives opportunity to push the precision frontier in this measurement.
This thesis aims to be a proof of concept working with the newly commissioned LHCb
detector. The analysis presented in this thesis uses this newly gathered data and performs
a measurement of the oscillation frequency ∆ms.

1



2 Theory

2.1 The Standard Model of particle physics

The Standard Model of particle physics (SM) is the most complete and well tested theory
describing the fundamental particles of our universe as well as the fundamental interactions
between these particles. In the SM [1] three of the four known fundamental forces are
described, namely the electromagnetic force, the weak and the strong force.

2.1.1 Particles of the Standard Model

The particles of the Standard Model can be split up into groups based on specific properties
of the particles. The particles that make up the matter in our universe are called fermions.
Fermions are particles having a half-integer spin and can be further distinguished by
looking at the interaction they are sensitive to.
Only six of the twelve fermions can interact through the strong force, they are called
quarks. There are two types of quarks called up-type quarks with a electrical charge
of +2

3
e and down type quarks with a −1

3
e charge, with e being the elementary charge.

Quarks can not be observed as individual particles, since they are confined to be bound
in colourless states by the strong force. The colourless states of particles are called
hadrons and they are typically combinations of a quark with an anti-quark (qq̄) called
mesons or combinations of three quarks (qqq) or three anti-quarks (q̄q̄q̄) called baryons or
anti-baryons respectively.
The remaining six fermions are called leptons. Leptons have either integer electrical charge
or are electrically neutral. The neutral particles are called neutrinos and do not interact
with the electromagnetic force, which makes them only sensitive to weak interactions.
The remaining three leptons, the electron, the muon and the tauon are able to interact
with the electromagnetic as well as the weak force.
The fermions can be grouped into three generations, with the first generation containing
the lightest and most stable fermions, which make up the ordinary matter in our universe.
Each generation of quarks contains an up-type and a down-type quark. Each lepton
generation contains a neutrino as well as a charged lepton. Each particle is associated
to an anti-particle with the same physical properties except for an inverse the electrical
charge. An overview of the particles is shown in Figure 1.

2.1.2 Fundamental forces of the Standard Model

In the SM the interaction of the fundamental forces happens as an exchange of particles
called bosons, which are integer spin particles. Each fundamental interaction is described
by a quantum field theory. The electromagnetic force is described by the Quantum
Electrodynamics (QED) with the electrically neutral and massless photon γ as the
mediator. The strong force, described by the Quantum Chromodynamics (QCD), is
mediated through the massless gluon g. The weak force is mediated by the charged
massive W± boson and the massive neutral Z0 boson. The Higgs boson is a quite special
boson, since it is the only particle with a spin of zero. The particles of the SM get their
masses by interacting with the Higgs boson.
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Figure 1: Summary of fundamental particles of the Standard Model of particle physics. Taken
from [11].

2.1.3 Weak charged-currents

All fermions participate in the weak interaction. In the weak interaction it is possible to
change the flavour of the fermion, where flavour refers to the specific type of the fermion.
Only processes involving the electrically charged W± gauge bosons allow the change of
flavour. Up-type quarks can change into down-type quarks and vice versa, since the quark
types differ by one elementary charge. The process of changing the flavour is important
for this analysis, because it forms the basis of the mixing process of neutral B0

s mesons,
described by the Feynman box diagrams in Figure 2. The strength of the interaction
coupling is described by the components of the unitary 3×3 Cabbibo-Kobayashi-Maskawa
(CKM) matrix.

CKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (1)

The CKM matrix plays an important role in the SM, since it incorporates charge-parity-
violation (CP-violation) into the SM. The charge symmetry describes the invariance of
a process after applying charge conjugation, which turns a particle into its anti-particle.
Parity describes the process of reversing spacial variables. The strong and electromagnetic
interaction conserve the CP-symmetry, whereas processes in the weak interaction violate
this symmetry. Given the unitary of the CKM matrix it can be parameterised by using
four parameters, which are three mixing angles and a complex phase. This complex phase
accounts for CP-violation in the CKM mechanism. The measurement of ∆ms puts a

3



Figure 2: Dominant box diagrams describing the mixing process.

constraint on the amount of CP-violation described with CKM mechanism.

2.2 Mixing theory of the B0
s meson

In the absence of mixing in the B0
s - B

0
s system, the time evolution of the neutral B0

s -meson,
with the constraint of |B0

s (t = 0)⟩ = |B0
s ⟩ is described by the following equation:

|B0
s (t)⟩ = e−Γt/2e−imt|B0

s ⟩. (2)

with the total decay with Γ, which accounts for the exponential decay of the wave function
due to the decay of the unstable B0

s meson. Equation 2 is a solution of the effective
Schrödinger equation:

i
∂

∂t
|B0

s (t)⟩ = (m− i

2
Γ)|B0

s (t)⟩ = H|B0
s (t)⟩. (3)

Considering the B0
s -B

0
s mixing system, the effective Hamiltonian becomes:

H = M− i

2
Γ =

[
M11 M12

M21 M22

]
− i

2

[
Γ11 Γ12

Γ21 Γ22

]
. (4)

The diagonal elements of the mass matrix M are the masses of the flavour eigenstates.
The off-diagonal elements represent the contributions of the mixing process.
Assuming CPT invariance of the SM, the diagonal elements of both the mass matrix M
and the decay matrix Γ need to be equal, hence Γ11 = Γ22 = Γ and M11 =M22 =M . The
Hamiltonian therefore can be written as [12]:

H =

[
M − i

2
Γ M12 − i

2
Γ12

M∗
12 − i

2
Γ∗
12 M − i

2
Γ

]
. (5)

The diagonalisation of the Hamiltonian yields the following equation:

i
∂

∂t

[
|BL⟩
|BH⟩

]
=

[
λL 0
0 λH

] [
|BL⟩
|BH⟩

]
, (6)

with the eigenvalues λH,L = mH,L − i
2
ΓH,L and the eigenstates:

|BH⟩ = p|B0
s ⟩ − q|B0

s⟩ and |BL⟩ = p|B0
s ⟩+ q|B0

s⟩, (7)

which can be interpreted as the heavy and light mass eigenstates of the B0
s -B

0
s system.

The amplitudes p and q fulfill the normalisation |p|2 + |q|2 = 1. The eigenvalues are
composed of the masses:

mH,L =M ± Re

[√(
M12 −

i

2
Γ12

)(
M∗

12 −
i

2
Γ∗
12

)]
(8)
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and decay widths:

ΓH,L = Γ∓ Im

[√(
M12 −

i

2
Γ12

)(
M∗

12 −
i

2
Γ∗
12

)]
. (9)

Assuming CP invariance of the mixing process |q/p| = 1, the time evolution of pure |B0
s ⟩

and |B0
s⟩ states at t = 0 can be obtained using a basis transformation which yields the

following result:

|B0
s (t)⟩ = g+(t)|B0

s ⟩+
p

q
g−(t)|B̄0

s ⟩ |B̄0
s (t)⟩ = g+(t)|B̄0

s ⟩+
p

q
g−(t)|B0

s ⟩, (10)

with the following equation for the time dependent amplitude:

|g±(t)|2 =
e−Γst

2

[
cosh

(
∆Γs

2
t

)
± cos(∆mst)

]
. (11)

The time evolution of the flavour eigenstates is a superposition of both the particle and
the anti-particle state. Over time the B0

s meson can oscillate into the B0
s meson state and

vice versa. This oscillation is described by the time dependent amplitudes g±(t). The
above stated equation for the amplitude uses the following definition:

∆ms = mH −mL ∆Γs = ΓL − ΓH , (12)

where ∆ms is the mass difference between the heavy and the light mass eigenstates and
∆Γs is the difference in decay width of the two eigenstates. The amplitudes g±(t) are used
in this analysis for the multidimensional fit to measure the ∆ms oscillation frequency.
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3 The LHCb experiment

The LHCb experiment is one of the four large experiments at the Large Hadron Collider
LHC. The LHC is located near Geneva at the border of Switzerland and France and is
part of CERN, the European Organisation for Nuclear Research. The LHC is between
50 meters and 170 meters below the ground and has a circumference of 26.7 kilometers.
Inside of the LHC the two counter-rotating hadron beam are accelerated and made collide
at four interaction points, at which the four large experiments ATLAS, CMS, ALICE and
LHCb are located. At the LHC a center-of-mass energy of

√
s = 14 TeV for proton-proton

collisions (pp collisions) can be achieved.

3.1 The LHCb detector

The LHCb experiment set its focus on the decay of the heavy b- and c-quarks. These
quarks, produced at the pp collision point, have high momentum in the directions along
the beam line. This characteristic reflects in the design of the LHCb detector. Unlike
the other LHC experiments, the LHCb detector is a single-arm forward spectrometer,
meaning that the sub-detectors are placed one after another along the beam pipe, in
contrast to a design with multiple layers around the collision similar to an onion. It is
called a ’single-arm’-detector, because it covers only one direction along the beam pipe.
The LHCb detector operation periods are called Runs. The detector is currently in Run3
and had software and hardware upgrades made during the last shutdown period. The
upgraded LHCb detector is able to detect particles from every pp-collision happening
with a frequency of 40MHz. It is designed to reach a nominal instantaneous luminosity of
L = 2× 1033 cm−2 s−1 [13].
The following sections describe the subdetectors of the upgraded LHCb detectors. For
further description of the LHCb detector, a right-handed coordinate system is used with
its y-axis pointing towards the surface and its z-axis along the beam direction. The origin
of the coordinate system is set to be the interaction point of the pp-collision. This choice
of coordinate system can be seen in Figure 3.

3.1.1 Magnet

A key component of the LHCb detector is the dipole magnet. The magnetic field acts on
charged particles through the Lorentzian force and bends the trajectory of the particle
based on its momentum and charge. With the knowledge of the magnetic field strength
along a particle track, provided my a field map, it is possible to reconstruct the momentum
of the track. The magnetic field is oriented in the vertical direction and has a bending
power of approximately 4 Tm. The magnet consists of two saddle-shaped aluminium coils,
with increasing distance to match the geometry requirements of the detector. In the data
taking process, the polarity of the magnet is reversed regularly.

3.1.2 Particle tracking

Right around the interaction region of the colliding proton beams, the Vertex Locator
(VELO) is placed. It consists of pixelated hybrid silicon detectors arranged in modules
to detect tracks of ionising particles. Its location makes it possible to reconstruct the
interaction point of the colliding proton beams, referred to as the primary vertex (PV),
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Figure 3: Schematic layout of the LHCb detector. Taken from [14].

as well as the so called secondary vertex (SV) of decaying particles, which is spatially
separated from the PV. By calculating the distance between these vertices, the decay
time of unstable particles can be calculated using the momentum of the particle. The
decay time is a crucial quantity for this analysis and the precise measurement of the decay
time available at LHCb is a key factor in determining the fast B0

s -B
0
s oscillation. The

VELO information is used by the reconstruction algorithm of the LHCb and additionally
provides discriminatory information for event selection.
The Upstream Tracker (UT) is located in front (upstream with respect to the particle
track) of the dipole magnet. The UT consists of four planes of silicon strip detectors.
Combined with the VELO information and the magnetic field in the region between
the VELO and the UT, a first estimate of the particle momentum can be made. This
also reduces the rate of ghost tracks. A ghost track describes hits in the detector from
more than one particle that are randomly combined to form a track. The two middle
detector planes of the UT are tilted with an angle of ±5◦ ,with respect to the y-axis, to
get information about the vertical position of the tracks.
The Scintillating Fibre tracker (SciFi) is the only tracking detector located downstream
of the dipole magnet. The SciFi consists of multilayered mats of scintillating fibers. There
are tree stations of this tracker named T1, T2 and T3. Each station consist of four layers.
Similarly to the UT, the two middle SciFi mats are tilted ±5◦ with respect to y-axis, to
gather information about the vertical position of the track. To cover the acceptance range
of the LHCb detector, the SciFi mats are 5 meters high and 6 meters wide. The readout of
the scintillating signal is done by silicon photomultipliers (SiPMs) at the top and bottom
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of the fiber mats, with a mirror placed in the middle of the scintillating fibre to direct the
signal to the SiPMs. The SciFi provides excellent momentum resolution. This is especially
useful for calculations of the decay time and the invariant mass of particles.

3.1.3 Particle identification

The Ring Imaging Cherenkov detectors 1 and 2 (RICH1 and RICH2 respectively) provide
information for the identification of charged particles. RICH1 is located upstream of
the magnet and provides hadron separation in a momentum range of 2.6 - 60 GeV1

whereas the RICH2 detector is located downstream of the SciFi and provides particle
identification in a momentum range of 15-100 GeV. The different momentum regions
are realised with different diffraction indices of the gasses used in RICH1 and RICH2.
Charged particles travel through the fluorocarbon gaseous radiators of the RICH detectors
and produce Cerenkov light. The Cerenkov photon trajectories follow a cone shape with
opening angles dependent on the trigger particle mass and momentum. The Cerenkov
light is reflected with mirrors outside of the acceptance of the detector and read out by
multi-anode photomultiplier tubes (MaPMTs). The RICH detectors are crucial for flavour
tagging of neutral B0

s mesons as they provide good charged kaon identification from the
b→ c→ s decay chain.
The Electromagnetic Calorimeter (ECAL) consists of alternating scintillator and lead
layers and is located behind the RICH2 detector. It has a thickness of 25 radiation lengths.
This provides a high probability that the electromagnetic shower of electrons or photons
is completely covered by the calorimeter. The complete coverage of the electromagnetic
shower enables a high energy resolution. To measure the energy with low uncertainties is
important for the precisely calculating the invariant mass of a particle. A charged particle
travelling through the calorimeter produces a photon through bremsstrahlung. This high
energy photon produces an electron-positron pair and the process is repeated until the
critical energy is reached. The light produced prom this process in the scintillators is
transmitted to photomultiplier tubes.
The Hadronic Calorimeter is a sampling tile calorimeter located downstream of the ECAL.
It consist of alternating layers of iron and plastic scintillator tiles. With only 5.6 radiation
lengths, due to space limitations, it is thinner than the ECAL. The light of the scintillators
is transmitted to photomultiplier tubes similarly to the ECAL. In contrast to the ECAL,
the HCAL has a higher granularity, motivated through the physical properties of hadronic
showers, which are typically more spread out than the electromagnetic showers.
The four Moun chambers (M2-M5) are located downstream of the HCAL and are the
most upstream sub-detectors of the LHCb experiment with respect to the particle path.
They consist of layers of multi-wire-proportional chambers (MWPCs) with layers of 80cm
thick iron in between. The iron absorbers provide absorption for low energy particles.
The MWPCs consists of multiple anode wires surrounded by gas between cathode plates.
Ionizing particles will produce ion pairs in the gas that are accelerated to the wires or the
plates depending on their charge. The resulting current in the wire is proportional to the
energy of the ionizing particle. Due to logical combinations of readouts of multiple wires,
positional information about the particle is efficiently gained.

1Natural units c=ℏ=1 are used throughout this analysis
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Figure 4: Track types used in the reconstruction process. Taken from [16].

3.1.4 Trigger and reconstruction

The reconstruction process uses the information of the LHCb subdetectors for each (pp
collision) to form particles and infer their physical properties. The reconstruction is done
in real time for each pp-collision using the combination of the two software based triggers,
namely the High Level Trigger 1 and 2 (HLT1 and HLT2). The HLT1 is the first trigger
stage and provides a partial event reconstruction and a first selection of events. This
information is then fed into the HLT2, amongst real time alignment and calibration data
of the detector, to perform a full event reconstruction and a final selection. The two
trigger stages make sure that only the relevant information of events for the analysis is
stored to reduce processing time and storage space.
The HLT1 trigger sequence starts with the track reconstruction in the VELO to locate
the PV through a straight line fit. The track is then extrapolated to the UT and SciFi,
to form a so called long track shown in Figure 4. This information is used calculate
the particles displacement from the PV. Furthermore, tracks are classified as muons or
non-muons based on the muon system information and combined to two-body displaced
vertex candidates. This simplified reconstruction of events is performed to identify events
matching the LHCb physics program. This selection is done to reduce the amount of
computation needed in the more accurate reconstruction of the HLT2. The reconstructed
and selected tracks of the HLT1 are then fed into the HLT2.
The HLT2 takes into account real time alignment and calibration information about the
detector. In the reconstruction process tracks are combined with particle identification
information to form individual charged particles. There is no magnetic field in the VELO,
so information from the UT and the SciFi is needed for momentum measurement. A
Kalman filter [15] provides uncertainties for the PV and SV of the particles and the best
estimate of the particle momentum. Further information of the ECAL is used to identify
electrons and photons.
After the two HLT phases, the data is stored and a more detailed reconstruction and
selection can be done offline.
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4 Analysis methods

This section provides a short description about the technical details and challenges of
methods used in this analysis

4.1 Boosted Decision Trees

A boosted decision tree (BDT) is used in this analysis, to classify candidates in the data
sample as either signal or background. A BDT is an ensemble of decision trees (DTs)
combined in a process referred to as boosting. A DT gives an estimate ŷi for the true
class label yi of candidate i, by testing given variables for different criteria. These criteria
are derived by subsequently splitting samples into two subsamples, setting a cut on a
single variable. The best variable for the cut as well as the cut itself are determined by
minimising the loss function in the training process [17]:

L(yi, ŷi) =
∑
i

(yi − ŷi)
2. (13)

The samples are partitioned until no improvement of the loss is recorded or a given depth
is reached. A split of the DT is called a node. Nodes are connected by branches and the
nodes, where the partitioning process is stopped are called leafs.
Boosting is the process of building a model consisting of consecutive DTs. The individual
DT is rather simple, but the combination of multiple simple DTs results in an advanced
model. Before adding a new DT to the model, the previous model is evaluated. Based on
the performance of the previous model, the data sample is weighted. Wrongly classified
candidates in the sample are weighted more heavily. The newly added DT receives the
weighted data sample and therefore sets its focus on the errors of the previous model. The
finished model is called a boosted decision tree and is well suited to perform classification
tasks.

4.1.1 Mathematical definition of a Boosted Decision Tree

A DT can be defined mathematically as

fk(x⃗i) = w⃗q(x⃗i), w⃗ ∈ RT , q : Rm → {1, 2, ..., T}. (14)

The vector w⃗ contains all the scores of the T leafs and q is a function mapping each set of
the m features of the i -th candidate x⃗i to the corresponding leaf.
A boosted decision tree contains multiple decision trees in series. The output of each DT
is used in the training of the consecutive DT.

ŷi
(0) = 0

ŷi
(1) = y

(0)
i + f1(x⃗i)

...

ŷi
(t) =

t∑
k=1

fk(x⃗i) = ŷi
(t−1) + ft(x⃗i),

(15)
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with i being the i-th candidate of the data sample. The shape of the DT ft that is added
in step t is determined by minimizing the objective function

obj(t) =
∑
i

L(yi, ŷi
(t)) +

t∑
k=1

ω(fk). (16)

The regularization term ω(fk) is used to control the model complexity and is an arbitrary
function. The regularization term of the XGBoost package [17] used in this analysis is
defined as:

ω(f) = γT +
1

2
λ

T∑
j=1

w2
j (17)

To be in control of the model complexity is a key feature in BDT training, because it
effects the so called overtraining of the BDT.

4.1.2 Overtraining

An overtrained BDT specialises on fluctuations of the training sample instead of the
physical differences between signal and background distributions of the training variables.
The overtrained BDT therefore performs bad on unseen data, so overtraining needs to be
avoided since this is the intended use of the BDT. Overtraining can be observed in the
training process, when the BDT performance is improving on the training sample but not
improving on the test sample. A way to observe and avoid overtraining is the use of cross
validation. In this analysis the K-folding cross validation method is used. K-folding is the
process of shuffling the training sample and splitting it into k subsamples. The BDT is
trained on k-1 samples and evaluated on the remaining subsample. The evaluation data is
stored and the model gets reset. The training is repeated in a way that every subsample
was used for the evaluation of the BDT once. This process yields no final model and is
intended to check the model complexity. With the stored evaluation data from each fold,
the logarithmic loss (log-loss) curve of the training and evaluation sample is plotted. The
log-loss curve is the logarithm of the loss function Eq. 13 plotted over the number of
trees added to the BDT. By studying the log-loss curve of the training sample and the
evaluation sample, it is possible to identify overtraining. In this case the log-loss curve
of the evaluation sample is rising or reaching a plateau while the log-loss curve of the
training sample is still declining.
To counteract on this behaviour a method called early stopping is used. In the early
stopping method a threshold value on the maximum number of trees added in the boosting
process without reduction of the log-loss curve is set. If the threshold number of trees
is added to the model, but the log-loss curve showed no improvement, the training is
stopped. This reduces the model complexity and the time used for training the BDT,
since fewer DTs are added to the model.
Another way to control overtraining are hyperparameters [17]. These parameters set
constraints for the DT building process. The minimum child weight for example sets
a lower boundary for the sum of the weights in a child leaf. If the minimum is not
reached, a further split of the leaf is restricted. The γ-factor defines a minimum for the
reduction of the loss function required in each step to further partition a leaf. Both of
these hyperparameters control the model complexity which is crucial to avoid overtraining.
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For each fold of the K-folding process, the receiver-operating-characteristic curve (ROC-
curve) is plotted. The ROC-curve is the result of plotting the true positive rate (TPR)
against the false negative rate (FPR) defined as:

TPR =
Strue

Strue +Bfalse

and FPR =
Sfalse

Sfalse +Btrue

, (18)

with S being events classified as signal by the BDT and B events classified as background.
The labels true and false correspond to the truth of the classification, received by comparing
the label of the event with the prediction of the model.
A perfect BDT would have a TPR of one and a FPR of zero. This would correspond to an
area under the ROC-curve of one. A randomly classifying BDT, on the other hand, would
have an area of 0.5. Therefore the area under the ROC-curve is a good quantisation for
the performance of the BDT and is referred to as the ROC-score. To further investigate
overtraining of the BDT, the following approach is used: the overtraining is quantised
by comparing the classification distribution of the BDT for the true signal and true
background events of the test sample with the true signal and true background events of
the training sample. A non-overtrained BDT would produce similar distributions for the
test and the training sample, whereas an overtrained BDT would show differences in the
distributions of the two samples.

4.2 Unbinned Maximum Likelihood Fit

To retrieve physical quantities from data, an unbinned maximum likelihood method is
used. For a set of measurements X = {x⃗(1), x⃗(2), . . .} an estimate for the parameters

θ⃗ = (θ1, θ2, . . .) of a probability density function (PDF) is generated. The estimated

parameters
ˆ⃗
θ are the ones, for which the given set of measurements is most likely if it was

described by the PDF. These parameters are determined by maximising the likelihood
function:

L(θ⃗) =
∏
i

f(x⃗(i); θ⃗) (19)

The likelihood function is a function of the parameters θ⃗ evaluated on the fixed set of
measurements X. Instead of maximizing the likelihood function, it is computationally more
convenient to minimize the negative logarithmic likelihood (NLL) function. Intuitively
speaking it is easier to add together the values of the Likelihood function than to multiply
them.

NLL(θ) = − ln(L(θ⃗)) = −
∑
i

ln(f(x⃗(i); θ⃗). (20)

To find the parameters for which the given data is most likely one needs to minimize this
NLL function. This minimisation is performed with the iminuit package [18].
The uncertainty of the estimated parameters are calculated using the Hessian matrix,
which consists of second derivatives of the logarithmic likelihood function.

∂2 ln L(θ⃗)

∂θ⃗2

∣∣∣
θ⃗=

ˆ⃗
θ

(21)

An approximation of the Hessian matrix is calculated during the minimisation process.
By inverting the Hessian matrix, the uncertainties of the parameters can be determined
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using the Rao-Cramer-Frechet minimum variance bound [19]:

V [θ̂] ≥ 1

E

[
∂2 ln L(θ⃗)

∂θ⃗2

∣∣∣
θ⃗=

ˆ⃗
θ

] , (22)

which can be further approximated in the limit of a large sample to:

V [θ̂] ≥ 1[
∂2 ln L(θ⃗)

∂θ⃗2

∣∣∣
θ⃗=

ˆ⃗
θ

] . (23)

4.3 Flavour tagging at LHCb

A key information in determining the B0
s - B

0
s oscillation frequency ∆ms is the particle

or antiparticle state of the B0
s -meson at the time of production (initial) and at the time

of the decay (final). The information about the initial and final state of the B0
s -meson

is crucial to separate the data into mixed and unmixed candidates: the unmixed B0
s

candidates have the same initial and final flavour state, whereas the mixed B0
s candidates

have different initial and final flavour states.
Since the B0

s →D−
s π

+ is a flavour-specific decay, the final flavour of the B0
s -meson can be

determined with the charge of the decay products.
To retrieve information about the initial flavour state of the B0

s meson, machine learning
algorithms, also called taggers, are used in a procedure referred to as flavour tagging.

Figure 5: Schematic view of the tagging particles used for the specific flavour tagging algorithms.

In this analysis two distinct categories of taggers are used, namely the same side taggers
(SS) and the opposite side taggers (OS).
The SS taggers use information from the hadronisation process of the B0

s meson. This is
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shown in the top half of Figure 5. The b-quark produced in the pp-collision needs an
s-quark to form a B0

s -meson. The s-quark is produced in a ss-quark pair via the strong
interaction. The flavour of the s-quark is therefore directly related to the initial flavour of
the B0

s -meson. In the case of the SSKaon tagger, the associated s-quark forms a kaon and
the initial state of the B0

s meson is directly related to the charge of this kaon. In this
case, the kaon is referred to as a tagging particle.
The OS taggers exploit the fact that the b-quarks are predominantly produced in bb-quark
pairs in a pp-collision. Therefore additionally to the signal B0

s meson, there is another
b-particle in the event. The initial flavour of the opposite side b-particle is directly related
to the initial flavour of the signal B0

s -meson. The OS taggers follow along the decay chain
of the b-quark.
The OSMuon tagger focuses on semileptonic decays of the b-quark containing a muon.
The tagging decision is made based on the charge of the muon in the weak decay
b→ Xµ−.
The OSKaon tagger follows along the b →c →s decay chain resulting in a charged kaon,
for example the B− →D0 (K−π+)π− decay. The tagging decision is based on the charge
of the kaon.
Preselection requirements on particle identification, momentum and distance from the PV
are applied to select tagging particles. The selected tagging particles provide tagging
decisions assigned to the B0

s candidate. A tagging decision of d = +1 (−1) corresponds
to an initial flavour of B0

s (B0
s) of the signal candidate. If the tagger is not able to give

information about the initial flavour, the tagging decision is d = 0.
A neural network (NN) is trained on the selected tagging particles with information about
their kinematic properties and the topology of the decay, to estimate the probability of
wrongly tagging the B0

s -meson. This estimated mistag probability η ∈ [0.0, 0.5] is 0.0 for
a perfect tagging decision and 0.5 for a random guess. If the estimated mistag probability
is greater than 0.5, the value 1− η is used and the tagging decision is reversed.

The performance of the flavour tagging algorithms are evaluated by defining the
following quantities.
The tagging efficiency:

ϵtag =
Ntag

Ntag +Nuntag

, (24)

with Ntag(Nuntag) being the amounts of tagged (untagged) events respectively, is simply
the fraction of tagged events and contains no information about the quality of the tags.
The mistag probability ω, describing the fraction of wrongly tagged events:

ω =
Nwrong

Nwrong +Nright

, (25)

with Nwrong(Nright) being the amounts of wrongly (rightly) tagged events.
An important quantity for this analysis is the dilution factor:

D = (1− 2ω). (26)

It is a factor accounting for imperfect tagging by diluting the oscillation amplitude. This
is further discussed in Section 8.1.
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A combined measurement of the tagging efficiency and the mistag probability is called the
tagging power or the effective tagging efficiency. It combines the efficiency of the flavour
tagging algorithm with the quality of the tags:

ϵeff = ϵtagD2. (27)

This quantity is a measurement of the statistical power of the flavour tagged sample
with N events, since the uncertainty of the measured mixing amplitudes scales with
σA ∼ 1/

√
N · εeff.

15



5 Offline event selection

This analysis uses an early 2024 data sample of B0
s →D−

s (K+K−π−)π+ decay2 taken in
Run3 of the LHCb experiment. Samples with both magnet polarities are combined. The
data sample for this analysis corresponds to an integrated luminosity of about 1.73 fb−1.
It was taken without information from the UT subdetector Sec. 3.1. As mentioned in
Section 3.1, the detector was upgraded during the last shutdown period. The alignment of
the new detector has not reached an optimal state yet. The imperfect alignment induces
a systematic loss in track reconstruction efficiency. Furthermore it leads to uncertainties
in the calculation of the particle momenta. This impacts all variables calculated based on
the particle momenta. A Monte Carlo (MC) sample of the B0

s →D−
s (K+K−π−)π+ decay

is created. The created signal particles are passed through a simulation of the detector to
match the conditions of the real data sample [20]. No information from the UT is used
and samples with both magnet polarities are combined.

5.1 Signal selection

For this analysis the B0
s →D−

s (K+K−π−)π+ decay is studied, to determine the B0
s

oscillation frequency. A signal selection is important to efficiently store events from the
decay of interest while keeping background contributions from other decays small. To
select the B0

s signal candidates, the first step is to use the reconstructed particle trajectory,
discussed in Sec. 3.1.4. The reconstruction of the B0

s meson starts with the stable charged
particles and subsequently combines them to composite particles. To reconstruct the
signal B0

s candidates, tracks with high probability to be a K+ as well as tracks with high
probability to be a K− or a π−, which can be associated to a common vertex are searched.
By taking into account the four momenta of the three stable particles, the four-momentum
of the D−

s can be reconstructed by varying the track properties within their associated
uncertainties. This process is done by the decay tree fitter (DTF). This fit additionally
provides a χ2 value as measure of the fit quality. The resulting D−

s four-momentum is
then combined with a π+ track in the same manner to form a B0

s signal candidate.
Occasionally random tracks that happen to be spatially close to each other are combined
to a B0

s candidate. If it fulfills the criteria for a signal candidate, it ends up in the
data sample as combinatorial background. This combinatorial background events do not
represent signal decays and for this analysis they need to be removed from the sample.
Another source of background in the reconstruction process are misidentified particles. In
the particle identification process, a probability like variable is assigned to each stable
particle, which determines the likelihood of the particle being a specific hadron or lepton.
Wrongly identified particles can be used to form a signal candidate, which ends up in
the data sample. This background is also suppressed in this analysis using particle
identification cuts in the preselection as well as vetoes for specific decays with a similar
topology to the signal decay, such as the B0 →D−π+ decay.
In the process of creating the data sample, a set of sprucing cuts is applied to the selected
events. These sprucing cuts are summarised in Table 1.

2The charge conjugated mode is always implied
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Particle Sprucing cut
π+ PIDK < 0

p > 5GeV
pT > 500MeV

π− PIDK < 5
p > 2GeV

pT > 250MeV
K−,K+ PIDK > −5

p > 2GeV
pT > 250MeV

D−
s 1830MeV < m(D−

s ) < 1910MeV
SumpT > 1800MeV

Vtxχ2
red

< 10

BPVχ2 > 36
BPV IPχ2 > 0

BPV DIRAχ2 > 0
DOCA12 > 0.2mm
DOCA13 > 0.2mm
DOCA23 > 0.2mm

B0
s 5000MeV < m(B0

s ) < 7000MeV
SumpT > 5GeV
Vtxχ2

red
< 20

BPV IPχ2 < 25
BPV DIRA > 0.999
BPV lifetime > 0.2 ps

Table 1: Sprucing cuts on the data sample.

5.2 Preselection

To further reduce background candidates in the data sample, a preselection is performed.
This selection contains cuts on the quality of the reconstruction and particle identification
criteria as well as veto cuts for specific background decays and requires at least one
tagging decision Sec. 4.3. The applied preselection cuts are summarised in Table 2. The
preselection cuts are loosely based on a previous analysis of the B0 oscillation frequency
∆m in B0 →J/ψK∗0 and B0 →D−π+ [21].
The reduced χ2 variable, χ2

red, describes how well the primary vertex is fitted with
respect to the degrees of freedom of this fit. A cut reduces the amount of combinatorial
background, as combinatorial background candidates usually have a higher χ2

red value
than signal candidates. This is the case, because combinatorial background results from
the combination of random particles. As the particles tracks are uncorrelated, they are
more inclined to have a worse fit than those that actually belong to a single vertex.
The GhostProb is a measurement of the quality of the track reconstruction. A cut on
this variable reduces combinatorial background, because the GhostProb should be per
definition higher for randomly reconstructed particles.
The particle identification (PID) variables are combined differential logarithmic likelihoods
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rectangular cuts
K+, K−, π+, π− χ2

red < 3.5
GhostProb < 0.5

D−
s 1940MeV < m(D−

s ) < 1990MeV
χ2
red < 9

π+ PIDp < 10
K+, K− PIDK > 0
veto cuts

B0
s → D−

s (K
+π−π−)π+ K− : PIDK > 10

or not (1840MeV < m(D−
s ) < 1890MeV)

Λ̄0
b → Λ̄−

c (K
+p̄π−)π+ K− : PIDK − PIDp > 0

or not (2255MeV < reconstructed m(Λ̄c) < 2315MeV)
tagging decision cut

B0
s not (d = 0 ∀ SS- and OS-Taggers)

Table 2: Preselection cuts on the data sample.

(DLL) [22]. They are a measure of how likely a specific mass hypothesis for a given track is
relative to the π mass hypothesis. For this the likelihoods from each particle identification
subdetector is combined to a single likelihood L = LRICH · LECAL/HCAL · LMUON . For
example the PIDK variable is defined as follows:

PIDK = DLL(K) = ln(L(K))− ln(L(π)) (28)

Additionally, a cut on the D−
s mass is performed. The veto cuts are set to remove

contributions from the B+ →D− (K+π−π+) π+ decay as well as the Λ̄0
b → Λ̄−

c (K+ p̄ π−)
π+ decay. These background decays appear in the data sample due to misidentification of
particles. For the B+ →D− (K+π−π+) π+ decay, one of the π− is wrongly identified to be
a K−. To suppress this background contribution, a tighter particle identity cut is used for
the reconstructed K−. This tighter cut is applied if the reconstructed Ds mass, using the
four vectors of the reconstructed particles and a π− mass hypothesis for the K−, lies in a
mass region of 25MeV around the nominal D+

s mass. Similarly, the Λ̄0
b → Λ̄−

c (K
+p̄π−)π+

decay is suppressed by setting a tight particle identity cut. Candidates where the D+
s

mass, reconstructed under a proton mass hypothesis, lies in a 30MeV range around the
Λ̄−

c mass need to pass this tighter cut. The results of these veto cuts on a subsample of the
data is shown in Figures 6b and 7. Looking at the shape of the removed candidates it is
visible that the veto cuts are effective. The peaks of the removed candidate distributions
do not lie inside of the signal area, which is clearly visible in the distribution of the kept
candidates. Looking at the mass peaks of the kept candidates, it is visible that the peak
gets more narrow on the side where the misidentified candidates are removed. Also the
peaks of the reconstructed masses under the two hypotheses lie right in the mass region
that is selected for the veto.
The tagging decision cut excludes all candidates that have no tagging decision d from
all available flavour tagging algorithms. These candidates are excluded, as they do not
contribute to the determination of the B0

s oscillation frequency ∆ms.
The MC sample contains more information about a particle than real data. A specific
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(a) Mass distribution of D−
s candidates reconstructed with the

D− mass hypothesis.

(b) B0
s mass distribution with and without the D− veto cut.

Figure 6: Preselection B0 → D−(K+π−π−)π+ veto cuts.

kind of variable that is only available in the MC sample is the particle key. This particle
key is a unique number associated to every individual particle. The decay products of a
decaying particle contains a variable called mother key that contains the particle key of
the ancestor particle. With this information a process called truth matching is possible.
In the process of truth matching, the key variables of all particles in the decay chain
are compared to those of the signal candidates. Only candidates are kept if the key
information of the mother particle and the daughter particles match. This ensures that
the MC sample only contains particles from perfectly reconstructed signal decays. This
truth matching is done for the MC sample in this analysis.
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(a) Mass distribution of D−
s candidates reconstructed with the

Λ̄c mass hypothesis.

(b) Mass distribution with and without the Λ̄b veto cut.

Figure 7: Preselection Λ̄0
b → Λ̄−

c (K
+p̄π−)π+ veto cuts.

5.3 Boosted decision trees

After applying the sprucing and the preselection cuts, the amount of combinatorial
background has to be removed further. In this analysis a boosted decision tree (BDT)
is used. The BDT classifies every candidate in the data sample as signal or background.
For this, the BDT needs to be trained with a set of training variables to make the right
cuts on the data sample for classification. The first step is therefore to find a good set of
training variables. Also the complexity of the trained BDT model needs to be controlled
in order to avoid overtraining. And in the end, the performance of the trained BDT is to
be evaluated to ensure efficient removal of combinatorial background while keeping most
of the signal candidates in the process.
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Figure 8: Flow chart of the creation of training samples.

5.3.1 Training variables

In the training process of the BDT, a set of training variables containing information
about the kinematics of the particles and the goodness of the reconstruction process is
used. Additionally a label is assigned to each event in the training sample, which classifies
it as either signal (label = 1) or background (label=0). MC simulated events are used
as signal. The background events in the training process are taken from the high mass
sideband. This high mass sideband is defined as the mass interval m(B0

s ) ∈ [5800,6800]
MeV of the B0

s →D−
s π

+ data sample.
Figure 8 shows a flow chart of the creation of samples for the training and testing
process. Up to this point we are in step A2. To find a set of suitable training variables
a comparison between the MC distributions of signal candidates and the candidates in
the high mass sideband distribution in data of various variables is performed. Variables
with big differences in signal and background distributions are well suited for training a
BDT. To quantise how different the distributions are, a Kolmogorov-Smirnov two sample
test [23] is performed and variables with a small p-values are looked for.
Another criteria for the set of training variables were weak correlations to the mass and
the lifetime of the neutral B0

s meson and as among themselves. Figure 9 shows the signal
and background distributions of the resulting set of training variables. The separation
in signal and background distribution is achieved using the sPlot technique. A negative
logarithmic likelihood fit is performed on the mass distribution of the B0

s meson. From
the resulting signal and background PDFs, weights for the data sample can be calculated
separating signal and background distributions.
The variables ηd(D

−
s ) and ηd(π

+) are the decorrelated versions of the variables η(D−
s ) and
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η(π+). The decorrelation is done using the following equation:

ηd = ηchild − ηmother, (29)

where child refers to D−
s and π+ and mother to the B0

s meson. The variable η itself is the
pseudorapidity:

η = − ln

[
tan

(
θ

2

)]
, (30)

where θ is the angle between the the particles three-momentum and the beam axis (i.e.
the z-axis). Particles travelling along the beam axis have the highest pseudorapidity
whereas particles travelling orthogonal to the beam axis have a pseudorapidity of η = 0.
The variables pT (π

+) and pT (D
−
s ) describe the transverse momentum of the particle

relative to the beam line.
The variable DIRA(B0

s ) describes the angle between the vector from the primary vertex
to the decay vertex of the B0

s and the reconstructed momentum of the B0
s meson.

The flight distance χ2(D−
s ) describes the significance of determination of the flight distance

of the D−
s meson.

Figure 10 shows the correlation of the variables amongst themselves as well as the
correlation to the mass and the lifetime of the neutral B0

s meson. There are minor
correlations visible between the mass of the B0

s meson and its pseudorapidity as well as
the decorrelated pseudorapidity of the D−

s meson. The correlation of training variables to
the mass or the decay time of the B0

s meson is considered problematic, because the BDT
can alter the shape of the distributions. As for the mass variable, this is less important,
because the shape of the mass distribution is only used for the calculation of signal weights.
For the decay time variable this would be considered as a problem, since the ∆ms is
determined using a fit to the decay time distribution. The correlations are below ±0.3 for
the mass variable and even lower for the decay time variable and therefore considered
weak. No correction for the correlation is done. The variables amongst themselves have
higher correlations. The correlation of training variables among themselves means less
information is available for the BDT training, because correlated variables contain parts
of the same information. For this correlation a higher tolerance is chosen, as it has less
impact on the further analysis.
The final training sample is then created, using a sub sample of simulated candidates
as well as a subsample of the B0

s candidates in the high mass sideband. The remaining
candidates are used as a test sample to quantise the performance of the BDT and to
check if the BDT is overtraining Sec. 4.1.1. This is shown in step B of Figure 8. Training
the BDT on MC signal makes the BDT to perform less efficient, when applying it to
data, due to differences between MC simulation and data. These differences are caused by
imperfections in the simulation of the hadronisation process as well as the alignment and
efficiency of the detector. This is further investigated by comparing the MC distribution,
with the weighted signal distribution, for the training variables shown in Figure 9. A bias
to the analysis introduced by the training on simulated events is not expected and a less
efficient selection is accepted.

5.3.2 Training of the boosted decision tree

The BDT is trained with the set of selected training variables. The goal of the training is
to get a well performing BDT that is not overtrained. To achieve this, several parameters
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Figure 9: Distributions of training variables for sWeighted signal (blue) and background (red)
candidates in data and MC candidates (green).

that control the complexity of the model, can be adjusted. The training is performed using
a 6-fold cross validation. The training sample is split into six equally sized subsamples,
which can be seen in step C of Figure 8. In the first step of the training, the BDT is
trained on five of the six subsamples and the performance of the BDT is evaluated on the
remaining subsample, called the validation set. In the next round the BDT is validated on
a different validation set and trained on the remaining five subsamples. This is repeated
until every subsample is once used as a validation set. The use of multiple validation sets
enables a more generalized estimate of the performance of the BDT. It also uses the data
efficiently and reduces the bias of training on just one sample. By training and evaluating
the BDT model multiple times on different training and evaluation sets it is also possible
to detect overtraining efficiently.
A first BDT is trained using the default parameter setting of the XGBoost package.
Figure 11 shows the plot that tests if the BDT is overtraining. The trained BDT should
perform equally well on the training sample and the testing sample. A comparison of
the BDT classification for both of these samples separated in signal and background
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Figure 10: Correlation of training variables among themselves and to m(B0
s ) and τ(B0

s ).

Figure 11: Overtraining test of the BDT model trained with default parameter settings. Com-
parison of the BDT classification on the signal test sample (blue filled) with the signal training
sample (blue dots) and the background test sample (red filled) with the background training
sample (red dots).

reveals discrepancies between the BDT performance on the different sample. The BDT
trained with default settings is visibly overtrained on the signal sample. The biggest
deviations between the distributions of the training and test sample can be seen at low
BDT classifications. In the training sample, fewer signal candidates are classified with
a low value than in the test sample. This classification is correct, because low BDT
classification values correspond to background candidates, but it shows that the BDT is
performing better on the training sample than on the test sample.
The main task of the BDT training is therefore to control the overtraining, while

maintaining a well performing BDT. The model complexity and therefore the overtraining
of the model is controlled by adjusting a set of hyper-parameters. Below the parameters
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Parameter Value
number of classifiers 50

learning rate 0.3
minimum child weight 50

γ 10
early stopping rounds 5

Table 3: Parameters of final BDT model.

used in this analysis are explained.
The total number of classifiers defines the upper limit of trees added in the boosting
process. Setting a limit results in a less advanced BDT and saves computing time for the
training process. A less advanced BDT is also less likely to be overtrained.
The learning rate is defined as the step size shrinkage. After each boosting steps, the
resulting weights from the last tree are scaled by the learning rate. The weights are
multiplied by the given learning rate. A lower learning rate slows the learning process
down and makes the training process more conservative. Therefore this parameter is well
suited to control overtraining.
The parameters minimum child weight and γ-factor are used to directly control the model
complexity. The minimum child weight determines a lower limit for the sum of the weights
in a child leaf node. If the leaf node does not reach the minimum child weight, further
partitioning is restricted. This guarantees that the leafs contain enough data and therefore
enough statistical information for the classification process. The next tree is trained using
information from the leafs of the previous model. Prohibiting training in small data
samples controls overtraining.
The γ-factor defines the minimum reduction of the loss function in order to further
partition a leaf node. This is a useful parameter to keep the decision tree relatively simple.
A higher value of the γ factor, makes the training process more conservative. This is
useful to control the overtraining of the BDT.
The training is performed using early stopping. The value of the early stopping rounds
parameter is fixed during the search for the best parameters.
The final BDT parameters and evaluation values are summarised in Table 3. A plot of
the overtraining check and the ROC curve is included in Figure 12.
A reduction of overtraining is visible in Figure 12a compared to the BDT with default
parameters. The distributions of the training samples compared to the test samples
are in better agreement. There is still overtraining visible specifically for low BDT
classification values in the signal samples and for high values in the background sample.
Another difference between the two BDT versions can be seen in the overall shape of the
classification value. The less overtraining model classifies more signal with low values
and more background with high values than the overtrained BDT. This classification
is incorrect, but only affects the efficiency of the BDT, without inducing a bias to the
analysis. Therefore the weakly overtrained BDT is used for the further analysis.
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(a) Overtraining test of the final BDT model. Comparison
of the BDT classification on the signal test sample (blue
filled) with the signal training sample (blue dots) and the
background test sample (red filled) with the background
training sample (red dots).

(b) ROC curve of the final BDT model.

Figure 12: Training monitoring data of the final BDT model.

5.3.3 Evaluation of the BDT

The BDT output ranges from [0,1]. The optimal cut value needs to be determined. For
this the following figure of merit (FOM) is used:

FOM =
S√
S +B

, (31)

with S being the expected number of signal candidates remaining after a BDT cut and B
the expected number of background candidates in the region of ±2σ around the signal
mass peak. The S is determined the following way:

S = Ndata ·
NMC BDT

NMC

, (32)

with Ndata being the number of data in the signal region of µ± 2σ determined via a fit
to the B0

s mass. The quantity NMC BDT is the number of events in the MC sample after
applying a BDT cut and NMC the total number of events in the MC sample. The quantity
B is determined via a fit of the high mass sideband and extrapolating the PDF in a region
±2σ around the central value of the signal fit and integrating in that interval. This metric
is calculated for different cut values and the highest metric score is chosen for the optimal
cut value of the BDT. The test sample is used for this evaluation. The result can be seen
in Figure 13. The plot on the right shows the metric scores for BDT cut values up to 0.8.
A broad peak at lower cut values is visible. This region is further investigated and the
plot is shown on the right hand side of Figure 13. The best BDT cut value determined
with the described method is 0.06. This value was used for the further analysis.
The BDT is trained with the goal to efficiently reject combinatorial background while
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Figure 13: Determination of the best BDT cut value using the S/
√
S +B metric. Interval up to

a value of 0.8 (left) and more specific scan of the maximum region (right).

maintaining a high signal efficiency and avoiding overtraining. The rejection of the
combinatorial background is quantised through the background rejection:

εrej =
Btag

B
, (33)

with B being the true background events of the test sample and Btag the number of the
former tagged as background by the BDT. In the same manner the signal efficiency is
quantised through the signal efficiency

εsig =
Stag

S
, (34)

with S being the number of true signal candidates of the MC test sample and Stag the
number of true signal candidates tagged by the BDT as signal. The results can be seen in
Figure 14.
The final BDT has a signal efficiency on MC signal between approximately 0.88 and 0.94.
Considering the uncertainties of the calculated efficiency values, it can not be ruled out
that the signal efficiency is described by a flat distribution over the signal region. The
figure reveals minor deviations in bin to bin signal efficiency. The deviations show no clear
trend over the signal region. Ideally the BDT would perform equally well throughout the
signal region. This is not the case in this analysis, but the deviations are in an acceptable
range. The background rejection shows a clear reduction of background rejection towards
lower mass regions in the high mass sideband. This trend can be explained by the
correlation of some training variables to the B0

s mass explained above. The signal and
background events are now mixed and it is harder to separate them. By looking at the
quantities, the background rejection is between approximately 0.996 and 0.9995. These
values are close to the perfect background rejection score of 1 and the deviation between
the highest and the lowest score is small. This leads to the conclusion that the BDT
performs very well in terms of background rejection.
The BDT is now fully trained and evaluated. It can be applied to the data sample to
efficiently remove combinatorial background. The effect the BDT classification cut has
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(a) Signal efficiency of the BDT. (b) Background rejection of the BDT.

Figure 14: Evaluation of the BDT.

on the data sample is shown in Figure 15. The figure shows a rather simple distribution
of data after applying the BDT cut. A visible reduction of background is present. The
right hand plot has a logarithmic y-axis and reveals that the remaining background
contributions can be approximated by an exponential function. This is especially useful
for probability density function fits to the data distribution.

Figure 15: Effect of the BDT classification cut on data. Full mass range of data (left) and
smaller selected interval plotted with logarithmic scale (right).
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6 Fit to B0
s mass distribution

In order to calculate sWeights [24] for separating signal and background candidates in
the distribution, a NLL fit to the B0

s mass distribution is performed. The following
sections state the PDFs, which are used to model the B0

s mass distribution as well as the
procedure of the fit. The zFit package [25] is used for the NLL fit, which provides a range
of pre-defined PDFs.

6.1 Signal PDF

The signal PDF to describe the B0
s mass distribution is the sum of two PDFs. The first

PDF is a Gaussian function, defined as follows:

G(m;µ, σ) =
1√
2πσ2

· exp
(
−(m− µ)2

2σ2

)
. (35)

The second PDF is a double-sided Crystal Ball (DCB) function. The DCB function is a
composite function of a Gaussian function and two exponential tails to each sides of the
Gaussian function, defined as follows:

DCB(m;µ, σ, αL, nL, αR, nR) =


AL ·

(
BL − m−µ

σ

)−nL ,form−µ
σ

< −αL

exp
(
− (m−µ)2

2σ2

)
,for− αL ≤ m−µ

σ
≤ αR

AR ·
(
BR − m−µ

σ

)−nR ,form−µ
σ

> −αR,

(36)

with

AL/R =

(
nL/R

|αL/R|

)nL/R

· exp
(
−
|αL/R|2

2

)
BL/R =

nL/R

|αL/R|
− |αL/R|

(37)

being scale parameters to ensure that the DCB is a continuous and differentiable function.
A parameter fm is introduced to scale the functions relative to each other in the process
of adding them together. The parameters µ and σ are shared by the Gaussian and DCB
PDF. The final PDF to describe the signal B0

s mass distribution is defined as:

PDFm,sig(m;µ, σ, αL, nL, αR, nR, fm) = fm · DCB(m;µ, σ, αL, nL, αR, nR)

+(1− fm) · G(m;µ, σ).
(38)

6.2 Background PDF

The background B0
s mass distribution in this analysis is modelled by an exponential

function defined in the following way:

PDFm,bkg(m;λ) = A · exp(λ ·m), (39)

with A as the normalisation factor depended on the mass range of the fit:
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A =

∫ mmax

mmin

exp(λ ·m). (40)

The final extended PDF to fit the B0
s mass distribution is the sum of the signal PDF

PDFm,sig and the background PDF PDFm,bkg multiplied by their yields ysig and ysig
respectively:

PDFm = ysig · PDFm,sig + ybkg · PDFm,bkg. (41)

6.3 The fitting procedure

The NLL fit to the mass distribution of the B0
s meson is performed, by first fitting the

parameters of the signal PDF PDFm,sig to the MC sample. The resulting values of the
parameters µ and σ are fixed to their pre-fitted values µpre and σpre respectively. Two
new parameters are introduced to make differences between the pre-fit to the MC sample
and the following fit to the data sample more accessible.

µ′ = µpre + shift σ′ = σpre · resolution factor. (42)

The parameters αL,nL,αR and nR of the double-sided Crystal Ball function for the final
fit are Gaussian constraint within ±3σ of the pre-fitted values. A Gaussian constrained is
the likelihood of the estimated parameter value given the values set for the constraint
(i.e. µ and σ). These Gaussian constraints are added to the loss function as penalty
terms. The estimated parameters are assumed to follow a Gaussian distribution for this
method. The results of the pre-fit are shown in Figure 16a and the parameter values are
summarised in Table 9. The final fit to retrieve the sWeights from is shown in Figure 16b.
The fit parameters are summarised in Table 10.
Looking at the NLL fit to the B0

s mass, the model describes the data quite well. Judging

(a) Pre-fit of the signal PDF to the MC sample. (b) NLL fit to the B0
s mass distribution.

Figure 16: Fits to the B0
s invariant mass distribution on MC sample and data sample.

from the pull distribution there are minor deviations between the PDF and the datapoints.
The pull distribution of a perfect fit would show random deviations of around ±1σ and
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no trend of pulls in one direction. Regions where the datapoints are not well described by
the PDF can be identified via a group of neighbouring pulls in the same direction. Such
deviation are most visible in the transition of the Gaussian function into the exponential
tail of the DCB function and at low mass values. The background in that region seems to
be more complex than an exponential function. The main signal region and the upper
mass background seems to be fitted well by the assumed PDF judging from the pull
distribution in these mass regions. The fit is assumed to be valid for the calculation of
sWeights.
Looking at the values for the newly added parameters defined in Equation 42 and
summarised in Table 9 and 10, a shift of the mass peak of ∼ 10MeV towards a lower
mass can be observed and comparing the resolution of the B0

s mass, the uncertainty of
the nominal mass increased by a factor of ∼ 1.5 in the data fit.
These deviations can be explained by differences between the MC sample and the data
sample caused by imperfections of the simulation process as well as imperfections in the
detector efficiency and alignment. Especially the shift and the lower resolution of the B0

s

mass are effects related to the flawed early alignment of the newly commissioned detector.
These differences are assumed to introduce no bias into the measurement of the oscillation
frequency ∆ms since the pre-fit to the MC sample is only used to get a more stable fit to
the data sample and the further analysis is focused on the data sample.
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7 Calibration and combination of flavour tagging al-

gorithms

As explained in Section 4.3, flavour tagging is used to get the tagging decisions d and
estimated mistag probability η of signal candidates. The flavour tagging algorithms used
in this analysis are the SSKaon tagger, the OSKaon tagger and the OSMuon tagger,
discussed in Section 4.3. To get a per-event mistag probability, the estimated mistag
probability η needs to be calibrated on the specific data sample of this analysis. The
calibration is needed for two reasons: firstly, the taggers are trained on MC simulated
data samples and as already mentioned in Sec. 6, there are well-known discrepancies
between the simulated sample and the data sample.
Secondly, the tagging algorithms are trained on the kinematics and topologies of specific
decays. The OSKaon tagger for example is trained on the B+ →J/ψK+ decay. Applying
the trained tagger to the B0

s →D−
s π

+ decay of this analysis might not give the same
performance results compared to the training decay.
The lhcb-ftcalib package [26] is used for the calibration process, with the results shown in
Figure 17. The x-axis represents the estimated mistag from the NN. On the y-axis, the
measured mistag of the data sample is displayed. The measured mistag in a data sample
can be determined by comparing the initial flavour of the B0

s meson to the tagging decision
d. In the case of non-neutral B-meson decays, for example B+ →J/ψK+, the y-axis would
be trivial, given the fact that the initial state of the B+ meson can be determined by its
decay products. The neutral B0

s -meson on the other hand can oscillate and therefore the
initial flavour needs to be determined using the mixing probability function:

P(t) =
1

2

[
1− cos(∆mst)

cosh(1
2
∆Γst)

]
, (43)

together with the decay time information of the signal B0
s meson and information about

its final flavour state. The mixing probability function is convoluted with the Gaussian
resolution function, to model the decay time resolution:

P(t) =
1

2

[
1− cos(∆mst)

cosh(1
2
∆Γst)

· exp
(
−1

2
∆ms

2σ2
t

)]
. (44)

Ideally the predicted mistag and the measured mistag would be distributed on the diagonal
through the origin. Therefore the calibration uses a linear function to scale the mistag to
the given data sample:

ω(η) = p0 + p1(η − ⟨η⟩), (45)

where p0 and p1 are floating fit parameters and the mean estimated mistag probability
⟨η⟩ is determined from the data sample. In the calibration process, fixed values for the
oscillation frequency

∆ms = 17.765± 0.004± 0.004 ps−1

and the decay width
∆Γs = 0.084± 0.005 ps−1

are used [27].
The calibration is performed on the sWeighted signal sample with the B0

s →D−
s π

+ decay,
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since no processed sample of a control decay is available in time for this thesis. This could
induce a bias into the analysis due to the use of the fixed values for ∆ms and ∆Γs.

(a) Calibration of the OSKaon tagging algorithm.
(b) Calibration of the OSMuon tagging algorithm.

(c) Calibration of the SSKaon tagging algorithm. (d) Calibration of the combined tagging algorithm.

Figure 17: Calibration of the flavour tagging algorithms.
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The calibrated tagging performance of the individual taggers is summarised in Table 4.
The individual calibrated OS taggers and SS taggers are combined to form a single

Tagger Tagging efficiency [%] Effective mistag [%] Tagging power [%]
SSKaon 38.47 ± 0.14 43.4 ± 0.4 0.69 ± 0.08
OSKaon 14.91 ± 0.10 43.1 ± 0.6 0.28 ± 0.05
OSMuon 3.87 ± 0.05 34.9 ± 1.2 0.35 ± 0.06

Table 4: Calibrated tagging performances.

tagging decision with a corresponding mistag probability. To combine the flavour tagging
decisions of each tagger i, the tagging algorithms are combined in the following manner:

p(d = −1) =
∏
i

(
1 + di
2

− di(1− ηi)

)
,

p(d = +1) =
∏
i

(
1− di

2
+ di(1− ηi)

)
.

(46)

To transform the quantities p(d = ±1) into probabilities that the B0
s candidate contained

a b-quark or an b-quark at production, they need to be normalised:

P(d = −1) =
p(d = −1)

p(d = −1) + p(d = +1)
,

P(d = +1) = 1− P(d = −1).

(47)

The combined decision is made by comparing the probabilities of the B0
s meson to contain

a b-quark or an b-quark at production:

dcomb =

{
+1 for P(d = +1) > P(d = −1)

−1 for P(d = −1) > P(d = +1).
(48)

The combined mistag probability ηcomb is simply defined as:

ηcomb = 1−max
[
P(d = +1),P(d = −1)

]
. (49)

The combination of the flavour taggers is calibrated using the same linear calibration
function as described above and the result is shown in Figure 17d.
The performance of the combined flavour tagger is summarised in Table 5. By combining

Tagging efficiency [%] Effective mistag [%] Tagging power [%]
44.77 ± 0.15 41.437 ± 0.021 1.31 ± 0.11

Table 5: Performance of the calibrated combination of taggers.

the single flavour taggers into one single tagger, an improvement in performance can be
observed compared to the individual single taggers. The improvement in tagging efficiency
is due to taking into account all events with at least one tagging decision, which results in
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an increased tagging power and therefore a higher statistical power of the data sample.
The tagging power observed is almost 4 times lower than in the published analysis using
Run1 and Run2 data [9]. This big difference in performance can be explained by two
reasons: firstly the published analysis used additional taggers, namely the OSCharm and
the OSVertex taggers. The combination of only three taggers in this analysis is done due
to the limited amount of available taggers for samples taken during the Run3 period.
Secondly, the taggers of the previous analysis were trained on the same conditions as the
data taking. The algorithms used in the analysis are trained with Run2 conditions and
used for Run3 data. Further improvements on the final results are thus to be expected
once the taggers trained on the Run3 upgraded conditions will become available.
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8 Multidimensional fit

In order to measure the oscillation frequency of the B0
s meson ∆ms, a multidimensional fit

to the decay time t of the B0
s meson as well as to the decay time resolution σt and to the

calibrated mistag probability ω is performed. The following section provides information
about the used PDFs and the fitting procedure.

8.1 PDFs for Multidimensional fit

The PDF for the multidimensional fit is made up of four contributions. The first con-
tribution is the decay time PDF which accounts for the finite lifetime of the B0

s meson.
The decay time distribution without considering effects of mixing can be described by an
exponential function:

D(t; τ) ∝ exp
( t
τ

)
. (50)

The second contribution of the PDF, accounts for the mixing properties of the neutral B0
s

meson described in Section 2. This gives rise to the following mixing decay PDF, which
incorporates to the decay time PDF:

Mix(t, ω; q, τ,∆Γs,∆ms) ∝ exp
( t
τ

)
·
(
cosh

(
∆Γs

2
t

)
− q(1− 2ω) cos(∆mst)

)
. (51)

The factor (1− 2ω) is the dilution factor accounting for imperfect tagging. The influence
of this dilution factor on the final PDF is discussed at the end of this section. The quantity
q is used to account for the different mixing states of the B0

s meson. The case where
q = +1(−1) results in the mixing PDF for mixed (unmixed) candidates.
The third contribution to the multidimensional PDF is Gaussian PDF to model the decay
time resolution of the LHCb detector. For this the mixing function is convoluted with the
Gaussian PDF, which is equipped with a global parameter St to scale the per-event decay
time resolution σt observed in data:

G(t, σt;µ, St) ∝ exp

(
− (t− µ)2

2(St · σt)2

)
. (52)

The convolution is done analytically before the fit. The PDF of the multidimensional fit
up until now can be defined as:

P(t, ω, σt; q, τ,∆Γs,∆ms) ∝ exp
( t
τ

)
·
(
cosh

(
∆Γs

2
t

)
− q(1− 2ω) cos(∆mst)

)
⊗G(t, σt; 0, St).

(53)

The last contribution is a decay time acceptance PDF, which accounts for time-biasing
effects in the processing of the data. The sprucing cuts of the data sample introduce a
bias on the decay time distribution, because cuts on variables like the impact parameter
χ2 (IP χ2) have efficiencies dependent on the B0

s lifetime [28]. The IP χ2 sprucing cut
is more efficient for long lived B0

s mesons. This can be explained by the fact that the
daughter particle tracks are more likely to point to the primary vertex for short lived B0

s

mesons, so more short lived B0
s mesons pass this sprucing cut.

Also the reconstruction process of tracks has an efficiency depended on the decay time of
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the B0
s meson. The reconstruction process of the VELO described in Section 3 assumes

tracks with their origin close to the beam line. Displaced tracks from daughter particles
of long lived B0

s mesons do not fulfill this assumption. The reconstruction is therefore
slightly inefficient for long lived B0

s mesons.
The effects of the time-bias of the reconstruction and sprucing can be studied in detail
and gives rise to a specific shape of the acceptance function. This is not done in this
analysis. Instead an acceptance function with two floating parameters a1 and a2 is used.
This decay time acceptance function is motivated based on the shape of the decay time
distribution observed in data:

A(t; a1, a2) = arctan((a1 · t) + a2). (54)

The final mixing decay time PDF, used for the fit of the decay time distribution, is defined
as:

P(t, ω, σt; q, τ,∆Γs,∆ms) ∝ exp
( t
τ

)
·
(
cosh

(
∆Γs

2
t

)
− q(1− 2ω) cos(∆mst)

)
⊗G(t, σt; 0, St) · A(t; a1, a2) ·Θ(0.5),

(55)

where the Heaviside function Θ(0.5) accounts for the lower limit of the decay time t > 0.5 ps
used in the fit.
To study the influence of the mistag probability ω and the decay time uncertainty σt on
the mixing amplitude, a set of plots is created using the mixing decay time PDF with
different conditions applied. No decay time acceptance function was used for the plots in
Figure 18. Figure 18a shows the PDF with the assumption of perfect tagging (ω = 0) and
a perfect decay time resolution (σt ≈ 0). A sharp separation between mixed and unmixed
candidates is visible at each maxima and minima of the mixing PDF. The total number
of candidates is decreasing as expected, due to the decay of the B0

s meson. Although this
figure would be perfect to determine the oscillation frequency ∆ms, such data can not be
recorded in a real world scenario.
Figure 18b shows the PDF under the assumption of a perfect decay time resolution and
a realistic mistag probability (ω = 0.35). The effect of the mistag probability on the
amplitude can be studied. The increase in wrongly tagged events makes a sharp separation
of mixed and unmixed candidates impossible. The dilution factor (1− 2ω) decreases the
amplitude of the mixing decay time PDF accordingly.
Figure 18c shows the influence of the decay time resolution on the mixing decay time PDF.
Although a perfect mistag probability (ω=0) was assumed, a clear separation between
mixed and unmixed candidates is not observed, since the Gaussian convolution modelling
the decay time uncertainty smears the decay time distribution. Mixed candidates can
now smear into the distribution of unmixed candidates and vice versa. This results in the
reduction of the mixing amplitude.
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(a) Decay time distributions of mixed and unmixed signal candidates
with perfect tagging and perfect decay time resolution.

(b) Decay time distributions of mixed and unmixed signal candidates
with realistic tagging and perfect decay time resolution.

(c) Decay time distributions of mixed and unmixed signal candidates
with perfect tagging and realistic decay time resolution.

Figure 18: Influence of the mistag probability and the decay time uncertainty on the amplitude
of the mixing decay time PDF.

8.2 The fitting procedure

To perform the multidimensional fit, the data sample needs to be split into a mixed and an
unmixed sample based on the mixing state of the signal B0

s meson. For this a comparison
between the tagging decision d representing the initial state and the sign of the particle
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Observable Limits
m(B0

s ) 5200MeV < m(B0
s ) < 5750MeV

t 0.5 ps < t < 8.0 ps
ω 0.0 < ω < 5.0
σt 0.0 ps < σt < 0.2 ps

Table 6: Limits of the observables for the multidimensional fit.

identification (ID) number representing the final state is done. The tagging decision is +1,
if the B0

s meson at production contained a b̄-quark and −1 if the B0
s meson at production

contained a b-quark. If the sign of the ID is +1, the B0
s meson contained a b̄ and if the

sign is −1, the B0
s meson contained a b-quark. The following two cases were treated as

separate samples. {
d = ID , for unmixed candidates

d ̸= ID , for mixed candidates.
(56)

Limits on the observables for the fit are set and summarised in Table 6. The fit consists
of three parts: the first part is a fit to the B0

s mass distribution described in Section 6.
With this fit, a set of sWeights [29] is calculated for the mixed and the unmixed sample
separately. For the further fit only signal weighted candidates are used.
The second part of the fit is the determination of the acceptance function parameters
a1 and a2. For this the acceptance function is multiplied with the decay PDF D and a
Heaviside function:

f(t; a1, a2, τ) = A(t; a1, a2) · D(t; τ) ·Θ(0.5). (57)

This function is fit to the combined mixed and unmixed distribution. Signal weights
calculated for the combined sample are used. The resulting parameter estimates for a1
and a2 are fixed for the further fit.
The third part is the multidimensional fit in the observables t, ω and σt. The multidi-
mensional fit is done simultaneously for the mixed and the unmixed sample. The PDF
defined in Equation 55 is used with q = +1 for the mixed sample and q = −1 for the
unmixed sample. The parameter ∆Γs is set the average value calculated by the Particle
Data Group (PDG) [30].

∆Γs = (0.083± 0.005) ps−1.

This is a combined value of multiple measurements. These measurements were made
using different decay channels with higher branching fractions and also data with a much
higher luminosity compared to this analysis. Therefore a more precise measurement of
the ∆Γs value with the data of this analysis is not possible. The lifetime of the B0

s meson
τ(B0

s ), the global scale factor for the decay time uncertainty St and the yields of the
mixed and unmixed PDF as well as the oscillation frequency ∆ms are left floating in this fit.
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9 Analysis results

The results of the multidimensional fit are summarised and discussed in this section.
The oscillation frequency ∆ms of the B

0
s meson is directly determined with the NLL fit.

Figure 19 shows the mixed and unmixed PDFs plotted with the decay time distribution
of the mixed and unmixed candidates. Since the fit treats the decay time resolution and
mistag probability as conditional parameters, rather then fully modelled additional dimen-
sions, the fitted parameters do not contain the full information of the fit. As such, the
plot in Figure 19 is not a profile plot. Nonetheless, by averaging over the conditional vari-
ables as a function of the decay time, the figure can be interpreted similarly to a profile plot.

Figure 19: Fit of the multidimensional NLL fit to the mixed and unmixed sample to the decay
time distribution.

A difference in amplitude between the PDFs and the data sample is especially visible for
low decay time values. This deviation gets smaller towards higher decay times. Possible
sources for this discrepancy of the amplitude are discussed in the following:
firstly, the decay time acceptance function is able to change the overall shape of the
PDF. The effect of the acceptance PDF Eq. 54 on the deviation in amplitude between
data and the fitted PDF is assumed to be small judging from the pre-fitted acceptance
function. The fit is shown in Figure 20 and the acceptance PDF describes the decay time
distribution fairly well. The acceptance function is pre-fitted to the combined mixed
and unmixed sample and assumed to be the same for the mixed and unmixed sample
separately.
Secondly, the discrepancy in amplitude can be a consequence of the decay time

uncertainty model. The decay time uncertainty influences the PDF through the
convolution of the mixing decay time PDF with the Gaussian function. This Gaussian
function accounts for the decay time resolution of the LHCb detector and shapes the
amplitude of the PDF as discussed in Section 8.1. A global scale factor St is multiplied to
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Figure 20: Pre-fit of the decay time acceptance function.

the per-event decay time uncertainty σt. The deviation in amplitude could be explained
by assuming that the Gaussian convolution with a global scale factor St does not describe
the decay time uncertainty of the detector correctly.
Thirdly, the difference in amplitude between the PDF and the data sample can be a
described as a consequence of calibrating the flavour tagging algorithms. The mistag
probability ω influences the amplitude of the mixing function through the dilution factor
D = (1− 2ω). As already discussed in Section 7 the calibration of the flavour taggers is
done on the B0

s →D−
s π

+ decay due to the the absence of an available processed control
channel. Also the flavour tagging in this analysis is done using the taggers of Run2, which
are essentially trained for a different detector. A systematic study of this effect is not the
scope of this analysis. Both the use of the Run2 taggers and the calibration without a
control channel effect the calibration of the mistag probability ω and therefore have an
influence on the amplitude of the mixing decay time PDF as seen in Section 8.1.
Lastly, as this study required many of the components to be implemented in Python, a
simple implementation error cannot be conclusively ruled out at this point.
Nonetheless influences on the amplitude are assumed to have no effect on the oscillation
frequency ∆ms.

41



Figure 21 shows the correlation of the fit parameters among themselves. A weak positive
correlation between the lifetime of the B0

s meson and the decay time uncertainty scale
factor St is visible. This correlation is also assumed to not influence the determination of
the ∆ms.

Figure 21: Correlation of the parameters of the multidimensional fit.

Looking at the oscillation frequency in Figure 19, the PDF is able to describe the frequency
of the oscillation quite well. The resulting parameters of the fit are summarised in Table 7.

Parameter Value
∆ms (17.792 ± 0.011) ps−1

τ(B0
s ) (1.576 ± 0.006) ps

St 1.06 ± 0.04
ymixed 42403 ± 210
yunmixed 41937 − 200 + 210

Table 7: Summarised fit parameters of the multidimensional fit.

A comparison of the measured value for the oscillation frequency ∆ms and the world
average value is performed. The current world average value is:

∆msworld average = (17.765± 0.006) ps−1.
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The sigma deviation between these two quantities is:

σ =
|∆ms −∆msworld average|√

σ2 + σ2
world average

= 2.15. (58)

With a sigma value less than 3, the measured value is in reasonable agreement with the
world average value within their uncertainties.

9.1 Validation of the estimated fit uncertainty

The following chapters provide measurements of the parameter estimate uncertainty. The
measurements are performed using two different methods, namely the ”bootstrapping”
method and the ”∆ ln L = -1/2” method. The uncertainties of both methods are
compared to the uncertainties estimated during the NLL fit based on the Rao-Cramer-
Frechet minimum variance bound method Eq. 22, to validate the estimated fit uncertainty.

9.1.1 Bootstrapping method

The statistical uncertainty of the last stage of the multidimensional fit is studied using
the bootstrapping method. Test samples are produced with the mixing decay time PDF,
given in Equation 55, using the world average values and a decay time uncertainty scale
St = 1. The sample sizes are set corresponding to the yields of the final fit. The mixing
decay time PDF is then fitted to the newly created samples with the same conditions
of the multidimensional fit. This fit is performed 100 times to get 100 sets of estimated
parameters. To evaluate the uncertainty of the fit, the pull distribution of the three
variables ∆ms, τ(B

0
s ) and St is studied. The pull of a parameter A in this context is

defined as:

Pull(A) =
Afit − Atrue

σfit
, (59)

with Atrue being the value, the sample is created with and σA the uncertainty estimated
from the Minuit package in the fitting process. The resulting plots are shown in Figure
22 and the fit parameters are summarised in Table 8. If the uncertainty is correctly

∆ms τ(B0
s ) St

µ −0.09 ± 0.10 −0.04 ± 0.09 −0.05 ± 0.10
σ 1.02 − 0.07 + 0.09 0.91 − 0.06 + 0.07 0.94 − 0.07 + 0.08

Table 8: Fit parameters of the pull fits.

estimated during the fit, the σ value of the pulls should be approximately one and the
mean value of the pull distributions should be around zero. The pull distributions of all
three parameters show a roughly Gaussian behaviour with a mean value of zero and a
σ value of around one in the range of their uncertainties. However, a slight skewness is
observed in the pull distributions for the lifetime parameter τ(B0

s ) and the oscillation
frequency ∆ms, which could hint to asymmetric uncertainties of these parameters or that
the estimated uncertainty intervals do not provide proper coverage. Nonetheless, the small
deviations from a Gaussian distributions can be explained by the relatively small sample
size of the bootstrapping method.
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(a) Pull distribution of ∆ms. (b) Pull distribution of τ(B0
s ).

(c) Pull distribution of St.

Figure 22: Pull distributions of the bootstrapping method.

9.1.2 ∆ ln L = -1/2 method

To further evaluate the estimated uncertainty of the NLL fit, the ∆ ln L = -1/2 method
is used. The NLL function is Taylor expanded around the function minimum. This yields
the following formula:

− lnL(θ) ≈ − lnL(θ̂)− 1

2

[
∂2 lnL

∂2θ

]
θ=θ̂

(θ − θ̂)2 + . . . , (60)

since the first derivative term is by definition zero in the minimum case where θ = θ̂.
Considering the minimum variance bound, described in Equation 22, the equation above
can be written as:

− lnL(θ) ≈ − lnLmax +
(θ − θ̂)2

2σθ̂2
. (61)

Rewriting this above stated equation yields the rather simple correspondence between the
NLL minimum and the uncertainty of the estimated parameter:

− lnL(θ̂ ± σ̂θ̂) ≈ − lnLmax +
1

2
(62)
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Figure 23: Determination of the ∆ms uncertainty using the ∆ ln L = -1/2 method.

The uncertainty of the parameter can therefore be determined using the parameter values
where the NLL minimum has increased by 1

2
. The resulting plot of this method can be

seen in Figure 23.
The parameters, where the minimum of the NLL has increased by 1

2
are

∆mslower = 17.7814 ps−1 and ∆msupper = 17.8024 ps−1.

The resulting uncertainties of the ∆ms values are

σ∆ms,lower = 0.0106 ps−1 and σ∆ms,upper = 0.0104 ps−1.

These uncertainty estimates agree fairly well with the estimated uncertainty of ±0.011 ps−1

calculated during the minimisation process. This process also reveals the symmetric nature
of the NLL minimum.
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10 Conclusion

The goal of this thesis is to measure the ∆ms oscillation frequency of the B0
s - B

0
s system

using the early 2024 data of the upgraded LHCb experiment.
A 2024 data sample with an integrated luminosity equivalent of 1.73 fb−1 is used for
this analysis. The oscillation frequency is studied on the B0

s →D−
s (K+K−π−)π+ decay

channel. To reduce the background contributions in the data sample, a preselection is
performed including veto cuts to effectively remove background decays, such as B0 →D−

(K+π+π−)π+, from the data sample. The removal of combinatorial background in the
data sample is performed by a boosted decision tree (BDT). The BDT is trained on a
sample containing MC simulated signal candidates and using candidates from the high
mass sideband in data as background candidates. With the help of a Kolmogorow-Smirnow
test, variables with big differences in signal and background distributions are determined
and used as training variables for the BDT. The flavour tagging algorithms are calibrated
on the data sample using sWeights and the B0

s →D−
s π

+ decay, since no processed sample
of a control decay is available in time for this thesis. A multidimensional fit is implemented
to measure the oscillation frequency ∆ms in the data sample. The first step of the fit is
to calculate sWeights using a NLL fit to the B0

s mass distribution for mixed and unmixed
candidates. A decay time acceptance function used in the mixing decay time PDF is
pre-fitted to the decay time distribution of the B0

s signal candidates. A simultaneous fit to
the decay time distribution of mixed and unmixed signal candidates is performed taking
into account effect of the calibrated mistag probability ω and the decay time uncertainty
σt. The oscillation of the B0

s meson is both visible in the mixed and unmixed data samples
as well as in the fit of the mixing decay time PDF.
A comparison of the fitted mixing decay time PDF with the data points revealed differences
in the mixing amplitudes. Possible sources of this discrepancy were investigated without
finding a conclusive cause. An in depth analysis of the difference in the mixing amplitude
needs to be done in the future.
The main goal of this analysis was to show that the oscillation of the B0

s meson can be
resolved in the early 2024 data recorded with the upgraded LHCb detector. This goal
was reached within this analysis.
Furthermore a good measurement of the oscillation frequency ∆ms could be performed,
despite observing problems in modelling the mixing amplitude and using a limited amount
of available tagging tools. The oscillation frequency was measured to be

∆ms = (17.792± 0.011) ps−1.

The uncertainty of the fit parameter was validated using two different methods. With a
value of less than 3σ, the measured value is in reasonable agreement within its uncertainty
with the world average value of ∆ms.
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Appendix

This appendix shows the parameters of the fit to the B0
s mass distributions, discussed in

Section 6. Table 9 shows the estimated parameters of the pre-fit to the MC sample and
Table 10 lists the parameters of the final fit to the B0

s mass distribution seen in data.

Parameter Value
µpre (5365.76 ± 0.16) MeV
σpre (14.91±0.19) MeV
αL 2.3 ± 0.3
nL 2.2 ± 0.6
αR 1.19 ± 0.07
nR 10.7 ± 1.5
f 0.53 ± 0.12

Table 9: Fit parameters for the pre-fit to the MC sample.

Parameter Value
µpre (5365.76 ± 0.16) MeV
shift (-10.32 ± 0.09) MeV
σpre (14.91±0.19) MeV

resolution factor 1.531 ± 0.006
αL 2.3 ± 0.3
nL 2.2 ± 0.6
αR 1.19 ± 0.07
nR 10.7 ± 1.5
f 0.52 ± 0.16
ysig 202200 ± 1100

λbkg (-0.00719 ± 0.00015) MeV −1

ybkg 431300±12000

Table 10: Fit parameters for the fit to the data sample with Gaussian constraints to calculate
sWeights.
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