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Abstract
The emission pattern of J/Ψ mesons in p-Pb collisions as a function
of the center-of-mass system with changing centralities was studied.
A Glauber Monte Carlo calculation and p-p data for different

√
sNN

are the basis for the simulation. Two scenarios were studied. The
first one assumes energy loss of the incoming proton in each binary
collision with a Pb nucleon. The energy loss is hereby described using
an exponential function dependend on the number of collisions ad-
justed to match the measured charged-particle p-Pb pseudorapidity
distribution. The second one regards the participating part of the Pb
nucleus as a massive target which is hit by the proton. The Monte
Carlo simulation is compared to ALICE data in terms of the mean
transverse momentum and the J/Ψ yield as a function of the number
of produced charged particles.



Zusammenfassung
Das Emissionsverhalten von J/Ψ Mesonen in Proton-Blei Kollisionen
in Abhängigkeit des Massenschwerpunktssystems mit verschiedenen
Zentralitäten wird untersucht. Eine Glauber Monte Carlo Simula-
tion und Daten aus p-p Kollisionen für verschiedene

√
sNN sind die

Basis dieser Simulation. Zwei Szenarien wurden untersucht. Im er-
sten wird angenommen, dass das eingehende Proton in jeder Kollision
mit einem Bleinukleon seine Energie verringert. Die Energie wird
hierbei durch eine Exponentialfunktion beschrieben, welche von der
Anzahl der Kollisionen abhängt und angepasst wurde, sodass sie zu
der p-Pb Pseudorapiditätsverteilung passt. In dem zweiten Modell
wird der an der Kollision teilnehmende Teil des Bleikerns als massives
Target betrachtet, welches von dem Proton getroffen wird. Die pT
Verteilung und die Anzahl der J/Ψ Mesonen in Abhängigkeit der An-
zahl der geladenen Teilchen resultierend aus der Simulation werden
mit ALICE-Daten verglichen.
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1 Introduction

1.1 The Standard model

All the visible matter surrounding us is made out of atoms. Atoms have long been thought to

be the smallest unit of matter, therefore the name ”atom” which comes from the greek ”átomos”,

meaning indivisible. But experiments have shown that this assumption was not true and there are

even smaller units [1].

In table 1 a brief historic overview on the development of particle physics can be found.

1896 First forms of radioactivity observed by Antoine Becquerel
1898 Discovery of Polonium and Radium by Marie and Pierre Curie

1902-1909 Existence of three types of radioactive decay was shown by
Ernest Rutherford and Frederick Soddy

1911 Scattering experiment with α-particles on gold foil by
E. Rutherford resulting in an atomic theory

1911 Discovery of isotopes by Joseph Thomson
1932 Discovery of the neutron by James Chadwick
1939 Discovery of nuclear fission by Otto Hahn and Fritz Straßmann
1969 Establishment of quark hypothesis by Gell-Mann and Zweig

Table 1: Historic overview of nuclear and particle research [1].

The main knowledge about particles is summarized in the standard model of particle physics

that describes elementary particles and the three fundamental forces that they interact with [2].

Elementary particles can be classified into two groups which are the fermions and the bosons.

Fermions have a half integer spin and are again subcategorized into leptons and quarks. The so

called first generation consists of the electron e−, electron neutrino νe, the up quark u and down

quark d. There are two more generations which are copies of the first generation but with higher

masses [2]. An overview of all the fermions can be found in table 2.

Leptons Quarks
Particle Charge Mass (GeV) Particle Charge Mass (GeV)

1. Generation electron (e−) -1 0.0005 down (d) -1/3 0.003
neutrino (νe) 0 < 10−9 up (u) +2/3 0.005

2. Generation muon (µ−) -1 0.106 strange (s) -1/3 0.1
neutrino (νµ) 0 < 10−9 charm (c) +2/3 1.3

3. Generation tau (τ−) -1 1.78 bottom (b) -1/3 4.5
neutrino (ντ ) 0 < 10−9 top (t) +2/3 174

Table 2: Overview of fermions [2].

For every fermion discussed in the previous section, there also exists an anti-particle with the

same mass but opposite charge. They are indicated by a bar, for example d for the anti-down

quark, or by the charge, for example e+ for the positron as antiparticle of the electron e−.

The three fundamental forces are the electromagnetic, strong and weak interaction and are each

described by a quantum field theory (QFT). They are mediated by gauge bosons that have an

integer spin [2].

The weak interaction is divided into the weak charged-current interaction carried out by the charged

W+, W− bosons with mass m = 80.4 GeV and the weak neutral-current interaction mediated by

the neutral Z boson with m = 91.2 GeV. The W+/− bosons have the charges +/ − e and due to

charge conservation, they can only couple fermions with a charge difference of e. For leptons, this
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means that charged leptons will be coupled with their corresponding neutrino while quarks can be

coupled in multiple ways as long as the electrical charge is conserved. The weak charged-current

interaction is responsible for particle decays, since it is the only interaction allowing a change in

the particles flavour.

In case of the electromagnetic interaction, the corresponding gauge boson is the massless photon

γ with spin 1. The matching QFT is quantum electrodynamics (QED). Every charged particle

undergoes the electromagnetic interaction, meaning every fermion apart from the (anti-) neutrinos.

The strong interaction is transmitted by the massless gluon g and is described by quantum chro-

modynamics (QCD). The charge of this interaction is the colour charge which can be green, red or

blue. Only quarks and gluons carry colour charge which is the reason why only they participate in

the strong interaction. The gluon’s colour charge consists of a colour and an anti colour. Unlike

photons that carry no charge, the gluons can self interact because of their colour charge [2].

When separating two quarks that interact by exchanging gluons, the exchanging gluons undergo

attractive interactions with each other as indicated in figure 1a. The field lines are then not spread

like in QED (figure 1b) but confined into a tube (1c). The energy stored in this gluon field is

proportional to the distance which leads to vast energies at macroscopic distances [2].

Figure 1: Representation of gluon self interaction (a), field lines in electromagnetic interation (b)
and in QCD (c) [2].

As a consequence, quarks are confined to colourless bound states which are called hadrons. The

hadrons consisting of two quarks are called mesons while the hadrons made of three quarks are

called baryons. The most commonly known baryons are the neutron (udd) and the proton (uud)

which is the only stable hadron. There also exist antibaryons, made of three antiquarks. Hadrons

are always colourless so that there is no colour fields between them, meaning they consist either of

all three colours or a colour and its anti colour [2]. In contrast in the so called Quark Gluon Plasma

(QGP), quarks and gluons are not confined and can move quasi freely. This state was supposed

to occur right after the Big Bang followed by forming hadronic matter at lower temperature and

density. The QGP can be reproduced in laboratories with heavy ion collisions where high energy

densities and temperatures are reached [3].

The Higgs boson is the most recently discovered element of the standard model. Its mass is

m ≈ 125 GeV and unlike all other discovered particles, it is a scalar particle with spin 0. The

Higgs boson is essential for other particles to acquire mass [2].

At this point, the standard model of particle physics seems to be the best description regarding

subatomic structures, but still it is not complete. It does not include the fourth fundamental force,

gravity. Some physicists assume that there is a gauge boson named graviton G which mediates

gravitational force. It is supposed to be a massless spin-2 particle but could never be confirmed

experimentally [4][2].

The standard model also does not explain dark matter. It is not visible since it does not interact

with the electromagnetic force, therefore it is hard to measure. Its existence was expected due to

gravitanional effects that it has on visible matter [5].
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1.2 The J/Ψ Meson

In 1974, the group of Burton Richter, Stanford University, made an unexpected discovery at the

Stanford Linear Accelerator Center (SLAC) at the electron-positron storage ring SPEAR. In the

cross section of e+e− → hadrons, e+e− and probably µ+µ− a sharp peak was found. This

structure with energy E = 3.105± 0.003 GeV and upper limit of the full width at half maximum

Γ ≤ 1.3 MeV was proposed to be named Ψ [6].

In the same year, Samuel C. C. Ting and his group were looking for particles decaying into e+e−

and µ+µ− pairs at the Brookhaven National Laboratory’s alternating-gradient synchrotron. There

was found a clear peak in the mass spectrum at around m = 3.1 GeV, which was assumed to be a

particle that they called J decaying into an e+e− pair. Some further tests were made to reassure

that it is a real particle, for example reducing the beam intensity, making cuts in the data or

decreasing the magnet currents. The group has also seen the possibility that this was a charmed

particle whose existence was theoretically predicted [7].

Due to the almost simultaneous discovery of this particle, it is now called J/Ψ and in 1976, both

B. Richter and S. Ting were awarded the Nobel Prize for physics [8].

Just as S. Ting assumed, the discovery of the J/Ψ meson was the proof of the existence of the

charm quark c. The J/Ψ is a quarkonium, more precisely charmonium, meaning it consists of a

charm quark c and an anti charm quark c. Its mass is m = 3096.900 ± 0.006 MeV and its full

width is Γ = 92.9 ± 2.8 keV. They main decay modes are hadrons with (87.7 ± 0.5) %, an e+e−

pair with (5.971± 0.032) % and a µ+µ− pair with (5.961± 0.033) % [9].

Studying the J/Ψ meson is relevant because it can be seen as a probe of the QGP forming in

a nuclear collision. If in a hadron-hadron collision a cc pair is produced, this would lead to

J/Ψ production. If in the same collision a QGP is formed, the J/Ψ formation would be initially

suppressed because of the Debye screening of colour charge. At sufficiently high temperatures, the

screening radius rD(T ) can be smaller than the binding radius rJ/Ψ(T ) of the J/Ψ meson which

then results in prohibiting J/Ψ production [10].

In heavy ion collisions where a QGP forms, the number of emerging cc pairs depends on the center-

of-mass energy. With increasing energy, the charm production cross section also increases which is

indicated in the first column of figure 2 [11]. In the following QGP formation the charm quarks are

deconfined. At lower energies the few (anti) charm quarks tend to hadronize into D mesons due

to the lack of cc partons. At higher energies, the (anti) charm quark density is higher, therefore in

addition to the D mesons J/Ψ mesons form. This kind of behaviour was predicted with a statistical

hadronization model (SHM) and can by measured using the nuclear modification factor [11].
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Figure 2: Quarkonia production in collisions at low and high energies [12].

The nuclear modification factor R
J/Ψ
AA is shown as a function of the charged particle multiplicity

density per pseudorapidity in figure 3. It is defined as the ratio between the J/Ψ yield in nucleus-

nucleus (A-A) collisions and the superposition of the J/Ψ yield in nucleon-nucleon (p-p) collisions

[13].

R
J/Ψ
AA =

dNAA
J/Ψ/dy

Ncoll · dNpp
J/Ψ/dy

(1)

Here it is also visible that at low energies (RHIC) there is a J/Ψ suppression, the factor R
J/Ψ
AA

is decreasing with increasing charged particle multiplicity density. In contrast at higher energies

(LHC) there is an enhancement relative to lower energies which is indicated by a higher R
J/Ψ
AA .

Figure 3: Relative J/Ψ yield R
J/Ψ
AA dependent on the charged particle multiplicity density per

pseudorapidity. Red markers: Pb-Pb collision measured at ALICE at
√
sNN = 5.02 TeV. Blue

markers: Au-Au collisions measured at RHIC at
√
sNN = 0.2 TeV [14].

1.3 Kinematics and collisions

If a system moves at high velocities v near the velocity of light c = 299792458 m
s , the effects of

special relativity have to be considered. In this case, two measures are often used [2]:

β =
v

c
(2)
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γ =
1√

1− β2
(3)

In relativistic kinematics, it is helpful to describe systems not only by a three component vector,

but by a four-vector. Most commonly used is the contravariant space-time four-vector xµ [2]:

xµ = (x0, x1, x2, x3) = (t, x⃗) = (t, x, y, z) (4)

There also is the covariant space-time four-vector which is indicated by the lower index and which

differs by the signs from the contravariant version [2]:

xµ = (t,−x,−y,−z) (5)

The momentum-energy four-vectors are also contravariant and can be written as

pµ = (p0, p1, p2, p3) = (E, p⃗) = (E, px, py, pz) (6)

where it was assumed that c = 1. Due to the conservation of energy and momentum, the four-

momentum is also conserved.

If one system S’, described by the four-vector xµ
′
= (x0

′
, x1

′
, x2

′
, x3

′
) moves relative to another

system S, described by xµ = (x0, x1, x2, x3), with velocity β, a Lorentz transformation is needed to

transform the coordinates from S’ to S. In case S’ is only moving in x3-direction, the transformation

is given by [2]

x0
′
= γ(x0 − βx3)

x1
′
= x1

x2
′
= x2

x3
′
= γ(x3 − βx0)

(7)

Contravariant vectors are related by this Lorentz transformation when measured in two inertial

frames. If two four-vectors a and b are contravariant, then their scalar product is Lorentz-invariant

and can be written as [2]:

a · b = aµbµ = aµb
µ = a0b0 − a⃗ · b⃗ (8)

Which leads the energy momentum four-vector to be

p · p = E2 − p⃗2 (9)

If a single particle is at rest, its four-momentum is pµ = (m, 0, 0, 0) which results in pµpµ being

equal to the squared mass m2. Because of the Lorentz invariance of this quantity and equation 9,

the relation between energy, momentum and mass can be written as

E2 − p⃗2 = m2 (10)

where the mass is called invariant mass because it remains equal in every frame. The mass of a

decaying particle, e.g. J/Ψ → e+e−, can therefore be calculated from the energy and momentum

of the decay products [15].

There are three variables, called the Mandelstam variables s, t and u, that characterize colli-

sions where the two incoming particles have the Four-vector p1 and p2 and the outcoming particles
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p3 and p4 [2]:

s = (p1 + p2)
2 = (p3 + p4)

2 (11)

t = (p1 − p3)
2 = (p2 − p4)

2 (12)

u = (p1 − p4)
2 = (p2 + p3)

2 (13)

The quantity
√
s is the total center-of-mass energy [2]. In the center-of-mass frame, where p⃗1 = −p⃗2

holds, s is given by

s = (p1 + p2)
2 = (E1 + E2)

2 (14)

A measure for the probability of an interaction happening is the cross section σ which has the

dimension of area. If a beam of particles a has the flux ϕa, meaning the number of particles that

traverse a unit area in a unit time, then the interaction rate r is given as [2]:

r = σϕa (15)

The cross section is defined as the number of interactions per unit time per target particle divided

by the incident flux. The commonly used unit is barn b with 1 b = 10−28 m2 = 100 fm2 [2]. If the

distribution of a kinetic variable, for example the angular distribution, is relevant the differential

cross section dσ
dΩ can be taken into account. It is defined almost as before but with the difference,

that the number of particles scattered into dΩ instead of the total number of interactions is taken.

In this analysis, the geometric cross section was used. It is defined with the radius of the target rt

and the radius of the projectile rp in the following manner [2]:

σ = π(rt + rp)
2 (16)

Two important measures regarding particle or heavy ion collisions are the rapidity y and the

pseudorapidity η.

The former characterizes the longitudinal velocity:

y = tanh−1(βL)

=
1

2
ln

(
E + pL
E − pL

) (17)

The rapidity y is not Lorentz invariant, meaning it does not transform as in equation 7, but still

has a simpler Lorentz transformation than the velocity u. This is a reason to use rapidity y instead

of velocity u. When a system S’ moves with β, the rapidity in system S is given as:

y =
1

2
ln

1 + β

1− β
+

1

2
ln
E′ + p′z
E′ − p′z

(18)

The pseudorapidity η characterizes the angle relative to the beam axis and is defined as

η = −ln
(
tan

(
θ

2

))
(19)

where θ is the angle between the beam axis and the Four-vector of the particle.

Using trigonometric functions, exponential functions and introducing the transverse mass mT =

6



√
m2 + p2T , one obtains the following relations:

E = mT · cosh y

pL = mT · sinh y

p = pT · cosh η

pL = pT · sinh η

(20)

Exact calculations can be found in appendix section 6.1.

1.4 ALICE publication

On August 24 2021, the ALICE collaboration published their results of the J/Ψ yield and average

transverse momenta in p-Pb collisions at
√
sNN = 8.16 TeV , recorded in 2016 at the Large Hadron

Collider (LHC) at the european center of nuclear research (CERN), Switzerland [16]. It is based

on the PhD thesis of Jana Crkovska where she studied the J/Ψ production at p-p collisions and

the J/Ψ production multiplicity dependence [3].

The ALICE (A Large Ion Collider Experiment) detector is 16 m high, 26 m long and 16 m wide and

is placed at a depth of 56 m under the ground [17]. It consists of several cylindrical subdetectors.

The innermost is the inner tracking system (ITS) which reaches from 3.9 cm up to 43 cm distance

from the beam line. It includes Silicon Pixel Detectors (SPD) that cover the range |η| < 0.9. It is

used for primary and secondary vertices reconstruction, particle identification and tracking [18].

The Time Projection Chamber (TPC) follows. It consists of a gas filled cylinder with a central

electrode. The signal comes from ionisation of the gas by charged particles traversing it. It is the

main tracking and particle identification detector of ALICE [19].

The Transition Radiation Detector (TRD) can identify positrons e+ and electrons e−. The working

principle is based on transition radiation which occurs when a charged particle passes the boundary

between two mediums with different dielectric constant [20].

Further detectors are the time-of-flight and EMCAL for particle identification and jet measure-

ments.

Figure 4: Run 3 ALICE detector after upgrades [21].

For the analysis, the muon spectrometer, silicon pixel detectors, V0 scintillator arrays and neu-

tron Zero Degree Calorimeter (ZDC) of the ALICE detector were relevant [16].

The former is specialized for detecting heavy quark resonances, like the J/Ψ or the bottomonium
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Υ by observing the µ+µ− decay channel. The detectors acceptance is −4.0 < η < −2.5 [22].

The V0 scintillator consists of the V0A whose acceptance is 2.8 ≤ η ≤ 5.1 and the V0C with an

acceptance of −3.7 ≤ η ≤ −1.7. They are each an array of 32 scintillating counters [23]. They are

used for online triggers and for avoiding contamination from beam gas events [16].

The ZDC is a set of two detectors on each end of the ALICE detector where each set has a proton

and a neutron ZDC [24]. They are used to reject electromagnetic interactions and background [16].

As described before, the J/Ψ production is modified when a QGP is formed. This modification has

already been observed experimentally in nucleus-nucleus collisions. Proton-nucleus collisions have

also been taken into account to decide whether this effect results from the QGP or from so called

cold nuclear matter effects. The measurements reported in reference [16] intend to complement

the previously done measurements.

The results for the J/Ψ yield as a function of the normalized charged-particle pseudorapidity den-

sity are shown in figure 5. The blue markers indicate the measurement in p-going direction which

is towards the muon spectrometer, covering the rapidity interval 2.03 < ycms < 3.53. The Pb-going

direction, represented by red markers, covers the interval −4.46 < ycms < −2.96. Even though

the yield is in both cases increasing with increasing multiplicity, the growth happens at a different

rate. The yield in Pb-going direction increases faster than linear with slope one while the yield in

p-going direction, meaning the proton moves towards the Muon spectrometer, grows more slowly.

In this thesis, a simulation was made in order to explain this behaviour.

Figure 5: Normalized J/Ψ yield as a function of the normalized charged-particle pseudorapidity
density. Blue dots indicate the proton going in negative z direction. Red squares indicate the
proton going in positive z direction. Dotted line represents one-to-one-correlation [16].

The mean transverse momentum ⟨pT ⟩ dependent on the relative charged particle pseudorapidity

density was also measured and presented in figure 6. Throughout the whole multiplicity range, the

⟨pT ⟩ measured in the positive ycms interval is above the one measured in negative ycms direction.

This also holds true for the multiplicity-integrated value and is consistent with measurements in

p-p collisions. At high multiplicities, a ⟨pT ⟩ saturation can be seen in both intervals.

8



Figure 6: Mean transverse momentum ⟨pT ⟩ dependent on the relative charged particle pseudora-
pidity density. Blue dots indicate the proton going in negative z direction. Red squares indicate
the proton going in positive z direction [16].

The measurements presented in figure 5 and 6 were also performed at
√
sNN = 5.02 TeV and

agree with the ones at
√
sNN = 8.16 TeV . At

√
sNN = 8.16 TeV , a higher precision was reached

and the multiplicity coverage was extended.

It was suggested that the seen behaviour could come frome an incoherent superposition of parton-

parton collisions where effects vary with rapidity but rather not with the collision energy. [16]

In this thesis it is examined whether this behaviour could also result from acceptance effects in

combination with a shift in the center-of-mass system.

1.5 Structure

As a part of this Bachelors thesis, a Glauber Monte Carlo simulation has been written. The first

step was to model the lead nucleus by generating single nucleons at different, randomized positions

and then calculating the transverse distance to the proton. It was decided whether a collision

happened and therefore the number of participants Npart was determined which is described in

section 2.1.

Then, the p-Pb collision was assumed to be multiple single proton-nucleon collisions in which each

charged particles are generated. The number of charged particles Nch was sampled from an extra-

and interpolation of given data.

The next step was to reconstruct the pseudorapidity distribution from p-Pb measurements at dif-

ferent centralities. This was done by fitting three boost parameters to η distributions measured

in p-p collisions at four different energies. Then, the single proton-nucleon collisions were looked

at and the boost parameters were chosen depending on the energy. The single pseudorapidity

distributions generated at each collision were added. Since this was not sufficient to describe the

data, the proton energy in each collision was decreased. The energy loss was described by different

functions as can be seen in section 3.3.

Finally, all steps were connected into the main simulation. The results obtained after some adjust-

ments are presented in section 4.

There was also made a different approach to simulate the given data. The lead nucleus was re-

garded as a massive target instead of single pp collisions as before.

Both models will be compared and a conclusion will be drawn.
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2 Glauber Monte Carlo simulation

Monte Carlo simulations are often used in physics, but they are also used to assess risks for stock

prices, project management or pricing. This method was developed in World War II by John von

Neumann and Stanislaw Ulam. The difference to other models is that there aren’t just fixed inputs

but also randomly sampled inputs so that a large number of likely outcomes is produced [25].

The Glauber model was introduced by Roy Glauber. It is used to predict the number of partici-

pants and binary collisions depending on the impact parameter b in nuclei collisions. The impact

parameter corresponds to the transverse distance of the nuclei colliding, measured from center-to-

center [26]. The number of participants can also be calculated analytically by taking the nuclear

overlap functions into account.

For this thesis, the ROOT framework was used. It was developed at CERN and is mainly used in

high energy physics [27]. Here it was written in C++.

2.1 Simulation of p-Pb collisions

The first step for simulating the proton lead collision by the Glauber Monte Carlo approach was to

generate the lead nucleus. It consists of 208 nucleons for which each a position in polar coordinates

was modeled. The azimuthal angle ϕ was generated in an evenly distributed range between 0 and

2π using the TRandom class and the function Rndm(). The polar angle θ was generated in a range

between 0 and π. This time, the values were distributed with a sine function. This prevents

oversampling on the poles of the sphere. According to the Woods-Saxon distribution, the nucleon

density ρ in a nucleus, depending on the radial distance r, is described by

ρ(r) =
ρ0 (1 + wr2/R2)

1 + exp((r −R)/a)
(21)

where w is the so called wine bottle parameter, R the radius of the nucleus and a characterizes the

width of the slope. For these Woods-Saxon parameters, there are several values as seen in table 3.

The corresponding graphs can be seen in figure 7 where the red function shows the Woods-Saxon

distribution using the old parameters and the blue function uses the new parameters. The new

values include the deformation of the nucleus and the finite size of the nucleons.

R (fm) a (fm) w
Old 6.62 0.546 0
New 6.66 0.45 0

Table 3: Woods-Saxon parameters for 208Pb [28].
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Figure 7: Comparison of Woods-Saxon density distributions for 208Pb with different parameters
with ρ0 = 0.16 nucleons/fm

3
.

A vector with two entries was generated. The first one is containing the position of the proton.

The second entry carries the position vectors of all the 208 lead nucleons.

After generating each nucleon, the distance to all other nucleons was calculated using a three

dimensional pythagoras to make sure that there are no nucleons sitting on top of each other. If

their distance was smaller than a specific expulsion distance dexp, the nucleon was deleted and

newly generated. According to reference [29], the expulsion distance was dexp = 0.9 fm while J.

Adam et al. suggest dexp = 0.4 fm [30].

The proton was generated at the position r = θ = ϕ = 0. Both the proton and the lead nucleus

were shifted about half the impact parameter b in opposite directions. The impact parameter b

was sampled from

f(x) = 2πx (22)

since it is more probable to hit the outer part of the nucleus than the exact center due to the bigger

circumference.

2.2 Collision profiles

After generating all nucleons, the transverse distance dT between the proton and every lead nucleon

was calculated. If the position of the proton is given by (xp, yp, zp) and the position of one lead

nucleon is given by (xn, yn, zn), the transverse distance is:

dT =
√
(xp − xn)2 + (yp − yn)2 (23)

In this model, it was assumed that the proton passes the lead nucleus in a straight line without

changing its direction after colliding with the lead nucleons. To determine whether a collision takes

place or not, there are two models:

The first one is called the hard sphere model and is mostly used in Glauber Monte Carlo simulations.

The hit probability p as a function of the impact parameter b is then given by a step function (Figure

8, dotted line):

p(b) = Θ(R− b) (24)
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In that case the collision probability is always 1 if the calculated distance dT is below a specific

value R. This was calculated from the cross section using equation 16.

The second model is the realistic profile, where the probability p(b) is given by a single Gaussian

function:

p(b) = A · e−πA b2/σNN
in (25)

For this reason it is also known as Gaussian profile. The parameter A depends on the collision

energy and was set to A = 0.92 [29].

The differentiation between these two models was made because studies have shown, that in the

wounded nucleon model some parameters might differ depending on the profile. It influences the

eccentricity parameters ϵ∗ and higher rank parameters ϵ∗n as well as the multiplicity fluctuations

[29].

Figure 8: Collision probability as a function of the impact parameter according to different collision
profiles. Dotted line indicates the hard sphere model. Red solid line indicates Gaussian profile as
in equation 25. Dashed line shows a fit from another reference [29].

If, after these conditions, a collision takes place, the counter of the number of binary collisions

Ncoll raises by one. For the number of participants Npart, a second vector with two entries was

generated. Again, the first one stands for the proton, while the second entry contains a vector of

length 208. Every entry is set to 0. If a particle is involved in a collision, its entry is set to 1. After

examining all possible collisions, the entries of the vector are added in order to obtain Npart.

This whole procedure was repeated with many varying impact parameters.

2.3 Results from the Glauber simulation

Using the ROOT class TEveGeoShape and TGeoSphere, a 3 dimensional graphic of the nucleons

for b = 0 was plotted. The hard sphere profile with σ = 70 fm2 and expulsion distance dexp =

0.4 fm were used to obtain the graphic shown in figure 9. The Woods Saxon parameters were

a = 0.546 fm, R = 6.62 fm. Blue spheres represent the spectators, meaning nucleons that do not

take part in the collision, while green spheres represent the participants.
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Figure 9: 3D graphic of the lead nucleus colliding with a proton. Blue spheres indicate spectators,
green spheres indicate participants of the collision.

To reassure that the positions of the nucleons were generated correctly, the positions in different

planes before shifting by b have been plotted in 2D histograms (figure 10). As expected, they all

look almost the same since there was no favoured direction in the position generation. Here again

can be seen that collisions at for example b = 10 fm can take place.

(a) X-Y plane. (b) X-Z plane. (c) Y-Z plane.

Figure 10: Nucleon distribution in different planes of the lead nucleus.

The number of participants and collisions depending on the impact parameter are shown in

figure 11. The figure shows the result of using the same parameters as in figure 9 but with 10000

events and the impact parameter was sampled 100 times. A TProfile was also created to show

the mean Npart, respectively Ncoll, at every X bin and is plotted in red. As expected, the number

of collisions and participants decreases with increasing impact parameter. It is also visible that

the number of collisions is by 1 smaller than the number of participants as was foreseeable. The

gap at Npart = 1 in figure 11a results from the fact that there can’t be a collision with only one

participant. It is also interesting to see that even at b = 8 fm which is bigger than the lead ion

radius R = 6.62 fm, collisions take place. A reason for that is that the Woods-Saxon distribution

is not a step function leading to values greater than R being obtainable. The chosen cross section

is also relevant for this effect. It is also clearly visible that peripheral collisions are more likely

than central collisions.
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(a) Npart vs b. (b) Ncoll vs b.

Figure 11: Npart and Ncoll depending on the impact parameter b for the hard sphere profile with
σ = 70 fm2 and dexp = 0.4 fm. A profile shows the mean values in red.

Furthermore, the probability distribution of the number of participants was plotted and com-

pared to a published distribution that can be seen in figure 12a [31]. The latter was obtained by

a standard Monte Carlo Glauber approach with a Gaussian profile and σ = 70 mb, simulating a

p-Pb collision at
√
s = 5.02 TeV. The parameters, namely σ, dext, a, R and the collision profile

of the simulation made in this thesis were varied to study the systematics. The Woods-Saxon

parameters were varied within the interval of the old and new values shown in table 3. Then it

was also switched between the Gaussian and hard sphere profile and the two expulsion distances

dext = 0.9 fm and dext = 0.4 fm. The cross section was varied in an interval of 65 to 75 mb. In

figure 12b, the Npart distribution for the same parameters as before but with 2000 events and 70

impact parameters is shown. In figure 12c, various Npart distributions can be seen. An errorband

which involves all distributions was also plotted. The mean value was also calculated and can be

seen in figure 12d.
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(a) Npart distribution [31]. (b) Npart distribution at certain parameters.

(c) Npart distribution at varying parameters. (d) Mean of Npart distributions.

Figure 12: Npart probability distributions. Upper: Left from [31], on the right from our own
Glauber Monte Carlo simulation with certain parameters. Lower: Left with varying parameters,
the mean of these distributions is shown on the right.

The rapidity was also investigated. For this, a function was written using the ROOT class

TLorenzVector which allows to set four-vectors. If an energy per nucleon En = 2760 GeV is

given, then the proton has the energy Ep = En while the nucleons, that the proton is colliding

with, will have EPb = En · (Npart − 1) for the assumption that the proton interacts with all

participating nucleons at once. The momenta can be calculated using equation 9 and the proton

mass mp = 0.938 GeV:

pp =
√
E2

p −m2
p

pPb = −
√
E2

Pb − ((Npart − 1)mp)2
(26)

The opposite sign results from the particles moving towards each other in order to collide. The

four-vectors can then be set to pµp = (0, 0, pp, Ep) and p
µ
Pb = (0, 0, pPb, EPb). The rapidity is then

given by using the function Rapidity() on the sum of the two four-vectors. The result can be

seen in figure 13a. It decreases monotonically with increasing Npart and is equal to or smaller than

0 which is expected due to the energetic asymmetry towards the in negative direction going lead

nucleons.

In the analysis, the particle beams won’t start of with the same energy per nucleon but with

Ep = 4000 GeV and for a lead nucleon En
Pb = 1580 GeV. In this case the first collision with
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Npart = 2 has a higher proton energy than lead energy which is the reason why ycms tends to

the proton going (positive) direction. Therefore ycms > 0 but from Npart = 4 on the energetic

asymmetry shifts towards the negative going direction. The behaviour can be seen in figure 13b.

(a) Symmetric energy per nucleon
En = 2760 GeV.

(b) Asymmetric energies per nucleon
Ep = 4000 GeV and En

Pb = 1580 GeV.

Figure 13: Rapidity ycms as a function of Npart. Red solid line: Analytic calculation. Histograms
are from Glauber simulation.

.
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3 Multiple collision model

In this thesis the proton lead collision is assumed to consist of multiple consecutive proton-nucleon

collisions. For this reason, data from p-p collisions can be used for the simulation. A similar ap-

proach was already made in 1997 based on S-S and Pb-Pb collisions and is called the LEXUS

model which stands for linear extrapolation of ultrarelativistic nucleon-nucleon scattering. A

Glauber simulation was used in order to simulate a nucleus-nucleus collision as a sequence of

binary nucleon-nucleon collisions [32]. From this model on it was examined whether the multiplic-

ity in Pb-Pb collisions can be reproduced using p-p data. By comparing the results of this model

to measured Pb-multiplicities, the stopping mechanism of the nucleons was quantified by assuming

that there is a constant change in the rapidity [33].

In a second approach the participating nucleons are considered as a massive target which will be

further described in section 4.4.

3.1 First steps

The very first step is to set the direction of the proton and lead nucleus. In the first run, the vari-

able sign is set to +1 and in the second run, it is set to −1. Then an event loop was created. In

this loop the number of participants is determined from the Npart distribution created in section 2

by using the function GetRandom() which picks a random number by regarding the function shape.

From this the number of binary collisions Nbin = Npart−1 can be determined easily. A counter for

the total number of charged particles is set to 0. Then a loop over each binary collision is created

where the proton energy is set. This step is looked more into in section 3.3.

Knowing the proton mass mp, energy Ep and the lead nucleon energy En
Pb = 1580 GeV, a

TLorentzVector for each the proton and the lead nucleon can be set: pµp = (0, 0, sign · pp, Ep) and

pµPb = (0, 0,−sign · pPb, EPb). By applying equation 11 the total center-of-mass energy
√
s was

calculated.

3.2 Generation of charged particles

The next step was to determine the number of charged particles Nch. The first attempt was to

reproduce the Nch/Npart vs Npart distribution (figure 15a) from a Monte Carlo simulation of p-

Pb collisions at
√
s = 5.02 TeV [30], more precisely the V0M measurement. It was produced by

combining the table 4 with the pseudorapidity distribution in figure 14.

Centrality (%) ⟨b⟩ (fm) ⟨Npart⟩
0 - 5 3.12 15.7
5 - 10 3.50 14.0
10 - 20 3.85 12.7
20 - 40 4.54 10.4
40 - 60 5.57 7.42
60 - 80 6.63 4.81
80 - 100 7.51 2.94
0 - 100 5.56 7.87

Table 4: Geometric properties of p-Pb collisions. σ and mean values were obtained using a Glauber
Monte Carlo approach [30].
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Figure 14: η density distributions for different centrality classes in p-Pb collisions with
√
s =

5.02 TeV [30].

For every centrality interval, the number of charged particles was evaluated at midrapidity from

figure 14. Then, it was divided by the corresponding number of participants from the table and

a point was set at x = Npart and y = 0.84 · Nch/Npart. The factor of 0.84 comes from the TPC

acceptance. The result can be seen in figure 15b.

Using the Glauber Monte Carlo simulation described in section 2, it was tried to reproduce this

behaviour. For this purpose, at every binary collision a number of charged particles was sampled

from the particle multiplicity distribution measured in p-p collisions as shown in figure 17b and

they were added. Because of the η range of |η| < 0.8, the sum of Nch was divided by 1.6 and

afterwards divided by (Npart − 1). The decision to divide by this divisor and not only by Npart

stems from that the charged particles result from two participants, not only from one. In a binary

collision, only one set of charged particles will be generated even though there are two participants.

The result is shown in figure 15d using the same parameters as before but 100 events and 2000

impact parameters. As one would expect Nch/(Npart − 1) is constant.
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(a) Measured at ALICE in p-Pb collisions at√
s = 5.02 TeV [30].

(b) Reproduction of figure 15a using η distribu-
tion and table 4.

(c) As in figure 15d but with a divisor of Npart.
TProfile indicated in red........... . . . . . . . . .
. . . . . . . . . . . . . . .

(d) Distribution generated by Monte Carlo sim-
ulation with data from

√
s = 7 TeV p-p colli-

sions. TProfile indicated in red.

Figure 15: Number of charged particles at midrapidity per participant vs Npart.

For comparing it to the paper, the same distribution with a divisor of Npart has also been done.

In this case, the strong increase at low Npart can be seen just as in the reference. Nevertheless

there is a factor of 2 of difference. It has to be noted that there is an energy difference: In figure

15a it is
√
s = 5.02 TeV while a distribution at

√
s = 7 TeV has been used in the MC simulation to

obtain the charged particles. In addition it was assumed that the full energy is available in every

collision. For this reason another approach was made after executing the calculations described

in section 3.3. In this approach the proton energy decreases with every collision according to

equation 37 which leads to less charged particles. The energy dependence of the charged particle

multiplicity is depicted in figure 18b. The number of charged particles per Npart − 1 dependent

on Npart is shown with this new approach in figure 16b. When there are only two participants,

the total center-of-mass energy is highest and therefore the highest number of charged particles

is produced. With increasing Npart,
√
s decreases so that less charged particles are produced.

Figure 16a shows the same shape as figure 15c but with lower Nch/Npart values than before. This

was expected because Nch was not sampled from a 7 TeV multiplicity distribution but from lower

energies. The starting value at Npart = 2 which corresponds to a p-p collision has a value of

approximately Nch/Npart ≈ 2.1. In figure 15a, a p-p measurement was also depicted as a black

point at Nch/Npart ≈ 2.2. With growing Npart the distribution in figure 16a shows a saturation
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at about Nch/Npart ≈ 3.2. Therefore the difference of a factor of 2 can almost be diminished by

taking a decreasing energy into account.

(a) Nch per Npart as a function of Npart. (b) Nch per Npart − 1 as a function of Npart.

Figure 16: Number of charged particles at midrapidity per participant respectively collision vs
Npart. Both generated at Glauber Monte Carlo simulation using a decreasing proton energy.
TProfile indicated by red markers.

Another attempt to obtain the number of charged particles was to use the probability dis-

tributions of Nch at
√
s = 0.9 TeV and

√
s = 7 TeV (figure 17) in order to obtain proba-

bility distributions at every energy. The mean numbers ⟨Nch⟩ of these two distributions were

⟨Nch⟩0.9 TeV = 5.66/1.6 and ⟨Nch⟩7 TeV = 8.63/1.6.

(a)
√
s = 0.9 TeV . (b)

√
s = 7 TeV .

Figure 17: Probability distribution of number of charged particles Nch at different
√
s [34].

The first approach to interpolate these distributions was to rescale them. For this, the 0.9 TeV

distribution was rescaled until it was lying on top of the 7 TeV one. This was found at a factor

of 80/45 ≈ ⟨Nch⟩|7 TeV/⟨Nch⟩|0.9 TeV which was used to rescale the x values. The y values are

rescaled in order to normalize the distribution. Then, a 2D histogram was created which shows

the probability distribution of the number of charged particles at every energy. The mean Nch at

p-p collisions at ALICE shows an s0.11 dependency [35], meaning it can be described by a function

of the form

⟨Nch⟩ = a ·
(

s

GeV2

)0.11

+ b = a ·
( √

s

GeV

)0.22

+ b (27)

The parameters a and b were varied until the function evaluated at 7 TeV and 0.9 TeV yields the

same ⟨Nch⟩ as the two distributions. This happened at a = 0.728 and b = 0.288.
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At a given
√
s, equation 27 was evaluated so that one obtained ⟨Nch⟩|√s. Next, the 0.9 TeV

distribution was copied and the x values were shifted by a factor of ⟨Nch⟩|0.9 TeV/⟨Nch⟩|√s. Then,

the integral was calculated for the purpose of dividing the y values by it so that the distribution is

normalized. This procedure was repeated but with the 7 TeV distribution instead of the 0.9 TeV

one. In that case, the factor was ⟨Nch⟩|7 TeV/⟨Nch⟩|√s. This was repeated for every
√
s.

Since now there are 2 distributions at every
√
s, they need to be combined. The method used was

to take the weighted average. The energy interval has a size of 6100 GeV. The goal is that when

the energy is for example 6.9 TeV the weight of the 7 TeV distribution is much higher than the

one of the 0.9 TeV distribution. Therefore the weight w was calculated as

w7 TeV = 1− (7000−
√
s) GeV

6100 GeV

w0.9 TeV = 1− (
√
s− 900) GeV

6100 GeV

w0.9 TeV + w7 TeV = 1

(28)

The y values of the final distribution were then

y = w7 TeV · y7 TeV + w0.9 TeV · y0.9 TeV (29)

The result of this procedure can be seen in figure 18a. The red dots mark the mean Nch from

the two given probability distributions. The function 27 was inverted and plotted into the 2D

histogram (figure 18a, solid red line). As can be seen, the ⟨Nch⟩ from this function and from figure

17 agree.

For this method, the Nch distributions in an interval of 0.9 TeV up to 7 TeV were generated. Since

there might also be energies below 0.9 TeV, this is not sufficient for the simulation. Therefore

another approach was made using a linear function of the following form.

P (
√
s) = a ·

√
s+ b (30)

First a 2D histogram was created again with
√
s on the y axis, Nch on the x axis and P (Nch) on the

z axis. Then steps with size 1 through the x axis were made. The two given Nch distributions were

evaluated at the Nchx
corresponding to the bin so that there are two probabilities P (Nchx

)|0.9 TeV

and P (Nchx
)|7 TeV. Then, the slope a was calculated by dividing the P (Nch) difference by the

energy difference. The offset b can be calculated by solving equation 30 so that the linear function

is given by:

P (
√
s) =

∆P (Nchx
)

∆
√
s

·
√
s+

(
P (Nchx

)|0.9 TeV − 900 GeV · ∆P (Nchx
)

∆
√
s

)
(31)

This means that the probability at a specific Nchx
for every

√
s can be determined.

Then it was stepped through the
√
s bins with a step size of 10 GeV and the linear function was

evaluated at every
√
s so that every bin in the 2D histogram is filled with a probability for Nch.

The result of this procedure is given in figure 18b. This is used to make a ProjectionX at a given

energy to obtain the probability distribution P (Nch) that one can sample from.
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(a) First method. (b) Final method.

Figure 18: Two dimensional histogram that shows the probability distribution of the number of
charged particles at various energies.

After generating Nch, a loop over the charged particles was made. They will be assigned to

the J/Ψ mass mJ/Ψ = 3.096916 GeV and the sign of the direction in which they propagate will

be decided randomly. The azimuthal angle ϕ gets sampled in an interval of 0 to 2π. For the

polar angle θ, a random value in the interval of -1 to 1 will be assigned to cos θ so that θ can be

determined by using the inverse trigonometric function. Using equation 19, η can be determined.

The transverse momentum of the charged particle is getting sampled where a Levy function was

used. It has the following form:

fLevy(x) = A · x2 · e
−
√

x2+m2
0

T (32)

where the amplitude was set to A = 1.0 and the mass tom0 = 0.1. Two of these Levy functions were

defined, one with T = 1.5 GeV and the other with T = 0.75 GeV. Then a random number between

0 and 1 was generated and if it is over a certain value (which was called jet bulk pT fraction), the

function with T = 0.75 GeV was used to sample from and in the other case, the T = 1.5 GeV

function was used. This procedure was done to model a soft and hard pT component. In figure

19 the pT spectrum is shown. The black markers indicate a J/Ψ pT measurement at ALICE at

a p-p collision [36]. The three histograms were created after executing the Bjorken boost but

before the center-of-mass boost which are further described in sections 3.3 and 3.4. The red

histogram shows the transverse momentum of particles with pseudorapidities below 0.8 and the

blue one for rapidities below 0.1. The green one depicts the pT values within the η acceptance of

−4.0 < η < −2.5.
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Figure 19: Transverse momentum pT spectrum of the J/Ψ. Black markers are from p-p ALICE
measurement [36].

Knowing the mass mJ/Ψ, the sampled pT , the azimuthal angle ϕ and the calculated η, a

TLorentzVector for the J/Ψ can be set.

3.3 η distribution

The charged particles will then undergo a boost along the beam direction inspired by the Bjorken

model of emitting sources which freeze out along the z-axis. In the following, this is called the

Bjorken boost. In this model, the two colliding nuclei are regarded as thin discs consisting of

nucleons. The thin shape results from Lorentz contraction since the nuclei are assumed to move at

velocities near the speed of light. When they collide a fluid forms between the discs as indicated in

figure 20. This fluid then expands longitudinally while it is resting at midway between the discs.

After the collision, the thin discs recede in opposite directions from the collision point. In this

model, a ”central plateau” is assumed for the particle production depending on the rapidity so

the particle production only depends on the initial energy deposited in the central collision region

shortly after colliding [37]. This boost ensures that these effects are taken into account and this

results in the pseudorapidity distribution having the desired shape which will be shown in figure

22.

Figure 20: Nuclei after colliding regarded in the Bjorken model [38].

The goal is to optimize the parameters of the boost so that the η distributions in p-Pb collisions
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at
√
s = 5.02 TeV were reconstructed as in figure 14. This was done by assuming that the p-Pb

collision consisting of Npart − 1 proton-nucleon collisions yields multiple single p-p η distributions

that can then be added. Npart differs depending on the centrality as can be seen in table 4.

The first step was to reconstruct the η distributions in p-p collisions at four different energies,

namely 0.2 TeV, 2.76 TeV, 7 TeV and 13 TeV from figure 21.

Figure 21: η density distributions in p-p collisions with varying
√
s [35].

The data points and their continued distribution calculated by PYTHIA have been scanned

using the tool xyscan. These p-p pseudorapidity distributions are then recreated by writing a

simulation. Therein first the number of charged particles in a binary collision was generated by

evaluating the graph in figure 15b at Npart = 2 and multiplying this by Npart = 2. This gives

Nch = 3.16. In p-p collisions measured at ALICE, the proton to Pion ratio (p+ p)/(π+ + π−) for
√
s > 0.9 TeV is approximately 0.055 and the Kaon to Pion ratio (K+ +K−)/(π+ + π−) is about

0.13 at
√
s ≈ 7 TeV [39]. Since the simulation for the η distributions model a p-p collision, the

masses of the resulting charged particles have to match these ratios. For this reason, a random

number was generated between 0 and 1. If it is smaller than 0.055, the mass of the charged

particle is the proton mass mp = 0.938 GeV. If it is greater than or equal to 0.055 and smaller

than 0.055+0.13, the mass will be the Kaon mass mK = 0.493 GeV. Otherwise, the mass of the

charged particle will be assigned to the Pion mass mπ = 0.139 GeV.

Next the sign of the direction of the charged particle is decided randomly, the other coordinates are

decided as in section 3.2. The transverse momentum pT is sampled from an inclusive transverse

momentum distribution measured at ALICE at
√
s = 5.02 TeV p-p collisions for different centrality

classes [40]. Because four p-p η distributions shall be reconstructed, there will be four different

Boost vectors which correspond each to an energy. For this reason four equal Lorentz vectors are

set which then undergo different Bjorken boosts. This boost consists of several parameters: The

width of the Gaussian rapidity wy
G and the range of the Bjorken rapidity Ry

B . First a random

number between 0 and 1 is generated. If it is smaller than the fraction fyBG, the Bjorken z rapidity

is generated as

yB = (ran− 0.5) ·Ry
B (33)

where ran is a random number between 0 and 1. In the other case, the z rapidity is sampled from

a Gaussian with µ = 0 and a standard deviation of σ = wy
G. The relation between the rapidity

and the longitudinal velocity βL is shown in equation 17. Therefore βL can be calculated using

the sampled rapidity as

βL = tanh y =
e2y − 1

e2y + 1
(34)

The rapidity boost vector is then set to (0, 0, βL). After boosting the charged particles, their

pseudorapidity is filled into a histogram using the function Eta(). This procedure was done

four times where the three boost parameters were varied manually in order to obtain matching
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η distributions at every energy. The scanned data from figure 21 was plotted with the resulting

histograms. The three chosen boost parameters depending on the energy are shown in table 5.

The corresponding histograms and data can be seen in figure 22b. For every parameter a TGraph

was created showing the value of the parameter as a function of
√
s.

(a) Without performing Bjorken boost. (b) After performing Bjorken boost.

Figure 22: η distributions for various energies before and after performing the Bjorken boost in
z direction. Solid lines represent the data from figure 21 [35]. Histograms result from procedure
described above.

√
s (TeV) fyBG Ry

B wy
G

0.2 0.5 9.0 2.5
2.76 0.4 12.0 3.5
7 0.4 12.0 4.2
13 0.45 12.0 4.7

Table 5: Boost parameters at different energies in order to obtain η distributions as in figure 21.

The next step was to go back again to the p-Pb collision. The mean number of participants in

a central collision is ⟨Npart⟩ = 15.7 so that a loop over 15 collisions was made. The lead nucleons

had an energy of EPb = 1580 GeV while the proton had an initial energy of Ep = 4000 GeV. The

proton went into negative z direction while the lead nucleus went in positive z direction. Knowing

the proton mass and the energy, the momentum can be calculated and therefore the Lorentz vector

for the proton and lead nucleon can be set. Then, the two vectors were added for the purpose of

creating a center-of-mass boost vector. The total center-of-mass energy was also calculated from

the added vectors by using the function Mag2(). Knowing
√
s, the number of charged particles

can be determined as seen in section 3.2. For every charged particle, the mass and the Lorentz

vector were determined as described in the previous part. The boost parameters were taken from

the graphs that show the
√
s-dependence of the parameters and the particles were boosted. After

this rapidity boost, a center-of-mass boost was performed. Then again a pseudorapidity histogram

was filled. This was done for every binary collision resulting in Npart − 1 = 15 η histograms

which were then scaled and multiplied by Nch so that the center of the histograms is located at

their corresponding Nch. Finally the histograms were added depending on the centrality class. In

this case, the centralities 0-5 % and 40-60 % were used. For 0-5 %, the first 14 histograms were

added. Then, the 15th histogram was scaled with a factor of 0.7 because there are on average 15.7

participants and added on top of the others. According to table 4, ⟨Npart⟩ is 7.42 for 40-60 %. For

this reason, again the first 6 histograms were added and the 7th one was added with a scale factor
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of 0.42 to take the full 7.42 participants and not only 7 into account.

The resulting histograms were then plotted with the data from figure 14. In order to see whether

the generated histogram suits the data, the χ2 was calculated. The uncertainties σ0−5%, σ40−60%

were taken from the data and divided by 10 because they were not statistical. The graphs had

each N = 42 points. The histograms were evaluated at the x values of each point from the data.

The χ2 can then be calculated as

χ2 =

N−1∑
i=0

(y0−5% − ydata)
2

σ2
0−5%

+

N−1∑
i=0

(y40−60% − ydata)
2

σ2
40−60%

(35)

As shown in figure 14, the more central a collision is, the more asymmetric the distribution is

towards the Pb-going direction. In the previously discussed steps this behaviour would not show

up because the protons energy is much higher, meaning the asymmetry would appear in the proton

going direction. This led to the assumption that the proton energy might decrease with every binary

collision. As a first approach, the energy loss was tried to be described by a convolution of an

exponential and a linear function:

E(x) = a (x− b)ec·(x−d) + e (36)

Meaning that in the first collision, the proton would have its initial 4000 GeV. In the second

collision, the value E(0) would be subtracted from the intial value and in the third collision, E(1)

would be subtracted from the energy of the second collision et cetera.

A minimizer GSLSimAn was used for the purpose of reaching a minimal χ2 and therefore the best

parameters. For this, some start parameters and their limits have been set. Since there are many

parameters it can happen that this function yields strongly negative energies even though some

limits are set. This results in unuseful values. For that reason it was set that if the energy undergoes

100 GeV it will be set to Ep = 100 GeV. The minimizer yielded the parameters a = 0.80 GeV,

b = 0.16, c = 0.14, d = 70.95 and e = 4.28 GeV. With that the proton energy in the first collision

is 4000 GeV just as wanted. In the following collision, it is 1833.74 GeV and from there on 100

GeV.
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(a) Centrality 0-5 % corresponding to
Npart = 15.7.

(b) Centrality 40-60 % corresponding to
Npart = 7.42.

Figure 23: Results of minimizer using convolution (equation 36) to describe energy loss. Data is
given in black, added η distributions in pink.

The problem was that this function was not monotonically decreasing. One could have solved

this problem by shifting the distribution so that the maximum is at x = 0 but instead another

function was tried.

The new approach was to describe the energy by

Ep = 4000 GeV · ab·iNpart (37)

where iNpart
is the loop index. The minimizer GSLSimAn has been used again and the result with

parameters a = 0.38 and b = 0.82 is shown in figure 24. The χ2 in this constellation was 5627.02.

The large value is due to the previously discussed reduction of the errors by a factor of 10. The fit

nicely describes the data.
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(a) Centrality 0-5 % corresponding to
Npart = 15.7.

(b) Centrality 40-60 % corresponding to
Npart = 7.42.

Figure 24: Pseudorapidity distributions. In black: Data [30]. In pink: Added histograms from
simulation. Energy loss described by equation 37 with parameters a = 0.38 and b = 0.82.

In figure 21, the circles indicate actual data from ALICE p-p collisions while the dashed lines

result from calculations with the PYTHIA model which is a particle production model and the

solid lines from the EPOS model. Because of the data one could think that the descent is stronger

than indicated from the two models. For this reason, the 0.2 TeV pseudorapidity distribution was

scanned again by following the descent that the data points indicate. Then the boost parame-

ters were varied again in order to make an η distribution fitting to the new scanned one. The

parameters of equation 37 were newly determined using the new boost parameters and the fitter.

They came out as a = 0.45 and b = 0.95. In contrast to the previous approach, the Bjorken boost

parameters are not energy dependent but equal for every
√
s.

To see the impact of a boost in z direction one can look at figure 26.

To generate this figure, a velocity β = −0.8 was chosen and for the transverse momentum pT , 50

values were evenly taken in an interval of 0.1 GeV/c to 7.94 GeV/c. For five values of η which

are η = 3.0, η = 0.0, η = −1.0, η = −1.5, η = −2.0, a TGraph was created each. For every

of the 50 pT values, five TLorentzVectors were created using the function SetPtEtaPhiM() with

the mass mJ/Ψ, ϕ = 0 and one of the five different η for every of the five vectors. Then these

Lorentz vectors were boosted using the boost vector (0, 0, β). The x values of the graphs were then

set using the function Eta() and the y values using Pt(). Without boosting there would be a

vertical line at each of the five η values which are indicated by the dotted lines in figure 26. After

boosting, they are clearly shifted and with increasing η the transverse momentum also increases.

The η acceptance is represented by the red sheer box at −4.0 < η < −2.5.

The longitudinal momentum p⃗L is defined by β and is therefore constant. The pT values are first

small, then increasing. For small pT values the angle θ between p⃗T and p⃗L is greater than at higher

pT values as indicated in figure 25. Due to the relation between η and θ (equation 19) this leads

to higher pseudorapidity shifts at lower transverse momenta.
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Figure 25: Geometric depiction of the angle dependend on p⃗T for the same p⃗L.

Lower pT values are therefore more impacted by the boost than higher pT . This shows that

because of the boosting the initial pT spectrum at mid-rapidity is changed within the Muon spec-

trometer acceptance.

Figure 26: Transverse momentum vs. pseudorapidity after undergoing a boost in z-direction with
β = −0.8. Red sheer box indicates the detector acceptance −4.0 < η < −2.5. Dotted lines indicate
the multiple initial η values.

3.4 Applying the boost

After the parameters of the Bjorken boost were determined, the J/Ψ particles were boosted. Next

the Lorentz vectors of the proton and the lead nucleon are added in order to create a boost vector.

This boost is necessary because it takes the center-of-mass into account. Due to the decreasing

energy of the proton, the center-of-mass shifts from the proton towards the lead nucleus.

Finally the same quantities as shown in section 1.4 are depicted meaning the J/Ψ yield and the

mean transverse momentum ⟨pT ⟩ as a function of the normalized charged particle pseudorapidity

density. For the J/Ψ yield, the number of charged particles which had a transverse momentum

higher than 0.1 GeV/c and which were within the detector acceptance, meaning −4.0 < η < −2.5,

was counted. In addition a histogram which shows the transverse momentum pT as a function of

the pseudorapidity η is created. This was done to reassure that there is a splitting happening in the

transverse momentum and to see whether the pT distribution measured in the Pb→p direction is

above the one of the opposite direction. To calculate the normalized charged particle pseudorapidity

density, the number of charged particles in each event was saved. It was then divided by the mean

number of charged particles, meaning the total number of charged particles divided by the number

of events.
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4 Results

In this section the results from the previously discussed steps are presented using 1000000 events.

The Bjorken boost parameters were fyBG = 0.85 , Ry
B = 7.5 and wy

G = 1.7.

4.1 pT − η distributions

With the settings mentioned above, the two dimensional histogram of the transverse momentum as

a function of the pseudorapidity η in p→Pb direction is shown in figure 27 where the mean values

were calculated using the TProfile class and are indicated in black. These were then mirrored at

η = 0 and plotted in red. The red sheer box indicates the η acceptance of the detector. Within

this acceptance the black distribution measured in Pb-going direction is above the red distribution

which indicates the p-going direction which is not the case for the actual data. It turns out that

the distribution is by far too wide which might be a result of using the PYTHIA extrapolations

for adjustments. By manually changing the width of the distribution, by multiplying an additional

factor, a much better agreement with the data could be achieved.

Figure 27: Transverse momentum pT vs pseudorapidity η as a two dimensional histogram for every
Npart measured in p→Pb direction. Red sheer box indicates detector acceptance. Black histogram
represents mean values. Red histogram result from mirroring the black histogram at η = 0.

The pT −η distributions in both directions after this alteration using a factor of 0.25 are shown

in figure 28. In figure 28b, there is a green histogram which is the TProfile of the proton going

direction. This was added in order to see whether the mirrored histogram corresponds to the

histogram of the other going direction. This seems to be true at least for the pseudorapidity range

covered by the detector. Therefore one can already see that there is a splitting in the transverse

momentum.

The width of this distribution has a significant effect on the pT values. When using the energy

dependent Bjorken boost parameters, the η distribution is much wider which led the pT distribution

measured in p→Pb direction to be higher than the Pb→p distribution within the acceptance.
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(a) Pb-going direction (sign +1).. . . . . . . . . .
. . . . . . .. . ............ . .. . .. . . .....................

(b) p-going direction (sign -1). Green histogram
is the profile from the lead going direction.

Figure 28: Transverse momentum pT vs pseudorapidity η for every Npart. Red sheer box indicates
detector acceptance. Black histograms represent mean values. Red histograms result from mirror-
ing the black histograms at η = 0.

4.2 Mean transverse momentum

In figure 29, the mean transverse momentum ⟨pT ⟩ is shown as a function of the charged particle

pseudorapidity density. On the right hand side, the distributions were generated without multi-

plying yz by 0.25. As discussed before this results in the Pb-going distribution being above the

p-going distribution and therefore this does not describe the data correctly. The ⟨pT ⟩ distributions
after multiypling yz by 0.25 is shown on the left. The general shape of the distributions resulting

from the previously described simulation matches the data. At dNch/dη > 0.7, they are almost

the same, the splitting is clearly visible and also the gap between the in two opposite direction

measured distributions fits the gap of the two published distributions. At lower multiplicities, the

⟨pT ⟩ values show a different behaviour than desired: The in Pb-direction measured values indi-

cated in red start off at about 3.1 GeV/c while the values measured in opposite direction are at

approximately 2.9 GeV/c. Nevertheless at dNch/dη ≈ 1.9, the two distributions cross so that they

fit the data.
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(a) With multiplying yz by 0.25. (b) Without multiplying yz by 0.25.

Figure 29: Mean transverse momentum ⟨pT ⟩ versus the normalized charged particle pseudorapidity
density. Filled dots indicate ALICE measurement presented in section 1.4. Open markers represent
results from the previously presented MC simulation. In both cases, blue represents the p-going
direction while red stands for the Pb-going direction.

4.3 J/Ψ yield

The J/Ψ yield as a function of the normalized charged particle multiplicity is shown in figure 30.

As before on the right hand side, the distributions without applying the factor of 0.25 are shown.

In this case, the general shape matches the data. The gap between the two distributions at high

multiplicities is smaller than in the measured distributions. On the left, the result with the factor

is shown. The general shape is like measured at ALICE too, meaning that first the yield measured

in proton going direction is above the yield measured in the other direction, then the distributions

cross so that then the yield in lead going direction is above. In contrast to the ALICE measurement,

the crossing does not happen at dNch/dη ≈ 1.6 but at dNch/dη ≈ 3.9 which is also true for the

distributions without applying the factor. At lower multiplicities the simulated yield values highly

differ from the data, for example at dNch/dη = 1.0, the yield measured in Pb-going direction is

approximately 0.2 and in p-going direction 2.0 while the actual measured avlue is ≈ 1.0. At higher

multiplicities though the distributions fit the data well.

In general this rather simple model can reproduce the main features that were seen in the p-

Pb ALICE data only by performing the boosting and reproducing the emitting source using p-p

data with a decreasing proton energy which results in a shift of the center-of-mass system. The

overall shape matches the published distributions and even quantitatively, this model yields good

results for the ⟨pT ⟩ distribution and at higher multiplicities for the J/Ψ yield too. During the

analysis it was also visible that the results highly depend on the details of modeling the emitting

source. When looking at the pT − η distributions in figure 28 it is also visible that the detectors

η acceptance, which is indicated by a red sheer box, plays an important role. If the acceptance

would be for example 2.5 < η < 4.0, then the ⟨pT ⟩ distributions would be the opposite, meaning

that the Pb-going distribution would be above the p-going distribution.
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(a) With multiplying yz by 0.25. (b) Without multiplying yz by 0.25.

Figure 30: J/Ψ yield as a function of the normalized charged particle pseudorapidity density. Filled
dots indicate ALICE measurement presented in section 1.4. Open markers represent results from
the previously presented MC simulation. In both cases, blue represents the p-going direction while
red stands for the Pb-going direction.

4.4 Massive target model

In order to explain the behaviour shown in figure 5 and 6 a second approach was made. Here, the

collision is visioned as a proton hitting the participating nucleons of the lead nucleus which are

regarded as a massive target and not as before as multiple binary collisions.

First the proton momentum pp was set knowing the proton mass and energy Ep = 4000 GeV.

The first run was made with the proton going in positive direction so that a TLorentzVector

could be set as pµp = (0, 0,+pp, Ep). Then a number of events N = 100000 was chosen and in each

event the centrality was sampled in an evenly distributed interval between 0 % and 100 %. After-

wards an initial Nchi was determined by creating a TGraph using the centralities and Nch/η given

in the following table and evaluating it at the set centrality. Thereby a spline was created in order

to interpolate between the given data points. The outcome was then multiplied by 20.33/17.56

where 20.33 is the averaged charged particle pseudorapidity density at a p-Pb collision with |η| < 1

[16] and 17.56 is the average of table 6 where the interval width was also taken into account.

Centrality (%) Nch/η Npart

0 - 5 44.6 18.5
5 - 10 35.9 15.8
10 - 20 30.0 13.65
20 - 40 23.0 10.5
40 - 60 15.8 7.0
60 - 80 9.7 4.0
80 - 100 4.2 2.3

Table 6: Glauber parameters for
√
s = 5 TeV [41].

Then a fluctuation of multiplicity was determined by assuming the deviation to be σ =

(Nchi
)0.7. The final Nch was then sampled from a Gaussian with the previously determined σ

and µ = Nchi
. The number of J/Ψ particles was set equal to Nch. The number of binary collisions

was determined by creating again a TGraph using the centralities and Npart from table 6. This
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time a fit was made through the points. This function then was evaluated at the given centrality

so that one obtained Npart and therefore Nbin = Npart − 1.

In the next step the TLorentzVector for lead was set to (0, 0,−pPb, sc ·EPb) where a scale factor

sc = (Nbin)
0.7 was taken into account. The energy was EPb = 1580 GeV and the momentum was

calculated as

pPb =
√

(sc · EPb)2 + (sc ·mp)2 (38)

Using the two Lorentz vectors, the center-of-mass boost vector can be created just as before. The

generation of the direction of the charged particles also was done just as in section 3.2. The Bjorken

boost was executed differently, the three parameters were just optimized in order to make the result

look as good as possible. The charged particles got boosted with the center-of-mass and Bjorken

boost. Hereby the Gauss z rapidity was not taken into account, only the Bjorken z rapidity with

Ry
B = 2.8 was used in order to boost. Finally the same plots as in section 3.4 were made.

In the end, every step was repeated but with opposite direction of the proton and lead momenta.

4.4.1 Results

In figure 31 and 32 the results of this simulation are presented.

For the J/Ψ yield, the general shape of the distribution is just like in the publication. The

crossing of the two branches seems to happen at the same multiplicity as in the ALICE data. The

two distributions of the simulation though are not as close to each other as the two published

distributions. Nevertheless, the result of the massive target model is very well fitting the data.

Figure 31: J/Ψ yield as a function of the normalized charged particle pseudorapidity density. Filled
dots indicate ALICE measurement presented in section 1.4. Open markers represent results from
the massive target MC simulation. In both cases, blue represents the p-going direction while red
stands for the Pb-going direction.

In the distribution of the mean transverse momentum ⟨pT ⟩ at dNch/dη ≈ 1.1 and higher, the

⟨pT ⟩ measured in proton going direction is greater than in the lead going direction just as measured

at ALICE. The gap of the values measured in the two opposite directions is mostly smaller than
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given in the data. At dNch/dη > 4.0 there is not a clear pattern that both ⟨pT ⟩ distributions from
the simulation seem to follow, there is no saturation reached. In contrast to the measured data,

the mean transverse momentum measured in the lead going direction at low dNch/dη is higher

than when measured in proton going direction. In the latter, the upwards going tendency at low

charged particle multiplicity shows just as in the data.

Figure 32: Mean transverse momentum ⟨pT ⟩ versus the normalized charged particle pseudorapidity
density. Filled dots indicate ALICE measurement presented in section 1.4. Open markers represent
results from the massive target MC simulation. In both cases, blue represents the p-going direction
while red stands for the Pb-going direction.

4.5 Comparison

The two models made a different approach in order to explain the behaviour seen in section 1.4.

The general process in both codes is the same, meaning generating the directions of the particles

and setting the Lorentz vectors, creating a charged particle loop with a Bjorken and center-of-mass

boost and filling the histograms. The main difference is that in the model described in section 4.4,

the collision consists of the proton and a massive target while in the model described in section 3,

the collision consists of the proton colliding successively with single lead nucleons. This difference

is reflected in the code by sampling the number of participants from the distribution created using

a Glauber Monte Carlo approach in section 2. From that the number of binary collisions was

determined. Then in each binary collision, the protons energy varied and was described using the

function 37. The number of charged particles was also dependent on the new energy
√
s. On the

other hand in the code describing the massive target model, Ncoll was determined by sampling

the centrality. From this quantity, the number of charged particles could also be determined. The

protons energy was fixed, therefore the Lorentz vector of the proton was fixed. The Bjorken boost

parameters were constant too. The Lorentz vectors of the lead nucleons though differed: A scale

factor was introduced which took the number of binary collisions into account and which was then
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multiplied by the energy and mass. For this reason the center-of-mass boost was not constant for

every event. The lead Lorentz vector on the other hand was constant for the multiple collision

model but the center-of-mass boost was not due to the protons energy decrease.

Both models qualitatively describe the data well: In the results of both models there is the clear

splitting which appears in the actual ALICE data in the J/Ψ yield as well as in the ⟨pT ⟩ distribu-
tion. The magnitudes of the ⟨pT ⟩ values and the yield also match the data. Nevertheless the results

of the two models look quite differently. For the J/Ψ yield at low multiplicities, in the massive

target model the crossing happens at the same multiplicity as in the data while in the multiple

collision model, the distributions cross at much higher multiplicities. In contrast, the distribution

of the transverse momentum pT from the multiple collision model at multiplicities greater than 1

fits the data much better than the second model. The detailed shape of the particle source and

the way the boosting is modeled is important for a more precise description of the data.
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5 Conclusion and Outlook

Studying proton lead collisions at ALICE has shown that there is a difference in the J/Ψ yield

and the transverse momentum as a function of the normalized charged particle multiplicity density

depending on the direction that is measured in (section 1.4). The goal of this bachelors thesis was

to reconstruct this behaviour using a Monte Carlo simulation. Understanding the properties of the

J/Ψ meson is an important aspect for gaining knowledge about the QGP created in laboratories.

In the first part of this thesis a Glauber Monte Carlo simulation was written. Herein the position

of 208 lead nucleons was set randomly by sampling the radius from the Woods-Saxon density dis-

tribution and the azimuthal and polar angles. The proton was set at position (0,0,0). The nucleus

and proton were then shifted by half of the impact parameter which was sampled too. Then the

transverse distance between the protons position and all the lead nucleons was calculated in order

to say whether a collision takes place. For this purpose two different collision profiles were regarded.

The first one is the hard sphere profile where a collision always takes place when the transverse

distance is below a certain distance. The second profile is the realistic or Gauss profile where the

probability of a collision is not either 0 or 1 but given by a Gaussian function. Using these methods

the number of participants was determined resulting in a Npart probability distribution.

This distribution was then used to sample the number of participants and therefore to also de-

termine the number of collisions. The main aspect in this simulation was that the proton lead

collision is regarded as multiple consecutive binary nucleon-nucleon collisions in which the proton

energy decreases with every collision. Therefore a loop was created to step through each of the

collisions. In this loop the protons energy was described by a function whose parameters were

obtained by fitting the pseudorapidity distributions at different centralities to the corresponding

distributions measured at ALICE. Accordingly the total center-of-mass energy
√
s was decreasing

with every binary collision, reaching a minimum of 0.1 TeV.

At each binary collision, the number of charged particles was determined. For this in the begin-

ning two probability distributions measured at ALICE at
√
s = 7 TeV and

√
s = 0.9 TeV were

given. They were used in order to make a linear extrapolation which led to a two dimensional

histogram shown in figure 18b. From this histogram, one can obtain the charged particle multi-

plicity probability distribution at energies between 0 TeV and 7 TeV. The direction of propagation

and the transverse momentum of each charged particle were then sampled. For the latter, two

Levy functions with different temperatures were used to model the soft and hard components.

Afterwards the charged particles were boosted with a center-of-mass boost vector and a so called

Bjorken boost. There were three parameters for this boost which were determined by fitting η

distributions to p-p data at four different energies. The rapidity yz which determined the boost

vector was then multiplied by 0.25 in order to make the pT − η distributions less wide. The overall

width of the eta distribution turned out to be essential to reproduce the trends of the two measured

distributions. The center-of-mass boost vector was created by adding the four vector of the proton

and the lead nucleon. Due to the decreasing proton energy, the center-of-mass shifted from the

proton to the lead nucleus.

In the end the properties of the charged particles were represented in histograms considering the

detectors acceptance.

Lastly another approach was looked at. Here, the energy of the proton was not changing but fixed

at 4000 GeV. The collision was looked at as a collision with a massive target. The number of

charged particles was evaluated from the centrality which was generated randomly. The charged

particles were then also boosted twice but with different parameters. In the end, the same prop-

erties as before were shown in histograms.
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The results of the first model are presented in section 4. The splitting in both the ⟨pT ⟩ distribu-
tion and the J/Ψ yield were visible. The magnitude of the splitting in the ⟨pT ⟩ distribution also

matches the data. The shape in the ⟨pT ⟩ distribution was at low multiplicities different to the at

ALICE measured distributions: The ⟨pT ⟩ measured in lead going direction was decreasing instead

of increasing. In the J/Ψ yield, the overall shape also fitted the data. The crossing of the two

in opposite direction going distributions took place at a higher multiplicity than indicated by the

ALICE measurement. In general one can say that this relatively simple model can reproduce the

overall shape of the published distributions and achieves even quantitatively good results. The

main aspects which led to the splitting behaviour were the boosting and the decreasing proton

energy which results in a center-of-mass shift. The detectors acceptance also plays an important

role as demonstrated in section 3.2 and 30.

In the second model with the massive target, the results are shown in section 4.4.1. Here the

splitting could also be seen. The general shape of the J/Ψ yield was as the shape of the actual

data. The pT distribution showed a slightly different behaviour at lower multiplicities but from

there on, the splitting between the two directions was visible.

There are further steps to improve this simulation which can be considered. One of them would

be to try out different energy loss functions which could possibly describe the data better. In

addition, a third boost could be considered in order to take the nucleon momentum into account.

This could be sampled from the effective spectral function of 208Pb. A minimizer could also be

used to optimize the parameters by minimizing the χ2 of the ⟨pT ⟩ and the J/Ψ yield distributions,

for example the parameters of the energy function or the parameters of the Bjorken boost. Since

the width of the η distribution is essential, more detailed studies regarding this are necessary in

the future.
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6 Appendix

6.1 Kinematics

Derivation of equation 20 using definitions of hyperbolic functions [42]:

sinh(x) =
1

2

(
ex − e−x

)
cosh(x) =

1

2

(
ex + e−x

) (39)

Then using equation 17 one can write:

ey = e
1
2 ln

(
E+pL
E−pL

)
=

(
e
ln

(
E+pL
E−pL

)) 1
2

=

√
E + pL
E − pL

e−y =

(
e
−ln

(
E+pL
E−pL

)) 1
2

=

(
e
ln

(
E−pL
E+pL

)) 1
2

=

√
E − pL
E + pL

(40)

Looking at figure 25, the hypotenuse p is:

p =
√
p2T + p2L (41)

The transverse mass can be written using the third binomial formula as

mT =
√
m2 + p2T =

√
m2 + p2 − p2L =

√
E2 − p2L =

√
(E − pL)(E + pL) (42)

Combining these leads to the relations shown in equation 20:

mT · cosh(y) = mT

2

(√
E + pL
E − pL

+

√
E − pL
E + pL

)

=

√
(E − pL)(E + pL)

2

(√
E + pL
E − pL

+

√
E − pL
E + pL

)

=
1

2

(√
(E + pL)(E − pL)(E + pL)

E − pL
+

√
(E − pL)(E − pL)(E + pL)

E + pL

)

=
1

2
(E + pL + E − pL)

= E

(43)

mT · sinh(y) = mT

2

(√
E + pL
E − pL

−

√
E − pL
E + pL

)

=

√
(E − pL)(E + pL)

2

(√
E + pL
E − pL

−

√
E − pL
E + pL

)

=
1

2

(√
(E + pL)(E − pL)(E + pL)

E − pL
−

√
(E − pL)(E − pL)(E + pL)

E + pL

)

=
1

2
(E + pL − E + pL)

= pL

(44)
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For the relations containing η, figure 25 has to be taken into account again to see:

tan θ =
pT
pL

→ pL =
pT
tan θ

(45)

From equation 19 follows:

θ = 2 tan−1
(
e−η
)

pL =
pT

tan (2 tan−1 (e−η))

(46)

Then one can use the following trigonometric identity [42]:

tan(2α) =
2 tan α

1− tan2α
(47)

so that pL results as

pL =
pT

2 tan (tan−1(e−η))
1−tan2(tan−1(e−η))

=
pT

2 e−η

1−(e−η)2

=
pT
2

1− (e−η)
2

e−η

=
pT
2
eη(1−

(
e−η
)2
)

= pT
1

2

(
eη − e−η

)
= pT sinh η

(48)

Using this and the relation [42]

sinh2(x) + cosh2(x) = 1 (49)

the following relation can be derived:

p =
√
p2T + p2L

=
√
p2T + p2T sinh

2η

= pT
√

1 + sinh2η

= pT cosh η

(50)
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