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Zusammenfassung:

In einem erweiterten Standardmodell, welches Neutrinomassen einbezieht, sind
Lepton-Flavour-verletzende (LFV) Zerfälle möglich, aber stark unterdrückt, mit
Zerfallsbreiten kleiner als O(10−40). Daher wäre jede Beobachtung von LFV ein
deutlicher Hinweis auf neue Physik.
Die hier vorgestellte Machbarkeitsstudie sucht nach dem LFV-Zerfall τ− →
φ(K+K−)µ− . Dazu werden Daten genutzt, die einer integrierten Luminosität
von 5.6 fb−1 entsprechen, gemessen mit dem LHCb-Experiment in den Jahren
2016-2018 bei einer Schwerpunktsenergie von

√
s = 13TeV in pp-Kollisionen. Die

τ -Leptonen werden bei dem Zerfall von D±s und D±-Mesonen, sowie b-Hadronen
produziert. Diese Studie beinhaltet eine Ereignisselektion einschließlich einer
multivariaten Klassifikation. Das Suchergebnis wird von dem Hintergrundzer-
fall D+

s → φ(K+K−)µ+νµ dominiert. Für den gesuchten Zerfall wird kein Signal
gemessen. Mithilfe des Referenzkanals D−s → φ(µ+µ−)π− wird ein einseitiges
90% Konfidenzintervall für die Zerfallsbreite ermittelt

B(τ → φµ) < 9.4× 10−6 (0.1)

Um diesen Grenzwert zu optimieren, ist eine Methode zur effektiven Hintergrun-
dreduzierung notwendig.

Abstract:

In the Standard Model with an extension to account for neutrino masses, Lepton
Flavour Violating (LFV) decays are possible but highly suppressed with branching
fractions smaller than O(10−40). Therefore, any observation of LFV decays would
be a strong indication of new physics.
The feasibility study presented here performs a search for the LFV decay τ−→
φ(K+K−)µ− using data corresponding to an integrated luminosity of 5.6 fb−1

collected by the LHCb experiment during the years 2016-2018 at a center-of-
mass pp collision energy of

√
s = 13TeV. The τ leptons are produced in the

decays of D±s , D± mesons and b-hadrons. This study involves an event selection
procedure including multivariate classification. The search result is dominated by
the background decay D+

s → φ(K+K−)µ+νµ . No signal for the decay of interest
is discovered. Using the reference channel D−s → φ(µ+µ−)π− , an upper limit of
the branching fraction is evaluated at 90% confidence level:

B(τ → φµ) < 9.4× 10−6 (0.2)

Improving this limit will require a method to effectively reduce the backgrounds.
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1 Introduction

Within the framework of quantum field theory, the Standard Model of particle
physics summarizes our current understanding of elementary particles and funda-
mental interactions. With scientific facilities like the Large Hadron Collider (LHC),
physicists are able to test the Standard Model and make attempts to search for po-
tential new effects beyond it. One of such attempts is the search of Lepton Flavour
Violating (LFV) decays. In the Standard Model, LFV decays are highly suppressed
and only possible through neutrino oscillation. Its branching fraction is predicted
to be so small that it is pratically unreachable with today’s experiments. Such a
process will be highly sensitive to contributions from possible new physics. Any sign
of LFV would be a strong indication for new physics.
The main purpose of this work is to perform a feasibility study for the search of the

LFV decay τ−→ φ(K+K−)µ− with the data collected by the Large Hadron Collider
beauty (LHCb) experiment during the years from 2016 to 2018. The data sample is
generated from proton-proton collisions with a center-of-mass energy of 13TeV and
its integrated luminosity reaches 5.6 fb−1. The LHCb experiment is operated by the
LHCb collaboration, which includes over 1400 members representing many different
institutes from all over the world.
For a study of this kind namely a search for a very rare decay, no signal is expected

and very often no signal is found. In the situation that no signal discovery is claimed,
the analysis still provides important information using a statistical interpretation of
the data sample. The result is usually presented as an upper limit on the signal
branching fraction. In this analysis, given the well-known branching fraction B(φ→
K+K−), the result is presented as a constraint on the branching fraction B(τ → φµ).
Several upper limits on B(τ → φµ) have been published by experiments like

BaBar and Belle. In 2009, the BaBar experiment set an upper limit of 1.9 × 10−7

at 90% confidence level with a total data sample corresponding to an integrated
luminosity of about 451 fb−1 [1]. And in 2011, the Belle experiment set an upper
limit of 8.4× 10−8 at 90% confidence level with 854 fb−1 of data [2].
In LHCb, copious τ leptons are produced through c-meason (D±s , D±) and b-

hadron decays. LFV processes in τ decays have been studied at LHCb before. A
very competitive result has been reached for τ−→ µ+µ−µ−, the limit on branching
fraction was set to B(τ−→ µ+µ−µ−) < 4.6 × 10−8 with 90% confidence level [3].
In addition, decay modes τ− → p̄µ+µ− and τ− → pµ−µ− have also been probed.
The LHCb measurements represent the first direct experimental limits on these two
channels [4]. With these results, LHCb has proved to be able to probe LFV in τ
decays. For the decay τ−→ φ(K+K−)µ− , some preliminary studies were done at
LHCb, but so far no result has been published.
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The subsequent chapters of this thesis are organized as follows: Chapter 2 will
provide a brief introduction of the theories related to the decay of interest. Chap-
ter 3 presents an introduction of the LHCb experiment. In chapter 4, the decay
channels involved in the analysis are discussed, including the signal channel, the
reference channel and some backgrounds. Chapter 5 summarizes some preparation
work done on the data and Monte Carlo samples before they are used in the anal-
ysis. These preparations include a weighting procedure for the different production
channels in the simulation, the data blinding procedure and some preliminary se-
lections. In chapter 6, the correction on the Monte Carlo kinematics is discussed.
A multivariate analysis and particle identification selections are presented in chap-
ter 7 and chapter 8. They are applied to further separate the background and the
potential signal. In chapter 9, an estimation of signal and background shapes is
described. In chapter 10, the evaluation of the normalisation factor is presented.
With the signal/background shapes and the normalisation factor as input, an upper
limit on the branching fraction B(τ → φµ) is evaluated in chapter 11, which is the
main result of this study. In the end, chapter 12 serves to conclude the analysis.
This analysis is conducted within the LHCb collaboration and includes the us-

age of data processing and simulation frameworks/modules provided by the LHCb
collaboration. The data/simulation sample collection and processing rely on the col-
lective work of the collaboration. In addition, the analysis is performed in parallel
with the analysis of τ−→ µ+µ−µ− of LHCb Run2, which is carried out by a group
(τ−→ µ+µ−µ− Run2 proponents) within the LHCb collaboration. The evaluation
of τ/Ds/D productions (described in chapter 4), the production weighting and the
selection of the reference channel (described in chapter 5) and the evaluation of the
reference channel efficiency (described in chapter 10) are the collective work of the
group and the author.
The figures and numbers presented in this thesis are not officially approved by

LHCb, and should be considered as preliminary results.
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2 Theories introduction

In this chapter, the basic content of Standard Model with its contribution to the
LFV decay τ−→ φ(K+K−)µ− as well as possible contributions from physics beyond
the Sandard Model are introduced.

2.1 Standard Model and massive neutrinos

In the past decades, the Standard Model has been very successful in explaining
most of the particle physics experiment results. As shown in Fig. 2.1, the Standard
Model consists of three generations of quarks and leptons, the gauge bosons which
mediate electroweak/strong interactions and the Higgs boson. The quark sector
of the Standard Model consists of three up-type quarks, up (u), charm (c), top
(t) and three down-type quarks, down (d), strange (s), bottom (b). These quarks
have their corresponding antiquarks. In the lepton sector of the Standard Model,
there are charged (anti-)leptons of three flavours (e, µ, τ) and their corresponding
(anti-)neutrinos.

The interactions of these particles are described within a gauge theory. The
gauge symmetry of the Standard Model is described as SU(3)c × SU(2)L × U(1)Y
in the language of group theory. The symmetry SU(3)c stands for the gauge field of
the strong interaction, which is mediated through massless gluons. The symmetry
SU(2)L×U(1)Y is a crucial part of the electroweak theory. The gauge group SU(2)L
indicates that the corresponding interaction only involves left-handed fermions or
right-handed antifermions.

Through spontaneous symmetry breaking of the Higgs mechanism, gauge symme-
try SU(2)L × U(1)Y results in three massive gauge bosons i.e. Z,W± for the weak
interaction and one massless photon for the electromagnetic interaction.

Originally in the Standard Model, neutrinos were supposed to be massless. How-
ever, the discovery of neutrino oscillation [6] provided a solid evidence that at least
two types of neutrinos are actually massive. Nowadays, the Standard Model is
usually extended to include massive neutrinos into consideration.

For massive neutrinos, the mass eigenstates and flavour eigenstates are different
and they can transform into one another through a unitary mixing matrix i.e. the
Pontecorvo–Maki–Nakagawa–Sakata matrix (PMNS matrix), as shown in Eq. 2.1.
This allows a neutrino of certain lepton flavour to oscillate into another flavour.νeνµ

ντ

 =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

ν1

ν2

ν3

 (2.1)
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Figure 2.1: The Standard Model of elementary particles. The graph was taken
from [5].

In the Standard Model, without neutrino oscillation, lepton flavour is known to
be conserved. In the presence of neutrino oscillation, it serves as the only source
of lepton flavour violation. LFV decays can happen through the so-called Penguin
diagrams. Fig. 2.2 shows two possible Penguin diagrams for the τ−→ φ(K+K−)µ−

decay. These processes are highly suppressed due to the smallness of the neutrino
mass and the unitarity of the PMNS matrix. The neutrino masses come into the
loop diagram as perturbation terms, which can be evaluated order by order. When
considering all of the possible neutrinos, the interference of the diagrams comes into
play. The sum of amplitudes of diagrams with different neutrinos takes the following
form:

M∼
∑
i

U∗τiUµif(
mνi

mW

) (2.2)

with neutrino masses much less than the mass scale of weak interaction bosons
mνi � mW [7]. The function f stands for the contribution of loop diagram with a
certain neutrino mass. The zero order term vanishes with the unitarity condition:

M(0) ∼
∑
i

U∗τiUµi = 0 (2.3)

and the higher order terms are also very small due to the fact that the masses of
neutrinos are extremely small. In general, the branching fractions for charged lepton
flavour violation (cLFV) decays caused by massive neutrinos are around O(10−40)
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Figure 2.2: Two possible feynman diagrams for τ−→ φ(K+K−)µ− through neutrino
oscillation.

or less, which is far below the sensitivity of nowaday’s experiments [8]. Thus, any
sign of cLFV decays will be a strong indication for new physics beyond the Standard
Model.

2.2 Physics beyond Standard Model

While the branching fractions of LFV decays are tiny within the framework of neu-
trino oscillation, some possible new physics theories predict much larger branching
fractions up to O(10−8), which is accessible for today’s experiments [2]. Thus the
search of LFV decays is an effective way to search for possible new physics effects.
Some of these potential new physics models are briefly introduced in the following
paragraphs.
One of the possible new physics models contributing to LFV is the leptoquark

model. Leptoquarks are hypothetical particles. They are assumed to be able to inter-
act with both quarks and leptons. They carry both the baryon number and the lep-
ton number [9]. The existence of leptoquarks are predicted by many beyond the San-
dard Model theories e.g. the Pati-Salam model [10] and some grand unification theo-
ries [11, 12]. Fig. 2.3 shows the Feynmann diagram of the decay τ−→ φ(K+K−)µ−

mediated by a hypothetical leptoquark. Some recent results of lepton univerisal-
ity tests at LHCb have shown some tensions with the Standard Model prediction.
These studies include the measurement of R(K(∗)) (the ratio of branching fractions
between B+ → K(∗)µ+µ− and B+ → K(∗)e+e−) [13, 14], R(J/ψ) (ratio of branching
fractions between B+

c → J/ψτ+ντ and B+
c → J/ψµ+νµ) [15], and R(D∗) (ratio of

branching fractions between B̄0 → D∗−τ+ντ and B̄0 → D∗−µ+νµ) [16, 17]. Similar
studies were also performed at Belle and Babar [18, 19]. In addition, deviations
from the Standard Model were also found in the angular analysis of B0 → K∗0µ+µ−

by LHCb [20, 21]. Although it is too early to consider these results as evidences for
physics beyond the Standard Model, they provide hints for the possible existence of
new physics models including leptoquark.
In addition, a model with a possible additional neutral gauge boson (Z ′) is dis-
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Figure 2.3: Feynmann diagram of τ− → φ(K+K−)µ− mediated by a possible
leptoquark(LQ).

cussed in the attempts to explain the aforementioned tensions [22, 23]. This addi-
tional Z ′ boson is assumed to have a mass much larger than the eletroweak symmetry
breaking scale and has generic couplings with leptons and quarks. In the Sandard
Model, flavour changing neutral current (FCNC) transition is forbidden at tree level,
while this hypothetical heavy neutral boson may couple directly with leptons of dif-
ferent flavours. Hence it may contribute to LFV decays at tree level [23].
Supersymmetry (SUSY) framework also provides opportunities for LFV processes.

SUSY is a well-known beyond the Sandard Model theory: it associates fermions with
their superpartner bosons and bosons with their superpartner fermions. It helps
to solve several important puzzles of particle physics including hierachy problem
and the possible unification of particle physics with gravity [9]. LFV decays are
discussed in different versions of SUSY e.g. Minimal Supersymmetric extension of
the Sandard Model (MSSM) and MSSM enlarged with right handed neutrinos (the
neutrion masses are generated with the Seesaw mechanism) [24, 25].
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3 LHCb experiment

This chapter is dedicated to a brief introduction of the LHCb experiment, including
its detector, its data processing procedures and the corresponding software frame-
works.

3.1 LHCb project

The LHC near Geneva is currently the largest collider ever built in the world. It has
a circular tunnel with a circumference of 27km. It provides proton-proton collisions
with a center-of-mass energy

√
s up to 14TeV [26].

The LHCb experiment is one of the large experiments operated at LHC by the
European Organization for Nuclear Research (CERN). Exploiting the large amount
of bb̄ hadrons produced in the high energy pp collisions at LHC, it was designed
to study heavy flavour physics. Its research topics include CP asymmetries and
rare decays in beauty and charm hadrons [27, 28]. The LHCb experiment has
started operation in 2010. Fig. 3.1 shows the recorded luminosity of pp collisions
by the LHCb experiment in the past several years. From 2010 to 2012, LHCb
performed its Run1 operation at

√
s = 7 and 8TeV, which reached a total integrated

luminosity around 3 fb−1. In Run2 which started from 2015 and ended in 2018, the
LHC operated at higher collision energy

√
s = 13TeV, which resulted in a higher

bb̄ production cross section. The integrated luminosity of data collected in Run2
reached around 6 fb−1. Since the end of Run2, the LHCb experiment has been
going through an upgrade. Several subdetectors will be replaced and some will
be removed before the start of future Run3 and Run4. In the future, the LHCb
experiment will operate at an even higher luminosity, which will produce higher
signal yields. For the analysis discussed in this thesis, the data collected in LHCb
Run2 will be used.

3.2 LHCb detector

In the high energy pp collisions of LHC, the bb̄ hadrons are mainly produced within
the same cone forward (or backward), and thus the subdetectors of LHCb are ar-
ranged as a forward single-arm spectrometer, which covers the angular range of
±250mrad vertically and of ±300mrad horizontally. A right-handed coordinate is
usually assigned to identify the directions i.e. the z axis for the direction of the beam,
the y axis for the vertical direction and the x axis for the horizontal direction [28].
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Figure 3.1: LHCb integrated recorded luminosity.The graph was taken from [29]

Fig. 3.2 shows the layout of the LHCb detector in Run1 and Run2, which con-
sists of a Vertex Locator(Velo), an upstream Trigger Tracker(TT), a spectrometer
magnet, three downstream Tracking stations (T1-T3), two Ring Imaging Cherenkov
counters (RICH1,RICH2), a calorimeter system and a Muon detection system (M1-
M5). The downstream tracking stations contain an inner part (Inner Tracker, IT)
and an outer part (Outer Tracker, OT). The calorimeter system contains a Scintilla-
tor Pad Detector and a Preshower (SPD/PS), a shashlik Electromagnetic Calorime-
ter(ECAL) and a Hadronic Calorimeter (HCAL). These subdetectors are discussed
further in the following part.
Significant changes are being made to the detector during the upgrade (Upgrade

I). The VELO will be replaced by a new silicon pixel detector. The TT station will
be replaced by a silicon micro-strip detector, the Upstream Tracker (UT). The main
tracking stations (T1-T3) will be replaced by the Scintillating Fibre (SciFi) Tracker.
Some changes will be made to improve the RICH. The SPD/PS and M1 will be
removed. In addition, the readout electronics will be replaced to allow the readout
at 40 MHz corresponding to the crossing rate of LHC beams.

3.2.1 Vertex locator

The vertex locator is designed to measure the track coordinates near the pp interac-
tion vertex. It is important to detect the displacement of the secondary vertices as a
distinctive feature of bb̄ or cc̄ hadron decays [28]. The VELO is composed by silicon
modules. It provides an excellent measurement of the vertices and impact parame-
ters (IP). The flight distance and the decay time derived from it are also measured
by the VELO. The performance of the software trigger of LHCb depends on the re-
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Figure 3.2: LHCb detector layout during Run1 and Run2. The graph was taken
from [28].

construction of vertices in the VELO. To achieve high resolution, the VELO sensors
are installed very close to the LHC beams (around 7 mm). However, during the
LHC beam injection, a larger aperture is required. Thus the detector is constructed
as two retractable halves. The two halves of VELO are retracted during the beam
injection and closed during physics running. For the geometrical coverage, the two
halves are designed to partially overlap when closed [30].
Fig. 3.3 shows the cross sections of the VELO detector. The detector is composed

of 25 VELO stations and each station has a right and a left module. For a track in
the LHCb acceptance, it is expected to cross at least three VELO stations. Except
for 2 stations shown in the figure, each VELO module has one R-measuring sensor
and one φ-measuring sensor. The sensors are constructed in the circular shape. The
strips of the R-sensors are arranged azimuthally while the strips of the φ-sensors are
arranged radially [31].

3.2.2 Magnet

The dipole magnet is installed to measure the charged particle momenta. The mag-
net contains two trapezoidal coils placed at the top and the bottom. Each coil is
composed of 15 monolayer pancakes. These two coils generate a mostly vertically
aligned magnetic field [32]. The orientation of the magnectic field is changed regu-
larly. Thus, data samples and Monte Carlo samples are prepared for both magnetic
orientations: MagDown and MagUp.
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Figure 3.3: VELO schematic graph. The red stands for R-sensors and the blue
stands for φ-sensors. The graph was taken from [28].

3.2.3 Trigger Tracker

The TT detector is constructed as a Silicon Tracker (ST) detector. It consists of two
stations (four layers). With the beam pipe as z axis, the first two layers (labelled as
TTaX, TTaU) are placed around z = 232cm and the second two (labelled as TTbV,
TTbX) are placed around z = 262cm (z = 0cm corresponds to the collision point
within the VELO). The strips in TTaX and TTbx are arranged along the vertical
axis. In TTaU and TTbV, the strips are tilted by ±5 degree [33]. With the vertically
arranged strips, TT provides a measurement of the horizontal transverse coordinate
of the charged particles. Along with the vertical magnetic field, this will contribute
to the momentum measurement.

3.2.4 Downstream tracking stations

The tracking stations T1-T3 consist of two parts, the outer tracker (OT) and the
inner tracker (IT). A schematic view of T1-T3 tracking stations is shown as Fig. 3.4.

Same as TT, IT is constructed from silicon microstrip detectors. In each of the
3 stations T1-T3, IT covers the part closest to the beam pipe which has a shape of
a cross. As shown in Fig. 3.4, the IT at each station has four independent detector
boxes i.e. above, below and on two sides of the beam pipe. Each box is composed
of four layers (labelled as X,U,V,X). Similar to TT, the two x layers have vertically
arranged cells while the cells in u and v are tilted for ±5 degrees [34].
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(a) view from front (b) view from top

Figure 3.4: One of the downstream tracking station T1-T3 layout (graph from [34]).
The red part stands for IT while the blue part stands for OT. The
numbers shown in the graph are in cm.

The OT detector is a drift-time detector constructed from gas-tight straw-tubes.
The momentum resolution with a single hit in OT can reach δp/p ≈ 0.4%. Each
straw tube (diameter 4.9 mm) measures the drift time of the electrons generated
when a charged particle hits the detector. The electrons are collected in the anode
wires in each tube.
As shown in Fig. 3.4(b), each tracking station of OT has four layers. Same as IT,

they are labelled as X,U,V,X. The two X layers are arranged vertically and U, V are
arranged tiltedly by ±5 degrees with respect to the vertical axis. Each layer consists
of 14 long modules (labelled as F type) and 8 short modules (labelled as S type)
with half the length of the long module. As shown in Fig. 3.4(a), the short modules
are placed above and below the beam pipe, and the long modules are installed on
the side. The short modules are read out from the outer end while the long modules
are splitted in the middle to be read out from both outer end [35].

3.2.5 RICH

There are two RICH detectors installed in LHCb. RICH1 is installed upstream
of the magnet and RICH2 is installed downstream. The two RICH detectors play
important roles in the charged particle identification (PID). Based on the fact that
the particles with higher momentum are mostly generated in lower angular range, the
two RICH detectors are arranged as such: RICH1 is used to cover the low momentum
range (around 1∼60 GeV/c) and the full angular range (around 25-300 mrad) while
RICH2 is used for the high momentum range (around 15∼100GeV/c) with a smaller
angular coverage (around 15-120 mrad). The particle identification of RICH uses
the Cherenkov photon emission. Fig. 3.5 shows the correlation between the emission
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Figure 3.5: Cherenkov angle-momentum relationship in several materials used by
RICH. The graph was taken from [28]. Aerogel was used in RICH1
during Run1, but not used anymore during Run2.

angle of the Cherenkov photon (θc) and momentum of charged particles (π,K etc.)
in the different materials used by RICH. C4F10 which has good identification ability
for low momentum particles is used for RICH1, while CF4 is used for RICH2 [36].
Combining with the track information provided by the tracking system, RICH

detectors are able to use the Cherenkov angle information for PID. The RICH de-
tectors usually work in high occupancy condition. An overall RICH event likelihood
is calculated for a given set of hypotheses for assuming each track to be one of
µ, π,K etc. The likelihood is optimized to find the best hypothesis for each track.
As the final result for a single track, the difference of the overall event likelihood is
calculated for changing that track’s hypothesis [36].

3.2.6 Calorimeter system

The calorimeter system is used to measure the energy deposition and the positions of
electrons, photons and hadrons. It also provides particle identification information
for these particles. As mentioned before, the calorimeter system consists of SPD, PS,
ECAL and HCAL. The PS detector can contribute to the differentiation of eletrons
against charged pions and SPD contributes to the identification between charged
particles and neutral particles e.g. π0. Due to the fact that the hits density varies
largely across the surface of the calorimeter, it is divided into different regions for
different cell sizes. From the inner side to the outer side, SPD/PS and ECAL are
divided into three regions and HCAL is divided into two regions. The inner region
has finer cells, while the outer region has larger cells [28].
The calorimeter system plays an important role in the hardware trigger. Based

on the energy deposited and the position of the energy cluster, a variable called
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transverse energy ET can be calculated. The transverse energy is evaluated in
clusters of 2× 2 cells. It is calculated as follows:

ET =
4∑
i=1

Ei sin θi (3.1)

where Ei stands for the energy measured in cell i and θi stands for the angle be-
tween the z axis and the line connecting the center of cell i and the proton-proton
interaction point [37]. The transverse energy (ET ) is a crucial variable used in the
hardware trigger system. Further discussion on the hardware trigger can be found
in section 3.4.

3.2.7 Muon detection system

The muon system is used for detecting and selecting muons with high transverse
momentum pT in the trigger and the muon identification. It consists of 5 stations
(M1-M5). M1 is placed before the calorimeters and used to improve the pT measure-
ment for the hardware trigger. M2-M5 are placed downstream of the calorimeter.
Except for the inner part of M1 which is constructed as triple-GEM detectors, the
other parts of the five muon stations are constructed as multi-wire proportional
chambers. In between M2-M5, there are iron absorber layers used for selecting
penetrating muons [38].
Some PID information can be derived from the muon system: A binary variable

IsMuon is define by finding hits in the field of interest (FOI) derived from the track
extrapolation. Based on the momentum of a track, it is expected to go through a
certain number of muon stations if it is assumed to be a muon. IsMuon is triggered if
the expected hits are found. Given the extrapolation of the track, the hit distribution
in the muon stations will be different for the muon and the no-muon hypothesis.
The distribution of a distance variable is calculated and a difference of the log-
likelihood for the muon and the no-muon hypothesis is derived as muDLL. This
muDLL variable can also be combined with the PID information from RICH and
the calorimeters [38].

3.3 LHCb data flow and its softwares

Given the 40MHz bunch crossing rate provided by LHC, the LHCb experiment
collects a large amount of data during running. A procedure of data flow and a set
of software packages are designed and built to process this huge amount of data.
Fig. 3.6 shows the data flow of LHCb during Run2 and the software packages used
at each data processing step.
The data from the LHCb detector are firstly filtered with triggers before they

are stored. The trigger system of LHCb consists of the hardware trigger and the
software trigger. A more detailed description of the trigger system will be found

13



Figure 3.6: LHCb data flow in Run2. The graph was taken from [39].

in section 3.4. The trigger system has been redesigned during the long shutdown
between Run1 and Run2. The trigger process is handled by the Moore software
package [40]. At the software trigger level, some reconstructions have already been
conducted online. In Run1, online reconstruction performed at software trigger level
was poor in quality and thus an offline reconstruction was necessary. The offline
reconstruction is performed by the Brunel software package [41]. This procedure
is called fullstream. However, in Run2, the online system was able to perform a real-
time alignment and calibration, and the quality of online reconstruction has been
improved to the same level as offline reconstruction. These online reconstructed
data are selected online and are stored [42]. This procedure is called the Turbo
stream [43]. In Run2, the Turbo stream runs in parallel with the fullstream data
flow. In this analysis, the data processed through the fullstream are used.

In the fullstream, the reconstructed data from Brunel are stored in DST or mi-
croDST format files. These data are further processed through a stripping selection,
which is handled by the DaVinci software package [44]. The stripping procedure
contains a set of lines and each line corresponds to a set of selections. The data
passing each stripping line are stored into the corresponding locations.

The data through Turbo stream and fullstream both need to be processed by
DaVinci to generate files which are easier to access for analysts. Different software
packages are available at the analysis level e.g. Root [45] and Numpy.

The simulation data flow in LHCb shares most parts of the real data flow. As
shown in Fig. 3.6, particle simulation is controlled by the Gauss software pack-
age [46]. The simulation begins with the generator level simulation, which contains
the generation of the particles and their decays. The generation is processed by
Pythia [47, 48] etc. and the decays are controlled by EvtGen [49]. The generated
particles are then simulated to propagate through the detectors. The propagation
is delegated to Geant4 [50, 51]. The software package Boole [52] is in charged of
the simulation of the subdetectors’ response and their digitisation. The output of
Boole is then processed similarly as real data, and goes through the trigger system
etc.
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Figure 3.7: An overview of data flow for the LHCb trigger system during Run2. The
graph was taken from [42].

3.4 LHCb trigger system

With the large amount of data generated during the proton-proton collisions of LHC,
only part of the events which are potentially of interest are recorded. The trigger
system of LHCb is dedicated to select such events and reduce the event rate during
the process. As shown in Fig. 3.7, the LHCb trigger system during Run2 consists
of three levels i.e. the hardware trigger (L0 trigger) and two levels of software High
Level Triggers (HLT1 and HLT2). Each level consists of a group of so-called trigger
lines, which are algorithms for trigger decisions [42].
Starting with the 40 MHz bunch crossing, the events at LHCb are firstly fil-

tered with the L0 hardware trigger, which searches for high transverse momentum,
energy signatures and reduces the event rate to around 1 MHz. As addressed in
section 3.2.6, the calorimeter system plays an important part in this process. For
the clusters with high ET measured in HCAL, the ET in the corresponding cluster
of ECAL is added to it, and it is assumed to be a hadron candidate corresponding
to the L0Hadron trigger line. Photons and electrons are usually stopped within the
ECAL before they can reach the HCAL. The high ET cluster measured in the ECAL
with corresponding PS cells hits are assumed to be photon or electron candidates,
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corresponding to the L0Photon and the L0Electron trigger line respectively. The
difference between photons and electrons is whether or not a corresponding SPD
cell hit can be found. The ET of the candidates are compared to certain threshold
to determine if the corresponding trigger line is triggered [37]. In the Muon sta-
tion, muon candidates with high transverse momentum are searched. The L0Muon
trigger line sets a threshold on the largest pT while the L0DiMuon trigger line sets
a threshold on the product of the largest and the second largest pT . In addition,
requirements on the maximum number of SPD hits are applied for most L0 trigger
lines in order to reduce the event complexity [42].
After the hardware trigger, two levels of HLT trigger (HLT1 and HLT2) are ap-

plied. The HLT triggers reduce the event rate to around 12.5 kHz. It is the rate at
which the data is stored. In HLT1, the events are partially reconstructed, including
some tracks and primary vertices (PV, i.e. the proton-proton collision vertices).
Due to the clear signature of muons, some muon identification can also be done at
HLT1 level. In addition to the event filtering, HLT1 also provides input data for
the alignment and calibrations. At HLT2, the constraints on the computing time
are not so strict as in HLT1 and the full event reconstruction becomes possible. In
addtion to the muon identification which is already available in HLT1, HLT2 is able
to fully use the PID information from the detector.
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4 Contributing channels

This chapter provides an overview of the decay channels which we are interested
at, including the signal channel, the reference channel and some main background
channels. The different sources of τ production at LHCb and the calculation of their
contribution fractions are discussed in detail. The correct fractions will be used in
the processing of Monte Carlo samples.

4.1 Signal τ production

The LFV signal channel τ− → φ(K+K−)µ− can contain τ leptons from different
sources. It is necessary to evaluate the contribution of these sources.
As described in section 3.2, the LHCb detectors are arranged in the forward

region. Only particles entering the acceptance region of LHCb can be detected.
The contributions of different τ production channels will first be analyzed in full
space (4π solid angle) and later modified by an acceptance factor. The acceptance
will be discussed in section 5.2.
The production of τ leptons at LHCb comes mainly from prompt D±s , D± decays

and b hadron decays. The prompt production refers to the direct generation from
the primary proton-proton collision vertex. For convenience, in the following part
of this article, charge conjugation will be included implicitly and the D±s and D±

will be written simply as Ds and D unless stated otherwise.
The Ds, D mesons decay into τ leptons through the leptonic decay D+

(s) → τ+ντ
as shown in Fig. 4.1. Branching fractions B(Ds → τντ ) = (5.48 ± 0.23)% and
B(D→ τντ ) = (1.2± 0.27)× 10−3 are taken from PDG [53].
In the LHCb experiment, Ds, D mesons can come from the prompt generation or

from b hadron decays. The prompt charm production cross sections at LHC with
a pp collision energy of

√
s = 13TeV were meausured in [54]. The measured cross

Figure 4.1: Ds, D mesons decay into τ leptons.
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sections for pT value within 1 < pT < 8GeV/c and within the acceptance of the
LHCb detector are:

σmeasured(pp→ DsX) = 353± 76µb
σmeasured(pp→ DX) = 834± 78µb

(4.1)

Since the LHCb detector is a forward detector, factors of acceptance and momentum
range need to be considered, which lead to 4π cross sections:

σ4π(pp→ DsX) = (1732± 373)µb
σ4π(pp→ DX) = (4054± 379)µb

(4.2)

The D,Ds mesons can also come from b hadron decays. To evaluate these two
contributions, the bb̄ production cross section is taken from [55] as σ4π(pp→ bb̄) =
495± 52µb. Branching fractions for inclusive decays b, b̄→ D±(s) are taken as:

B(b→ D+
s ) = B(b̄→ D−s ) = (14.7± 2.1)%

B(b→ D−s ) = B(b̄→ D+
s ) = (10.1± 3.1)%

B(b→ D+) = B(b̄→ D−) = (23.7± 1.8)%

B(b→ D−), B(b̄→ D+) unobserved

(4.3)

from PDG [53]. It is possible to roughly estimate the branching fraction of b →
D−(b̄→ D+) from B(b→ D−s ):

B(b→ D−) = B(b̄→ D+) ∼ |Vcd|
2

|Vcs|2
B(b→ D−s ) ∼ 0.5% (4.4)

from here below, we will assume B(b→ D−) = B(b̄→ D+) = (0.5± 0.5)%.
Considering the leptonic decay branching fractions of D,Ds, we derive:

B(bb̄→ Ds → τ) = (1.36± 0.21)%

B(bb̄→ D → τ) = (0.029± 0.007)%
(4.5)

The last significant source of τ production is from prompt b hadron decays. The
inclusive branching fraction for b hadrons decay into τ can be taken as B(b/b̄→
τντX) = (2.41 ± 0.23)% from PDG [53]. The b hadron production cross section
σ(pp→ bb̄) has been listed above.
To summarize the above derivation, Eq. 4.6 lists the cross sections of interest and

their relations with the input variables. The variables on the right-hand side are
summarized in Tab. 4.1.

σ4π(bb̄→ τ) = 2σ4π(pp→ bb̄)B(b/b̄→ τ)

σ4π(bb̄→ Ds → τ) = 2σ4π(pp→ bb̄)(B(b→ D+
s ) + B(b→ D−s ))B(Ds → τ)

σ4π(Ds → τ) = σ4π(pp→ Ds)B(Ds → τ)

σ4π(bb̄→ D → τ) = 2σ4π(pp→ bb̄)(B(b→ D+) + B(b→ D−))B(D → τ)

σ4π(D → τ) = σ4π(pp→ D)B(D → τ)

σ4π(prompt Ds) = σ4π(pp→ Ds)

σ4π(bb̄→ Ds) = 2σ4π(pp→ bb̄)(B(b→ D+
s ) + B(b→ D−s ))

(4.6)
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Table 4.1: The variables used to calculate the cross sections. To simplify the un-
certainty estimation, these variables are considered independent in this
thesis.

Variables Value
σ4π(pp→ bb̄) (495± 52)µb
σ4π(pp→ Ds) (1732± 373)µb
σ4π(pp→ D) (4054± 379)µb
B(b/b̄→ τ) (2.41± 0.23)%
B(b→ D+

s ) (14.7± 2.1)%
B(b→ D−s ) (10.1± 3.1)%
B(Ds → τ) (5.48± 0.23)%
B(b→ D+) (23.7± 1.8)%
B(b→ D−) (0.5± 0.5)%
B(D → τ) (1.2± 0.27)× 10−3

Table 4.2: τ production at
√
s = 13TeV

Source Generation σ4π[µb ] Decay B σ4π(τ)[µb ] Contribution in 4π
bb̄→ τ 2× (495± 52) (2.41± 0.23)% 23.9± 3.4 17.37%
Ds → τ 1732± 373 (5.48± 0.23)% 94.9± 20.8 69.09%

bb̄→ Ds → τ 2× (495± 52) (1.36± 0.21)% 13.5± 2.5 9.79%
D → τ 4054± 379 (0.12± 0.027)% 4.86± 1.2 3.54%

bb̄→ D → τ 2× (495± 52) (0.029± 0.007)% 0.29± 0.07 0.21%

As a summary of the five major sources of τ production mentioned above, Tab. 4.2
shows the contribution from each source in 4π.

4.2 Reference channel

While we aim to estimate the branching fraction (or an upper limit of the branching
fraction) of the decay τ−→ φ(K+K−)µ− , the quantity we will measure is the yield
of the signal channel Nsig = N(τ− → φ(K+K−)µ−). The yield is related to the
branching fraction and the integrated luminosity by:

Nsig = B(τ−→ φ(K+K−)µ−)εsigσ
4π(τ)Lint (4.7)

where εsig stands for the efficiency of the signal channel, σ4π(τ) stands for the τ
production cross section in 4π and Lint stands for the integrated luminosity.
The number of events of the signal decay τ−→ φ(K+K−)µ− is evaluated normal-

ising to a well-known reference channel. The uncertainty related to the efficiency
can be cancelled partially by using the relative efficiency between the signal and
the reference channel. The reference channel chosen is D−s → φ(µ+µ−)π− . For the
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Table 4.3: Ds production at
√
s = 13TeV

Source Generation σ4π[µb ] Decay B σ4π(Ds)[µb ] Contribution in 4π
bb̄→ Ds 2× (495± 52) (24.8± 3.7)% 246± 45 12.4%

prompt Ds 1732± 373 - 1732± 373 87.6%

reference channel, there is a similar formula as for the signal channel:

Nnorm = B(D−s → φ(µ+µ−)π−)εnormσ
4π(Ds)Lint (4.8)

where Nnorm stands for the yield of the reference channel and εnorm stands for the
efficiency of the reference channel. We derive:

B(τ−→ φ(K+K−)µ−) =
εnorm

εsig
· Nsigσ

4π(Ds)

Nnormσ4π(τ)
B(D−s → φ(µ+µ−)π−) (4.9)

which will be used to evaluate the signal branching fraction from the observed signal
yield Nsig.
As described in the previous section, the source of Ds (important for the reference

channel) in LHCb can come from direct production at pp collision (prompt Ds) or
from the decay of b hadrons. Tab. 4.3 shows the production of Ds mesons from
these two sources.

4.3 Crossfeed Background

The main sources of background are D,Ds meson decays, which are incorrectly
reconstructed. As described in the previous sections, the production cross sections
of D,Ds mesons (including prompt production and b hadron decays) in 4π can be
estimated:

σ4π(Ds) = (1977± 376)µb
σ4π(D) = (4293± 381)µb

(4.10)

Given the τ mass window and the branching fractions, only some of the D,Ds decay
channels need to be considered. Without any selection applied, the 4π contributions
for the significant background channels can be roughly estimated. Tab. 4.4 shows
several main crossfeed backgrounds, where the branching fractions are taken from
PDG [53]. In these background channels, if a charged pion π± is misidentified as
a muon µ± and the neutral particle (ν or π0) is not detected, the decays will have
very similar topology as the signal channel. The estimation of the possibility of
misidentifying a π as a µ (MisID rate) is complicated and depends on variables such
as momentum etc. For a rough estimation of different crossfeed contributions, the
misidentification rate is set to an average value of 0.02 [38].
The partially reconstructed backgrounds with a missing neutrino or a π0 have a

broad distribution of the invariant mass of the reconstructed D or Ds, while a fully
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Table 4.4: Estimation for some background contributions in 4π

Source σ4π(D(s))[µb ] B [%] MisID rate 4π Contribution[µb ]
D→ φ(KK)ππ0 4293 1.1± 0.5 0.02 0.97
D→ (KK)nonφππ

0 4293 1.50.7
−0.6 0.02 1.3

D→ KKπ 4293 1.1± 0.5 0.02 0.85
Ds→ φ(KK)µνµ 1977 0.93± 0.25 1 18.5
Ds→ KKππ0 1977 6.3± 0.6 0.02 2.5
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Figure 4.2: Incorrectly reconstructedK+K−µmass distributions for two background
channels.

reconstructed decay has a peaky distribution. The main source of the broad distri-
bution background comes from D+

s → φ(K+K−)µ+νµ with a missing neutrino. The
channel D−→ K+K−π− constitutes a peaky background. The mass distribution
of these two channels are explored with RapidSim1 [56] as shown in Fig. 4.2. The
peaky background D−→ K+K−π− distribution is relatively far from the τ mass
window and can be easily identified with a fit in the invariant mass distribution. The
reduction of the D+

s → φ(K+K−)µ+νµ background requires a multivariate analysis.

1RapidSim is a software package for the fast simulation of beauty and charm hadron phase space
decays.
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5 Data and Monte Carlo samples
preparation

In LHCb, before data and Monte Carlo samples are processed and analyzed by an-
alysts, they have already gone through many centralized procedures (e.g. trigger
filtering and stripping selections) and have been classified and selected preliminar-
ily. In this chapter, the stripping selections applied to the signal channel and the
reference channel will be described.
In addtion, this chapter summarizes some other necessary preparation work for

the data and Monte Carlo samples before they can be used in more complicated
analysis procedures. The Monte Carlo simulations of the signal are done for different
τ lepton production sources, hence a blending procedure with weighted contributions
is required. As this analysis aims to search for a very rare decay, a blinding technique
is applied to data in order to avoid the possible bias in the analysis. The blinded
signal region will not be revealed until the very end of the analysis when the whole
analysis procedure is settled. Some preliminary selections (i.e. preselection) and
trigger line selections are also described in this chapter.

5.1 Data stripping

As described in section 3.3, the data samples were processed with stripping selec-
tions before they are used for analysis. The selection algorithm is included in some
stripping lines defined in LHCb. Tab. 5.1 summarizes the stripping selection cri-
teria applied in the lines used for the signal channel and the reference channel. In
this table, some variables defined in the LHCb data processing are used. They are
explained as follows:

• PV: primary vertex.

• ndf: the number of degrees of freedom associated with the fit. This variable
is usually used together with the fit χ2 for fit quality control.

• χ2
vtx: the χ2 of a vertex fit. A requirement on this variable selects good quality

vertices.

• track χ2: the χ2 of a track fit. A requirement on this variable selects good
quality tracks.

• χ2
IP: Impact Parameter (IP) χ2. IP refers to the distance of a track trajectory

to a vertex. The χ2
IP here is a measurement of the compatibility of a track to
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Table 5.1: Stripping selection [57]
Variables Signal channel Reference channel

Final daughters K±µ±π±

track χ2/ndf < 3
track ghost probability < 0.3 < 0.45

pT > 300MeV/c
χ2
IP on related PV > 9
daughters from φ K± PIDK> 0 µ± IsMuon
daughters from φ K± ISLONG -

φ
Mass(φ) |M −MPDG| < 30MeV/c2 970MeV/c2 < M < 1070MeV/c2

minimal χ2
IP from any PV > 9 -
χ2
vtx < 25 -

Mother particle τ/D+
s

Mass |M −MPDG| < 150MeV/c2 |M −MPDG| < 250MeV/c2

cτ0 > 50µm > 100µm
χ2
vtx < 25 < 15

χ2
IP on related PV < 100 < 225

Table 5.2: The requirements to trigger IsMuon [38].
Track momentum Required muon stations

3GeV/c < p < 6GeV/c M2 and M3
6GeV/c < p < 10GeV/c M2 and M3 and (M4 or M5)

p > 10GeV/c M2 and M3 and M4 and M5

originate from a vertex. It is calculated as the difference of the vertex fit χ2

with and without the specific track. With a larger χ2
IP, the track is believed

less likely to be from the vertex.

• IsMuon: as described in section 3.2.7, it is a binary PID decision based on the
number of muon stations where a hit in FOI is found. The specific requirement
varies according to the muon track momentum p, which is shown in Tab. 5.2.

• ISLONG: checks if a track is a LONG track i.e. the track goes through Velo,
TT, and T1-T3 stations.

• PIDx: a combined delta log likelihood for a given hypothesis x, w.r.t the π
hypothesis i.e. ∆L = log(Lx/Lπ). The likelihood L is derived by simply
multiplying the particle identification likelihood produced by RICH, Muon
stations and calorimeters.

• MPDG: the nominal mass value of the particle taken from PDG.
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• cτ0: the measured proper lifetime of the particle times the speed of light c.

5.2 Monte Carlo samples

Since the signal τ candidates are produced from different sources, the Monte Carlo
samples from different sources need to be blended according to the contribution of
each source.
The contribution factors calculated in section 4.1 are in 4π. Considering the

LHCb detector acceptance, blending ratios will need to include the acceptance. The
acceptance is calculated using generator level simulations. The procedure includes
two configurations. Firstly, a normal generator level simulation is performed, with
generator level cuts including the LHCb acceptance as well as a requirement of the
τ comes from a specific source. The generator level efficiency derived from this pro-
cedure is denoted as εGen&Cut. The second simulation is performed with the LHCb
acceptance cut removed. Only the requirement of the production source is included
in the generator level cut for this configuration and the corresponding efficiency is
denoted as εGen. The cut efficiency can be calculated as εCut = εGen&Cut/εGen. The
contribution from each source is thus calculated as (contribution in 4π)× εCut. Nor-
malised contributions are denoted as fsource factors which are used for MC blending.
We will use the notation fsource(i) for the factor of source i. Tab. 5.3 shows the
efficiencies and blending factors for the signal channel.
To weight the MC samples to the correct fractions, we evaluate a source weight for

each event. If an event belongs to a source i, its source weight (wsource) is calculated
as:

wsource(i) =
Nall × fsource(i)

N(i)
(5.1)

where N(i) is the number of events of a given source in the MC sample and Nall is
the total size of the MC sample. As fsource factor has already taken the acceptance
efficiency into consideration, the number of events is evaluated after the acceptance
level.
For the reference channel, the same procedure is applied to the Ds production.

Tab. 5.4 shows the fractions of the two sources of Ds production which are used to
weight the MC sample.
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Table 5.3: MC composition for τ−→ φ(K+K−)µ− at 13 TeV
Source Contribution in 4π εGen&Cut(%) εGen(%) εCut(%) fsource(%)
bb̄→ τ 17.37% 4.67± 0.03 31.94± 0.08 14.63± 0.10 16.42
Ds → τ 69.09% 14.08± 0.04 89.24± 0.07 15.78± 0.05 70.46

bb̄→ Ds → τ 9.79% 1.574± 0.005 10.73± 0.02 14.67± 0.06 9.29
D → τ 3.54% 14.33± 0.04 90.30± 0.06 15.87± 0.05 3.63

bb̄→ D → τ 0.21% 1.407± 0.009 9.64± 0.02 14.60± 0.10 0.20

Table 5.4: MC composition for D−s → φ(µ+µ−)π− at 13 TeV
Source Contribution in 4π εGen&Cut(%) εGen(%) εCut(%) fsource(%)
bb̄→ Ds 12.4% 1.23± 0.03 11.1± 0.3 11.2± 0.5 11.5

prompt Ds 87.6% 10.8± 0.3 88.6± 0.9 12.2± 0.4 88.5
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5.3 Mass distribution and signal region blinding

The invariant mass of the reconstructed signal candidate is one of the most impor-
tant variables for the analysis. The final extraction of signal will depend on the
distribution of the reconstructed mass of the signal candidates.
To avoid the bias of the analysis strategy e.g. event selection optimization, the

signal region of the data samples is blinded before the analysis begins. Three regions
are defined based on the mass spectrum of the mother particle. They are:

• Signal region: |M −MPDG(τ)| < 20MeV/c2. This region is blinded.

• Inner SideBand(SB): 20MeV/c2 < |M −MPDG(τ)| < 30MeV/c2. This region
is used for multivariate analysis training.

• Outer SideBand(SB): |M −MPDG(τ)| > 30MeV/c2

Fig. 5.1 shows the distribution of the reconstructed mass of the mother particle
after stripping selection. The signal region is already blinded and the boundaries of
the sidebands are marked.

5.4 Sample preselection

After the stripping selection, the data samples are selected further. It is possible to
apply a preselection on the φ mass to distinguish between the background and the
signal. Fig. 5.2 shows the φ mass distribution of the signal channel and the reference
channel.
Based on the different φ mass peak distributions of the signal channel and the

reference channel, we require different φ mass selections for them. In the signal
channel the selection is chosen as |M(φ)−MPDG(φ)| < 15MeV/c2 and in the reference
channel the selection is |M(φ)−MPDG(φ)| < 20MeV/c2.
In the signal channel, crossfeed from D−→ K+K−π− mostly falls into the peaky

shape of the upper sideband (Fig. 5.1) and can be easily described by a fit to the
mass spectrum. However, in order to concentrate on the main broad background
distribution during the sample selection, a cut is applied to reduce D−→ K+K−π−

crossfeed during the data sample preselection. Under the hypothesis that the muon
candidate is a misidentified pion, the invariant mass of the mother particle is recal-
culated after assigning the π mass to the µ track in data samples. This recalculated
mass is marked as variable M(mother;µ→ π). Fig. 5.3 shows this new mass distri-
bution of the MC sample and the blinded data. In the data preselection, we require:
M(mother;µ→ π) < 1850MeV/c2, which removes a large fraction of the background
with a misidentified π. This will facilitate the optimization of further selections
since these selections will focus on distinguishing the signal and the continuously
distributed background. In the final fit, to avoid biasing the mass distribution, the
cutted data (the sample removed by cut M(mother;µ→ π) < 1850MeV/c2) will be
added. This selection is not applied to the MC sample.
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Figure 5.1: Invariant mass spectrum of mother particle in the signal channel. The
red lines mark the boundaries of the signal region (|M − MPDG| =
20MeV/c2), and the blue lines mark the outer boundaries of the inner
sideband (|M −MPDG| = 30MeV/c2).
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Figure 5.2: Invariant mass distribution of φ candidates in the signal channel (φ →
K+K−) and the reference channel (φ → µ+µ−). In the plot of the
signal channel, "blinded data" is defined by removing signal region in
the M(φ(K+K−)µ) distribution. In the plot of the reference chan-
nel, the data sideband is selected by requiring 20MeV/c2 < |M(Ds) −
MPDG(Ds)| < 50MeV/c2.
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Figure 5.3: In signal channel, the mass of mother particle after assigning π mass to
µ track.

Table 5.5: Preselection for the signal channel and the reference channel.
Signal channel Reference channel
|M(φ)−MPDG(φ)| < 15MeV/c2 |M(φ)−MPDG(φ)| < 20MeV/c2

M(mother;µ→ π) < 1850MeV/c2 −0.01ns < τ0(Ds) < 0.025ns
Ds DIRA> 0.99
µ ProbNNµ > 0.2 and π ProbNNπ > 0.2

For the reference channel, additional selections are applied. Tab. 5.5 provides a
summary of preselections applied to the signal channel and the reference channel. In
the table, some variables and their corresponding notations are used. The variable
τ0(Ds) stands for the measured decay time of the reconstructed Ds candidates. The
DIRA (DIRection Angle) of the Ds candidate stands for the cosine of the angle
between the momentum vector of the Ds candidate and the direction vector which
points from the primary vertex to the end vertex of the Ds. ProbNN is a response of
a neural network which combines the particle identification information from several
subdetectors (including RICH, the muon system and the calorimeter system) using
a multivariate technique [58]. The variable ProbNNx is normalised in the range
0 ∼ 1, with higher value suggesting higher probability of a particle belonging to a
certain species x.

5.5 Trigger selection

As mentioned in section 3.3, the recorded data has been filtered using 3 levels of
triggers: L0, HLT1 and HLT2. Each level has many different lines, which apply
different requirements. In the data sample, the response for each line is recorded.
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Table 5.6: Selected trigger lines for the signal channel.
Trigger Level Signal channel trigger line

L0 L0Muon (TOS)
L0Global (TIS)

HLT1
HLT1TrackMuon (TOS)
HLT1TrackMuonMVA (TOS)
HLT1TrackMVA (TOS)

HLT2 HLT2PhiIncPhi (TOS)

Table 5.7: Selected trigger lines for the reference channel.
Trigger Level Reference channel trigger line

L0 L0Muon (TOS)
L0DiMuon (TOS)

HLT1 HLT1DiMuonLowMass (TOS)
HLT1TrackMuon (TOS)

HLT2 HLT2DiMuonDetached (TOS)1
HLT2TopoMuMu2Body (TOS)

Each triggered event and the decay candidate of our interest in the event can be
categorized for its response of a certain trigger line. Triggered On Signal (TOS)
for a given line stands for the events, in which the signal candidate is sufficient to
trigger the line. Triggered Independent of Signal (TIS) for a given line stands for
the events, in which if the signal candidate is removed, the rest of the event is still
enough to trigger the line. The events belonging to neither TOS nor TIS are called
Triggered On Both (TOB) [59].
To simplify the calculation of the trigger efficiency and to improve the systematic

uncertainty associated with it, several trigger lines are selected to be used in the
further analysis. These trigger selections impose the requirement on the sample that
for each trigger level, the selected event should at least trigger one of the selected
trigger lines. Tab. 5.6 and Tab. 5.7 show the trigger lines selected for the signal
channel and the reference channel.
These trigger lines involve complicated requirements. An overview of the L0

trigger lines has been given in section 3.4. Further information on the exact selections
contained in these trigger lines are described in the appendix A.1.

1This line doesn’t exist for the samples of 2016, thus, these samples are required to pass the
HLT2TopoMuMu2Body (TOS) line
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6 Kinematic correction of Monte Carlo
simulation

In order to improve the Monte Carlo sample’s consistency with the real data, a
correction in kinematics is applied. As the simulation can not perfectly match
the kinematic distribution of real data, some correction weights are assigned to the
simulated events based on the value of kinematic variables i.e. the momentum of the
mother particle p(Ds/τ), the transverse momentum of the mother particle pT (Ds/τ)
and the track multiplicity nTracks (meaning the number of tracks for an event).

To get the correction, a comparsion of the kinematic variable distributions between
the simulated sample and the signal component of the real data sample is needed.
Assuming the discrepancy between the simulation and the real data is the same for
the signal channel and the reference channel, the correction can be determined on
the reference channel, where it is possible to have an estimation of the real data
distribution with only the signal component.

Since the real data sample is a mixture of signal events and background events,
we need a method to extract the signal-only distribution from the real data sample.
The method is called the sP lot technique [60].
The information of the mother particle’s invariant mass is used to distinguish

the signal from the background. Firstly, a fit of the mass spectrum of the mother
particle is performed for the reference channel. The fit describes the signal and the
background components of the mass spectrum. It allows to assign a weight to each
event depending on its position in the mass spectrum. The weighted distributions
of the kinematic variables are taken as the distributions of the signal component.
By comparing the weighted data sample and the MC sample, a correction table is
calculated as a 3 dimensional histogram (p(Ds/τ), pT (Ds/τ), nTracks). The MC
sample of the signal channel is weighted by applying this table.

6.1 sP lot technique

Following the description in [60], the sP lot technique is summarized in this section.
sP lot is a technique used on a group of events from different sources (in this case,

the signal and the background), which are associated with two sets of variables.
The distribution models of one set of the variables are known and they are called
discriminating variables (in this case, the invariant mass). The other set of vari-
ables with unknown distributions are called control variables (in this case, p(Ds/τ),
pT (Ds/τ) and nTracks). It is assumed that the discriminating variables and the
control variables are independent.
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The distribution of the discriminating variable (the invariant mass) is described
by a composition of contributions from different sources (signal/background). A
maximum likelihood fit of the distribution of the discriminating variable can be
performed. The fit will provide an estimation of the expected yield (number of
events) for each source. Given the fit result, for each event, a weight (sWeight)
can be calculated as a function of its discriminating variable value. The sWeighted
distributions of control variables will then provide an estimation of the distributions
of the individual sources.

6.2 Reference channel fit

In order to determine the sWeights, the fit of the data of the reference channel is
performed. The invariant mass spectrum of the selected candidates is modelled with
two parts i.e. the signal distribution and the combinatorial background distribution.
The signal peak is modelled as a Double-Sided Crystall Ball (DSCB) function [61],

which can be formulated as:

f(x) ∝
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(6.1)

where M and σ stand for the mean value and the width of the central gauss distri-
bution, α1, α2, n1, n2 are the tail parameters which define the shape of the two tails.
To improve the fit of the data, the tail parameters are obtained by performing a fit
of the MC sample. The MC sample is weighted with the source weights calculated
in section 5.2 in order to correct the production sources of Ds. The fit result of the
MC sample is shown in the left plot of Fig. 6.1.
With the tail of the signal peak fixed, the data of the reference channel is fitted

with the DSCB function as the signal model and an exponential function as the
combinatorial background model. The data fit is shown in the right plot of Fig. 6.1.
Tab. 6.1 shows the parameters of the fit.
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Figure 6.1: Fit of the invariant mass distribution for the reference channel MC(left)
and data(right). The MC sample is corrected for different Ds production
sources as described in section 5.2.

Table 6.1: Parameters of the invariant mass fit for the reference channel
Parameters MC Data

Signal (DSCB)
M(Ds) 1969.30± 0.03 1968.85± 0.03
width σ 8.47± 0.03 8.91± 0.03
α1 1.78± 0.02 fixed from MC
α2 1.84± 0.04 fixed from MC
n1 2.90± 0.11 fixed from MC
n2 9.53± 1.08 fixed from MC

Background (exponential)
exponential constant - (−1.27± 0.10)× 10−3
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Figure 6.2: Comparison of the distributions of correction variables. The corrected
MC shows a better match with the sWeighted data.

6.3 Correction table

Based on the fit result shown in Fig. 6.1(right), the real data signal contribution
for different kinematic variables of the reference channel are derived with the sP lot
technique.
The sWeights are assigned to each event in the data sample. In order to evaluate

the correction, the sWeighted data and the MC sample are compared in the 3 di-
mensional binned distribution (p(Ds/τ), pT (Ds/τ), nTracks). For each bin (binx),
the correction weight (wcor) is calculated as the ratio of two factors:

wcor(binx) =
fswdata(binx)

fMC(binx)
(6.2)

where the factor fswdata stands for the fraction of the sWeighted data events belong-
ing to the given bin and the factor fMC stands for the fraction of the MC events
belonging to the given bin. In the MC sample, the Ds production weights (sec-
tion 5.2) have been applied.
As a test, the correction table is applied to the reference channel itself. The

corrected distribution of the reference channel MC is compared with the sWeighted
data and the non-corrected MC. The result is shown in Fig. 6.2. As expected,
Fig. 6.2 shows that the corrected MC matches the sWeighted data rather well.
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7 Multivariate analysis

The multivariate (MV) technique is useful when the variables individually do not
supply enough separation power to extract signal candidates from a sample with a
large amount of background events. By performing the MV analysis, the information
from several input variables are combined into a more powerful single variable.
Several variables with potential power to distinguish signal from background are

selected as input variables. A classifier is able to assign an event to the category
of signal or background based on the value of its input variables. The classifier can
be trained to do this by adjusting its structure parameters while learning from a
training sample, which contains a group of events with input variables and known
labels to be either signal or background. In this analysis, the MC sample is used
as the signal training sample and the inner sideband of the data sample is used as
the background training sample. The trained classifier is then applied to the full
data and MC samples. The classifier evaluates an output value for each candidate
suggesting an extent to which the candidate is believed to be a signal event.
In this analysis, the multivariate analysis training is performed with the machine

learning library scikit [62] and the CatBoost [63] toolkit.

7.1 Introduction to classifiers

A classifier is essentially a mapping from an input variable space to an output
space. Before it can be used, it is trained on a training sample which has a known
target value in the output space. During the training of a classifier, its structure
parameters are adjusted trying to perform the best classification. More specifically,
this adjusting process can be done by minimizing a function which takes its input
from the classifier output and the known target value of the training sample. This
function is called the loss function.
Several constraints can be set prior to the training in order to control it. The

parameters concerning these constraints are called hyperparameters.
The classifier used in this analysis is CatBoost. Based on the content of [63] and

[62], an introduction of CatBoost is given below.
CatBoost is an improved version of the algorithm Gradient Boosting Decision

Tree (GBDT). GBDT is an ensemble method classifier, which means it is applied
by combining the results from a group of primitive estimators. GBDT uses Decision
Trees (DT) as primitive weak learners and add the functions of these weak learners
with certain weights. A decision tree is a basic classifier. It consists of a set of nodes,
in which the samples are recursively partitioned in a way that benefits the classifi-
cation of test samples to match their known labels. The space of input variables are
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finally partitioned into disjoint regions Ri. The final output of a decision tree can
be generally written as

h(~x) =
∑
i

biI{~x∈Ri} (7.1)

where ~x stands for a point in the input variable space and I{~x∈Ri} is the characteristic
function which only contributes when ~x belongs to the region Ri. The values bi are
assigned as the predicted class labels for this region. There is a hyperparameter
to limit the maximum depth of a DT. In GBDT, these basic decision trees are
determined one by one so that every basic decision tree added to the ensemble
is used to try to minimize the loss function of the previous ensemble in a greedy
fashion. Step by step, the GBDT classifier is constructed as a sequence F t:

F t = F t−1 + αlrh
t (7.2)

where ht is the base estimator of the step t and αlr is called the learning rate, which is
introduced as a regularization strategy. The estimator ht is determined to minimize
the loss function L:

ht = arg minL(F t−1 + h) (7.3)

As proposed in [64], by training each base classifier on a randomly selected sub-
sample of the full sample, it helps to improve the performance of the classifier. A
hyperparameter is used to constrain the fraction of samples used for training each
base classifier.
GBDT is a powerful classifier and has been used widely for many years. However,

it has certain prediction shift problems which can be considered as a special kind
of target leakage. CatBoost improves GBDT by introducing an ordered boosting
algorithm and a new algorithm for processing categorical features [63].

7.2 Training input

The training use the MC sample as the signal sample and the inner sideband of the
data sample as the background sample. The full sample is divided into two parts
i.e. 3/4 used for developing the classifier and 1/4 used for the final evaluation of the
classifier. In order to correct the τ lepton production fractions from different sources
and the kinematic variable distributions (i.e. p(τ), pT (τ) and track multiplicity), we
use the product of the source weight and the kinematic correction from the reference
channel to calculate the final training weight. In addition, the sizes of the signal
sample and the background sample are different, and thus they need to be balanced.
The final training weight (wtrain) for events in the signal category is calculated as:

wtrain(i) = NBkg. ·
wcor(i) · wsource(i)∑

k∈sig.wcor(k) · wsource(k)
(7.4)
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where i and k are labels for events. The symbol NBkg. stands for the size of the
background sample. For events in the background category, the weights are simply
set to one.
The input variables for the classifier are listed below with the explanation of the

notations. The distribution of these input variables are shown in Fig. 7.1. Due
to the similarity between the signal and the background, only very few variables
provide a seperation power.

• τ IP: impact parameter of the τ candidate w.r.t PV.

• τ χ2
IP: IP χ2 of the τ candidate w.r.t PV.

• φ pT : pT of the φ(KK) candidate .

• µ pT : pT of the µ candidate.

• µ χ2
IP: IP χ2 of the muon candidate w.r.t PV.

• minimal pT (K): the minimum of the pT of the two kaons.

• minimal χ2
IP(K): the minimum of the IP χ2 of the two kaons w.r.t PV.

• sinDIRA: sine value of the angle between the τ momentum and the vector
which points from PV to its decay vertex.

• Pointing: calculated as p(τ)·sinDIRA
p(τ)·sinDIRA+pT (φ)+pT (µ)

• TrkIsoBDT of K+, K− and µ: the maximum value of a track isolation variable
evaluated between a certain final state particle (K±, µ±) and another track in
the remaining part of the event. In the signal decay, the final state particles
K±, µ± are the only particles coming from τ . For the τ production from D+

s →
τ+ντ andD+ → τ+ντ , there are no other charged particles produced. Thus the
daughter tracks are expected to be relatively isolated. For each daughter track
and any other track in the event, an isolation variable is evaluated with BDT
multivariate analysis technique. This variable was developed during previous
studies on B0

s/B → µ+µ− at LHCb [65, 66].

• Mother particle lifetime : measured life time of τ candidates

7.3 Hyperparameter optimization

Before the training of the final classifier, an optimization of some hyperparameters
of the classifier is performed. Several combinations of hyperparameters are tested
with a grid search function provided by the CatBoost toolkit:
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Figure 7.1: Multivariate analysis training input distribution for the background
(data inner sideband) and the signal (MC). The distributions are
normalised.
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• Learning rate: αlr = 0.03, 0.1, 0.3. As described in Eq. 7.2, the learning rate
works as a step size of the training iteration.

• The maximum depth of the trees: depth = 4, 5, 6, 10. This hyperparameter
sets a limit on the number of allowed node layers for each basic decision tree.

• Sample rate for bagging: subsample = 0.3, 0.5, 0.6, 0.66, 0.7, 0.8. As intro-
duced in section 7.1, a randomly selected subset of the total training sample
is used at each iteration. This hyperparameter determines the fraction of the
subset within the total sample.

• The maximum number of basic trees that can be built: iterations = 400, 1000.
When the number of basic trees reaches this number, the training will stop.
If this number is too large, there is a risk of overtraining.

The tests are conducted with a 3-fold cross-validation technique. This technique
randomly splits the total developing sample into 3 parts. Each time the classifier is
trained with 2 of them and the result is evaluated on the third part. This technique
is intended to prevent over-training during hyperparameter tuning.
The grid search picks out the best hyperparameters combination: αlr=0.1, depth=6,

subsample=0.5, iterations=1000. However, the training result of this combination
shows a considerable extent of over-training. The output is shown in appendix A.2.
To suppress the overtraining, the outputs of several combinations with iterations
= 400 are compared with the result in appendix A.2. With a 2nd set of hyperpa-
rameters: αlr=0.1, depth=6, subsample=0.6, iterations=400, the output result (a
description of this output can be found in the next section) is comparable with that
of the best hyperparameters combination. We do not lose too much ability while no
obvious overtraining is observed. The following analysis will use this combination
of hyperparameters.

7.4 Training output

To evaluate the performance of the classifier, the trained classifier is applied to
the evaluation sample. For each event, the trained CatBoost classifier evaluates an
output based on the value of input variables. The left plot of Fig. 7.2 shows the
normalised distribution of the trained classifier. Both the training sample(i.e. the
developing sample) and the evalution sample are plotted as histograms. The output
of CatBoost will be used as a selection for the signal: CatBoost > x. By scanning
the cut value x, a group of background rejection rates and corresponding signal
retention rates are evaluated based on the output distribution of evaluation sample.
The result is plotted as Receiver Operating Characteristic (ROC) curve as shown in
the right plot of Fig. 7.2
The distribution of the classifier output shows a large overlap between the signal

and the background. The ROC curve is an important criterion of the performance.
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Figure 7.2: The performance of the trained classifier. The left plot shows nor-
malised the CatBoost output distribution for signal/background train-
ing/evaluation samples respectively. The right plot shows the ROC curve
(the background reject rate against the signal retention rate) and the
area under the curve.

With a better performance, the area under the ROC curve will be larger. Fig. 7.2
indicates that the performance of the classifier is limited. The reason is the similarity
between the signal and the background. The main background in this case is the
D+
s → φ(K+K−)µ+νµ decay. Comparing with the signal decay τ−→ φ(K+K−)µ− ,

the final state particles only differ by a missing neutrino. The topological structure
of these two decays are very similar and to disentangle them is a difficult task.
Thus we consider the result of this MV analysis acceptable and we believe further
improvements are difficult to realize.

Because the final extraction of signal will rely on the invariant mass spectrum,
it is important that the MV selection is uncorrelated to the invariant mass i.e. the
selection on CatBoost output itself does not cause any potential peaky structure in
the signal region. Several two dimensional distribution histograms are produced for
MC, data inner sideband and data outer sideband samples to test the correlation
between the CatBoost output and the variable |M(φ(KK)µ) − MPDG(τ)|. The
results are shown in Fig. 7.3. No obvious correlation between these two variables is
found.

Finally, the trained CatBoost classifier is applied to all data and MC samples.
To suppress the background while preserving the potential signal candidates, the
selection CatBoost > x will be applied with x remained to be optimized later.
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Figure 7.3: Two dimensional distribution of the CatBoost output and the invariant
mass variable |M(φ(KK)µ) − MPDG(τ)| for MC, data inner sideband
(innerSB) and data outer sideband (outerSB) samples. The colored z
axis is in normalised scale. The linear correlation factors are shown in
the sub-titles of the plots.
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8 Multivariate and PID selection
optimization

In the previous chapter, the output of the multivariate classifier provides an useful
variable for the signal/background classification. In addition, the particle identifi-
cation information of the final state particles in the signal decay τ−→ φ(K+K−)µ−

has not been fully exploited so far. This chapter describes a selection optimization
procedure which combines the MV output and the PID information. During the
optimization, the evaluation of the PID selection efficiency is needed. A PID effi-
ciency calibration method is introduced, which will contribute to a more accurate
optimization.

8.1 PID selection strategy

8.1.1 Kaon PID selection

In the signal decay τ− → φ(K+K−)µ− , the K± candidates could be misidenti-
fied muons or some other particles. Thus, two selections are applied to both kaon
candidates: ProbNNk > 0.4 and IsMuon is set to false.
The cut point of ProbNNk is determined based on a rough estimation from the

sideband/MC comparsion. Fig. 8.1 shows the distribution of the kaon ProbNNk
variable.
As introduced in section 3.2.7 and section 5.1, the variable IsMuon is a very loose

binary selection of muon candidates. By requiring its value to be false, we use it to
veto the potential false kaon candidates.

8.1.2 Muon PID selection

As described in section 4.3, possible crossfeed backgrounds e.g. Ds → KKπ(π0)
or D→ KKπ(π0) may contribute due to a misidentified muon. To suppress these
crossfeed backgrounds, a selection on the muon is applied based on a combined muon
PID variable:

MuPIDvar = ProbNNµ · (1− ProbNNk) · (1− ProbNNp) (8.1)

Fig. 8.2 shows the distribution of this variable as a comparsion between the MC
(signal) sample and the data inner sideband (background) sample. This combination
of the ProbNN variables was tested in a previous study on B0 → µ+µ− conducted
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Figure 8.1: Comparison of the kaon ProbNNk distribution between the MC sample
(signal) and the data inner sideband sample (background). Based on the
plot, the cut point of the variable ProbNNk is chosen to be 0.4.
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Figure 8.2: Normalised distribution of a combined muon PID variable for the MC
sample (signal) and the data inner sideband sample (background). The
kaon PID selection has been applied.
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at LHCb, and was found to have good rejection performance for wrongly identified
muons [66].
The selection will be applied as the requirement MuPIDvar > y with the cut value

y remaining to be optimized.

8.2 PID Calibration method

It is difficult to simulate the particle identification response of the detectors accu-
rately. Conditions such as the temperature, gas pressure and alignments etc. can
have an influence on the PID response [67]. MC simulation is not able to accu-
rately describe all the interactions at low energy which happen in RICH and in the
calorimeters. In order to optimize the muon PID selection and to evaluate the PID
selection efficiency more precisely, a data-driven method PIDCalib is used [68]. The
basic idea of the PIDCalib tool package is to use a calibration data sample to evalu-
ate an efficiency. It is assumed that the PID efficiency can be parameterized by a set
of known variables e.g. momentum, transverse momentum of the particle of interest
and the event track multiplicity. According to the value of these variables, samples
can be divided into different subsets (binning). Then the efficiency of a certain PID
requirement for a particle in a certain subset can be corrected by the corresponding
efficiency of the calibration sample [67].
Calibration samples are usually based on decay modes which are clean and have

large branching fractions compared with the channel under study. Final states with
only charged particles are preferred. Their selection strategy is carefully designed to
try to avoid introducing a bias in PID variables. For the particles of our interest, the
muon calibration samples are based on the decay modes J/ψ → µ+µ− and B+ →
J/ψ(µ+µ−)K+, and the kaon calibration samples are based on D+

s → φ(K+K−)π+

and D∗+ → D0(K−π+)π+ decays [68].

8.3 MV and PID selection working point

To fully exploit the selections of the multivariate analysis and the muon PID variable,
the optimization of the cut values (CatBoost > x and MuPIDvar > y) is performed
in a two dimensional manner. The goal is to maximize the Punzi Figure of Merit
(FoM) [69]:

Punzi FoM =
εsig

a/2 +
√
B

(8.2)

where εsig stands for the efficiency of the selection (CatBoost > x and MuPIDvar > y
with given value x, y) and B stands for the expected background yield in the signal
region after the cuts. The parameter a stands for the number of sigmas at the
desired significance. A detailed discussion can be found in [69]. The significance is
chosen at 3σ(a = 3).
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As described in section 8.2, for each selection value (x, y), the efficiency εsig is
evaluated with the PIDCalib tool. For a certain selection MuPIDvar > y, PIDCalib
will generate an efficiency table which is parameterized as a three dimensional his-
togram in the muon momentum, the muon transverse momentum and the event track
multiplicity. Each event in the MC sample is assigned an efficiency MuPIDEff(y)
according to this table.
In the efficiency calculation, the τ production source weights wsource (section 5.2)

and the kinematic correction weights wcor (section 6.3) are used. For a given pair
(x, y) with CatBoost > x and MuPIDvar > y, the selection efficiency is calculated
with the weighted MC sample:

εsig =

∑
CatBoost(i)>xwi ·MuPIDEffi(y)∑

all wi
(8.3)

where the weights wi are the product of the source weights and the kinematic correc-
tion weights. The variable MuPIDEffi(y) is the PID selection efficiency derived from
the PIDCalib table. In the numerator, the sum includes those candidates accepted
by the CatBoost cut, while in the denominator the sum includes all candidates.
The expected background yield B is extrapolated from the invariant mass fit

of the outer sideband data sample. Within the mass window 1720MeV/c2 < M <
1746.86MeV/c2 (left outer sideband) and 1806.86MeV/c2 < M < 1820MeV/c2 (right
outer sideband), a 3rd-order Chebychev polynomial fit is performed for each x and
y value. The expected yield B is extrapolated from the number of events in the fit
region and the distribution model. The extrapolation can be written as:

B = Nfit ×

∫
|M−MPDG(τ)|<20MeV/c2 f(x)dx∫

fit
f(x)dx

(8.4)

where f(x) stands for the probablility density function of the mass distribution and
the variable Nfit stands for the number of events in the fit region.
A scan of the x and y value in a two dimensional grid is performed and the above

procedure to calculate the Punzi FoM is repeated for each point. The result is
shown in Fig. 8.3. The relation between the Punzi FoM and the selections is further
displayed in appendix A.3, which shows the slices of Fig. 8.3.
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Figure 8.3: Punzi Figure of Merit as a function of CatBoost cut value x and the
MuPIDvar cut value y. The optimized result is CatBoost>0.38 and
MuPIDvar>0.10, which is shown in the plot as a black mark.
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9 Signal and background models

After the event selection, the samples are ready to be used in the final evaluation of
the upper limit of the signal branching fraction, which will be discussed in the subse-
quent parts of the thesis. The corresponding procedure requires models to describe
the signal shape and the background shape in the invariant mass (M(φ(K+K−)µ))
distribution. In this chapter, an evaluation of the signal shape and the background
shape without unblinding the data signal region is performed. The signal shape
model will be extracted based on a fit of the MC signal sample. The background
model will be estimated based on a fit of the data sidebands.

9.1 Signal shape

To derive the signal shape in the M(φ(K+K−)µ) distribution, an unbinned max-
imum likelihood fit is performed with the signal channel Monte Carlo sample. To
correct the kinematic variables and the τ production sources, the product of the
kinematic corrections and the source weights are applied as weights. The fit model
is chosen to be a Double-Sided Crystal Ball function [61]. Fig. 9.1 shows the fit
result and Tab. 9.1 shows the parameters of the fit.

9.2 Background shape

The mass distribution shape of background events is extracted with a binned ex-
tended maximum likelihood fit of the data sidebands. As described in section 5.4,
the D− → K+K−π− peak is included by adding the sample which was removed
earlier by the requirement M(mother;µ→ π)< 1850MeV/c2.
The sidebands are modelled with two distribution functions. The contribution

from the decay D− → K+K−π− with a pion misidentified as a muon is mod-

Table 9.1: Shape parameters of the signal MC fit.
Parameters Fit result
M(τ) 1777.44± 0.02

width σ 4.88± 0.02
α1 1.83± 0.02
α2 1.58± 0.02
n1 2.89± 0.10
n2 11.64± 0.99

46



1740 1760 1780 1800 1820

)2) (MeV/c­µ)
­

K+(KφM(

0

2000

4000

6000

8000

10000

12000

 )
2

E
ve

n
ts

 /
 (

 1
 M

eV
/c  MC peak­µ)

­
K+(Kφ→­τ

DSCB parameters fit result

 0.02±M = 1777.44 

 0.02±width = 4.88 
 0.02± = 1.83 

1
α

 0.02± = 1.58 
2

α

 0.10± = 2.89 
1

n

 0.99± = 11.64 
2

n

1750 1800

4−

2−

0

2

4

Figure 9.1: Fit of the signal MC sample.

elled as a single Crystal Ball function [61]. The combinatorial background, the
D+
s → φ(K+K−)µ+νµ crossfeed background and other small contributions (e.g.

D → KKππ0, Ds → KKππ0 as discussed in section 4.3) are modelled as a 3rd-
order Chebychev polynomial. The fit of the data sidebands is shown in Fig. 9.2.

The shape parameters of the fit are shown in Tab. 9.2.
The expected yields of backgrounds in the full mass window (as shown in Fig. 9.2)

are extracted from the fit: N(Cheby.) = (6.099±0.008)×106 and N(D → KKπ) =
(4.30± 0.06)× 105.
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Figure 9.2: Fit of the data sidebands in the signal channel.

Table 9.2: Shape parameters of the data sidebands fit in the signal channel.
Parameters Fit result
3rd-order Chebychev polynomial

c0 −0.4795± 0.0011
c1 −0.1246± 0.0011
c2 0.0022± 0.0013

D−→ K+K−π− Crystal Ball peak
mean 1863.06± 0.02

width σ 5.96± 0.03
α 0.748± 0.009
n 3.8± 0.4
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10 Efficiency and normalisation

To translate a signal yield or a limit on the signal yield into the information con-
cerning the branching fraction, one needs to normalise the signal channel to the
reference channel which has a known branching fraction. The normalisation method
gives a normalisation factor which will be used as an input for the evaluation of the
branching fraction upper limit.
Following the derivation of Eq. 4.9 while considering that the signal channel con-

tains τ leptons from 5 different sources and the reference channel containsDs mesons
from 2 different sources, the final normalisation equation can be written as:

B(τ−→ φ(K+K−)µ−) = B(τ → φµ)B(φ→ K+K−)

=
B(D−s → φ(µ+µ−)π−)

Nnorm

∑2
j=1 εj,normσ

4π
j (Ds)∑5

i=1 εi,sigσ
4π
i (τ)

Nsig

(10.1)

And hence:

B(τ → φµ) =
B(D−s → φ(µ+µ−)π−)

NnormB(φ→ K+K−)

∑2
j=1 εj,normσ

4π
j (Ds)∑5

i=1 εi,sigσ
4π
i (τ)

Nsig

= αNsig

(10.2)

where α stands for the normalisation factor, the sum over i stands for the different
τ lepton sources and the sum over j stands for the Ds meson sources.
For the evaluation of α, the efficiencies are important inputs. The following part

of this chapter will describe the details of the efficiency evaluation for each selection
step. Due to the different trigger configurations for different data-taking years,
the efficiencies can vary for different years. Thus the efficiencies and the reference
channel yield Nnorm will be evaluated for the years 2016, 2017 and 2018 separately.
Based on the efficiencies and the reference channel yields, the normalisation factors
for the three years can be evaluated. The normalisation factors of the three years
are then combined into one single normalisation factor. The uncertainty of the
normalisation factor will be evaluated with a toy MC which takes the errors of the
cross sections of the different sources into consideration.

10.1 Overview of efficiency evaluation

The efficiencies are evaluated based on the simulation with corrections using data-
driven methods. The total efficiency is factorized into different steps, with each step
taking the previous step as the prerequisite. The total efficiency can be written as:

εtot = εacc · εtrig|acc · εrec|trig · εsel|rec (10.3)
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where the total efficiency is calculated as the product of the acceptance of the de-
tector (εacc), the trigger efficiency (εtrig|acc), the reconstruction efficiency (εrec|trig)
and the selection efficiency (εsel|rec). The notation εx|y is used for the efficiency of x
under the prerequisite y. The particle tracks for a potential candidate are required
firstly to be in the LHCb detector acceptance and then pass the trigger require-
ments. Then the candidate should be reconstructed and pass certain selections. In
the analysis, the decisions of the trigger lines are recorded in the simulation. The
sequence of efficiencies can be rearranged:

εtrig|acc · εrec|trig · εsel|rec =
Nsel&rec&trig&acc

Nacc

=
Nrec&acc

Nacc

Nsel&rec&acc

Nrec&acc

Nsel&rec&trig&acc

Nsel&rec&acc

= εrec|acc · εsel|rec · εtrig|sel
(10.4)

where the notation Nx stands for the number of events after the requirement x.
In this way, the trigger efficiency is evaluated using a sample after passing the
selections [59]. For the signal channel of this analysis, efficiencies for the stripping
selection and the preselection are evaluated before the trigger selection while the
multivariate and kaon/muon PID selections are placed after it.

10.2 Acceptance

As described in section 4.1, the LHCb detector does not cover the full 4π solid angle.
Only those particles which enter the acceptance range can interact with the detector.
In section 5.2, the acceptance factors for the different τ/Ds production sources

have been calculated with generator level simulations. The value of εCut from sec-
tion 5.2 is quoted as the acceptance:

εacc = εCut = εGen&Cut/εGen (10.5)

The acceptance factors for the signal channel and the reference channel with
different sources are listed in Tab. 10.1. These values are used for all the three
data-taking years. The different values for the different τ/Ds production sources
are related to the different topology and kinematics of the production decays.

10.3 Reconstruction, stripping and preselection

After the particles of the signal candidates enter the LHCb detector, they interact
with the detector. The detector output is used for reconstruction. However, not all
signal candidates can be correctly reconstructed. Thus a reconstruction efficiency
needs to be taken into account. As described in section 3.3, the reconstructed data
recorded by the LHCb detector are selected with stripping lines. In this analysis,
after the stripping selection, the samples are further selected by the preselection
described in section 5.4.
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Table 10.1: Acceptance of the LHCb detector for the signal channel and the reference
channel.

Source Acceptance [%]
Signal Channel

bb̄→ τ 14.63± 0.10
Ds → τ 15.78± 0.05

bb̄→ Ds → τ 14.67± 0.06
D → τ 15.87± 0.05

bb̄→ D → τ 14.60± 0.10
Reference Channel
bb̄→ Ds 11.15± 0.46

prompt Ds 12.17± 0.36

Table 10.2: Combined efficiencies for reconstrution and stripping selection
(εrec&strip).

Source εrec&strip(2016)[%] εrec&strip(2017)[%] εrec&strip(2018)[%]
Signal Channel

bb̄→ τ 6.841± 0.022 6.878± 0.023 6.830± 0.024
Ds → τ 5.963± 0.010 5.958± 0.010 5.946± 0.010

bb̄→ Ds → τ 9.898± 0.033 9.928± 0.034 9.892± 0.032
D → τ 10.210± 0.052 10.297± 0.049 10.278± 0.044

bb̄→ D → τ 12.336± 0.120 12.116± 0.118 12.061± 0.102
Reference Channel
bb̄→ Ds 19.260± 0.076 19.419± 0.074 19.514± 0.077

prompt Ds 6.595± 0.016 6.653± 0.016 6.634± 0.018

Based on the MC samples, the reconstruction and stripping efficiency (εrec.&strip.)
is evaluated as the ratio between the number of events after the stripping selection
and the number of accepted events. Tab. 10.2 shows the reconstruction and stripping
efficiency for the different years. The preselection efficiency (εpresel.) is evaluated as
the ratio between the number of events in the MC samples before and after the
preselection. The result is shown in Tab. 10.3.
The reconstruction and stripping selection efficiencies for different τ/Ds produc-

tion sources are very different. The reason is that the selections include the criteria
concerning the decay topology and kinematics, which are very different for the dif-
ferent τ/Ds production decays.
The reconstruction, stripping and preselection efficiencies for the different years

agree within their statistical uncertainties.
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Table 10.3: Preselection efficiencies (εpresel).
Source εpresel(2016)[%] εpresel(2017)[%] εpresel(2018)[%]

Signal Channel
bb̄→ τ 94.979± 0.076 94.860± 0.078 94.834± 0.081
Ds → τ 95.034± 0.039 95.208± 0.038 95.121± 0.038

bb̄→ Ds → τ 95.029± 0.078 95.029± 0.080 95.071± 0.076
D → τ 95.116± 0.116 95.031± 0.110 95.231± 0.097

bb̄→ D → τ 94.424± 0.241 95.026± 0.230 94.888± 0.203
Reference Channel
bb̄→ Ds 85.062± 0.175 85.452± 0.168 85.149± 0.176

prompt Ds 86.316± 0.091 86.437± 0.086 86.410± 0.097

Table 10.4: Trigger efficiencies (εtrig) for different data-taking years.
Source εtrig(2016)[%] εtrig(2017)[%] εtrig(2018)[%]

Signal Channel
bb̄→ τ 12.24± 0.12 13.70± 0.13 11.99± 0.12
Ds → τ 13.95± 0.06 15.58± 0.07 13.75± 0.06

bb̄→ Ds → τ 14.07± 0.13 15.90± 0.14 13.94± 0.12
D → τ 14.06± 0.19 15.85± 0.19 13.68± 0.16

bb̄→ D → τ 14.68± 0.38 15.51± 0.39 14.14± 0.33
Reference Channel
bb̄→ Ds 16.54± 0.20 37.46± 0.25 32.01± 0.25

prompt Ds 12.27± 0.09 30.61± 0.12 26.71± 0.13

10.4 Trigger Efficiency

As an estimation, the trigger efficiencies are evaluated using the MC samples.
Tab. 10.4 shows the trigger efficiencies for the different sources of the signal channel
and the reference channel in the different years. The trigger efficiency varies largely
for different data-taking years. This is related to the different trigger configurations
during these years. For example, a lower threshold setting of the trigger lines will
result in an increase in the efficiency.

10.5 Kaon PID selection

The MC simulation usually does not describe the PID variables precisely. Therefore,
the data-driven PIDCalib tool is used to evaluate the kaon PID selection efficiency.
The kaon PID selection efficiency is parameterized as a 3 dimensional table, which

is a function of the variables p(K), pT (K) and nTracks. The efficiency for a sin-
gle kaon is derived from the PIDCalib table according to its p, pT and the track
multiplicity. Assuming that the PID selections of the two kaons are independent,
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the efficiency for the whole event is calculated as the product of the PID selection
efficiencies for the two kaons from the φ decay.
The final efficiency is calculated as a weighted average:

εKPID =

∑
iwcor(i) ·KPIDEffi(K

+) ·KPIDEffi(K
−)∑

iwcor(i)
(10.6)

where i loops over all the MC events, KPIDEffi are the efficiency values derived
from the kaon PIDCalib table and the weights wcor(i) are the kinematic corrections
calculated from the reference channel (section 6.3).
In principle, the kinematic correction itself has an uncertainty. As described in

section 6, the kinematic correction is derived with the sP lot method. The eval-
uation of its uncertainty will have to involve the sP lot method and will be very
complicated. For the purpose of studying the feasibility, not all uncertainties are
taken into account in this analysis. The uncertainty of the kinematic correction is
not considered and only the uncertainty of the PIDCalib table is included. The un-
certainty in the PIDCalib table can be related to the limited size of the calibration
sample [67]. The uncertainty contributed by the PIDCalib table is estimated with
a toy MC simulation. The toy MC simulation is done as follows:

• Step 1: smearing the PIDCalib table. For each bin in the 3 dimensional
PIDCalib table, the original efficiency is substituted by a random number
generated from a gaussian distribution, which takes the original efficiency of
the given bin as the mean value and the error of the given bin as the sigma
value.

• Step 2: calculating a toy MC efficiency. The kaon selection efficiency is recal-
culated using Eq. 10.6 with the smeared PIDCalib table.

The above procedure is repeated for the production of the toy MC sample. For each
of the 5 τ lepton sources, a toy MC sample is generated. The mean value of the toy
MC efficiency sample is used as the efficiency for the corresponding τ lepton source.
The standard deviation of the sample is used as the uncertainty of the efficiency.
The result of the kaon PID efficiency evaluation is shown in Tab. 10.5. Since

these efficiencies are only related to the particle identification ability of the kaon
candidates, the results are very similar between the different τ production sources
and the different data-taking years. The slight difference can be caused by the
uncertainties, which include the errors shown in Tab. 10.5 (originating from the
PIDCalib table) and the uncertainties from the other possible sources (e.g. the
kinematic corrections and the binning scheme of the PIDCalib table).
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Table 10.5: Kaon PID selection efficiency (εKPID) of the signal channel
Source εKPID(2016)[%] εKPID(2017)[%] εKPID(2018)[%]
bb̄→ τ 90.943± 0.009 90.886± 0.010 91.080± 0.011
Ds → τ 90.786± 0.007 90.841± 0.008 90.804± 0.008

bb̄→ Ds → τ 90.734± 0.008 90.954± 0.010 90.731± 0.012
D → τ 90.261± 0.011 90.594± 0.011 90.508± 0.014

bb̄→ D → τ 90.874± 0.015 90.944± 0.022 90.237± 0.019

10.6 Multivariate and muon PID selection

In the selection described in section 8.3, the multivariate (MV) classifier output and
the muon PID variables selections are optimized in a two dimensional manner:

• MV selection: CatBoost > x

• Muon PID selection: MuPIDvar > y

The efficiency of the selections is separated into two parts i.e. the MV selection and
the muon PID selection with the MV cut as its prerequisite. The efficiency of the MV
selection is simply the events which have passed the MV selection (CatBoost> x)
divided by the total events with the kinematic corrections as weights:

εMV =

∑
CatBoost>xwcor(i)∑

totwcor(i)
(10.7)

where the index i labels the events in the MC sample. The index "tot" means all the
events which passed the previous level selection. The uncertainty of this weighted
efficiency is calculated as:

∆εMV =

√∑
tot(wcor(i))

2∑
totwcor(i)

·
√
εMV (1− εMV ) (10.8)

This uncertainty is due to the limited size of the MC sample. Again, the uncertainties
asscociated with the the kinematic corrections are neglected due to the complexity
of the sP lot method.
The calculation of the muon PID selection efficiency is based on the samples that

passed the MV selection. The PIDCalib tool is applied to correct the MC simulation.
The calculation can be formulated as:

εµPID|MV =

∑
CatBoost>xwcor(i) ·MuPIDEffi(y)∑

CatBoost>xwcor(i)
(10.9)

where MuPIDEffi are the values from the muon PIDCalib table. Same as in the
previous procedures, the uncertainty contributed by the kinematic corrections is
not considered and the PIDCalib table is considered as the only error source. As
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Table 10.6: MV selection efficiency (εMV ) of the signal channel
Source εMV (2016)[%] εMV (2017)[%] εMV (2018)[%]
bb̄→ τ 75.868± 0.545 75.510± 0.514 75.684± 0.556
Ds → τ 92.853± 0.152 92.957± 0.143 92.734± 0.150

bb̄→ Ds → τ 84.681± 0.446 84.771± 0.415 85.039± 0.426
D → τ 97.747± 0.264 97.517± 0.247 97.274± 0.249

bb̄→ D → τ 91.166± 0.963 87.127± 1.091 87.871± 0.990

Table 10.7: Muon PID selection efficiency (εµPID|MV ) of the signal channel, with the
prerequisite of the MV selection.

Source εµPID|MV (2016)[%] εµPID|MV (2017)[%] εµPID|MV (2018)[%]
bb̄→ τ 97.403± 0.025 97.261± 0.049 97.600± 0.015
Ds → τ 97.454± 0.014 97.341± 0.014 97.630± 0.011

bb̄→ Ds → τ 97.340± 0.026 97.293± 0.023 97.537± 0.016
D → τ 97.278± 0.030 97.208± 0.029 97.568± 0.020

bb̄→ D → τ 97.312± 0.075 97.040± 0.059 97.410± 0.031

the PIDCalib table is derived with the kinematic binning, the uncertainty of the
efficiency εµPID|MV is also calculated with binning:

∆εµPID|MV =

√∑
bin

(rbin ·∆MuPIDEffbin(y))2 (10.10)

where the uncertainty term ∆MuPIDEffbin(y) is the error of the corresponding bin
in the muon PIDCalib table. The parameter rbin stands for the ratio of the MC
sample in a certain bin, weighted with the kinematic corrections:

rbin =

∑
i∈binwcor(i)∑
all wcor(i)

(10.11)

As a summary, Tab. 10.6 and Tab. 10.7 show the efficiencies of these two steps.
The efficiencies for the different data-taking years are very similar. Since the multi-
variate analysis includes the information of the decay topology and kinematics, the
MV efficiencies vary for the different τ lepton production sources.
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Table 10.8: Total efficiency (εtot) for different sources in the signal channel and the
reference channel.

Source εtot(2016)[%] εtot(2017)[%] εtot(2018)[%]
Signal Channel

bb̄→ τ 0.078± 0.001 0.087± 0.001 0.076± 0.001
Ds → τ 0.102± 0.001 0.115± 0.001 0.101± 0.001

bb̄→ Ds → τ 0.145± 0.002 0.165± 0.002 0.145± 0.002
D → τ 0.186± 0.003 0.211± 0.003 0.182± 0.002

bb̄→ D → τ 0.201± 0.006 0.201± 0.006 0.182± 0.005
Reference Channel
bb̄→ Ds 0.302± 0.013 0.693± 0.029 0.593± 0.025

prompt Ds 0.085± 0.003 0.214± 0.006 0.186± 0.006

10.7 Normalisation factor

The normalisation factor introduced in Eq. 10.2 can be written as:

α =
B(D−s → φ(µ+µ−)π−)

NnormB(φ→ K+K−)

∑2
j=1 εj,normσ

4π
j (Ds)∑5

i=1 εi,sigσ
4π
i (τ)

(10.12)

The calculation of this normalisation factor requires the following input: the num-
ber of events for the reference channel Nnorm, the branching fractions B(D−s →
φ(µ+µ−)π−), B(φ → K+K−), the efficiencies and the cross sections of the τ/Ds

production sources (τ production for the signal channel and Ds production for the
reference channel).
The branching fraction B(D−s → φ(µ+µ−)π−)) can be obtained from the branch-

ing fraction B(D−s → φ(K+K−)π−) using the φ decay branching fraction. The
branching fractions of the relevant decays, taken from PDG [53], are B(D−s →
φ(K+K−)π−) = (2.24 ± 0.08)%, B(φ → K+K−) = (49.2 ± 0.5)% and B(φ →
µ+µ−) = (2.86± 0.19)× 10−4.

The branching fraction ratio in Eq. 10.12 can be calculated as:

B(D−s → φ(µ+µ−)π−)

B(φ→ K+K−)
=
B(D−s → φ(K+K−)π−)

(B(φ→ K+K−))2
· B(φ→ µ+µ−)

= (2.647± 0.207)× 10−5

(10.13)

The total efficiencies, calculated as the product of the efficiencies of each step
described in the previous sections, are shown in Tab. 10.8.
Following a similar procedure as in section 6.2, the yields of the reference channel

for the three years are extracted using a maximum likelihood fit. During the fit, the
tail parameters of the signal peak are taken from the MC fit in section 6.2. The
corresponding fit result is shown in Fig. 10.1. The expected event yields are listed
in Tab. 10.9.
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Figure 10.1: Reference channel fit for the three years.

Table 10.9: Reference channel yields (Nnorm) for the different years.
Year 2016 2017 2018
Nnorm 36320± 292 82178± 405 98177± 439
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The production cross sections for the different Ds and τ sources have already
been calculated in section 4.1 and section 4.2. As shown in Eq. 4.6 and Tab. 4.1,
these cross sections of interest can be expressed by a set of variables (Tab. 4.1),
which in this analysis are considered uncorrelated to simplify the estimation of the
uncertainty.
With the efficiencies and the reference channel yields for the three years, we can

calculate the normalisation factors for the three years with Eq. 10.12. The three
normalisation factors are then combined into one single combined normalisation
factor. For each year (denoted with the index y), the normalisation factor (αy)
associates the signal yield (Ny

sig) to the branching fraction of interest:

αyN
y
sig = B(τ → φµ)⇒ Ny

sig =
B(τ → φµ)

αy
(10.14)

The combined sample for all years gives a total signal yield, which can be related to
the signal branching fraction with the combined normalisation factor (αcomb).
By summing up Ny

sig with Eq. 10.14, we derive:

∑
y

Ny
sig =

(∑
y

1

αy

)
· B(τ → φµ) =

B(τ → φµ)

αcomb
(10.15)

with:

αcomb =

(∑
y

1

αy

)−1

(10.16)

The uncertainty of the normalisation factor can be evaluated with the toy MC
method. By smearing the input parameters in Tab. 4.1, Tab. 10.8, Tab. 10.9 and
the branching fraction ratio in Eq. 10.13 with gaussian distributions 1, a toy MC
of 106 entries is produced. Each toy MC entry uses the smeared input parame-
ters to calculate the three normalisation factors corresponding to the three years:
(α2016, α2017, α2018). The three normalisation factors are then used to calculate a
αcomb using Eq. 10.16. These toy MC values of αcomb constitute the toy MC sam-
ple of the combined normalisation factor. The distribution of these αcomb entries
is displayed in Fig. 10.2. The mean value of the toy MC sample of the normalisa-
tion factor can be considered as the final value of the normalisation factor and the
standard deviation of the sample is considered as its uncertainty. The combined
normalisation factor takes the value:

αcomb = (3.37± 0.32)× 10−9 (10.17)

1This means that every input parameter is substituted by a random number generated with a
gaussian distribution, which uses the nominal value of the given parameter as the mean value
and the uncertainty of the given parameter as the sigma value.
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11 Upper limit

This analysis aims to search for a very rare signal decay τ−→ φ(K+K−)µ− , and
the search result should be expressed as an upper limit of the branching fraction
B(τ → φµ). The search for a potential signal is eventually a test of a hypothesis
on the branching fraction B(τ → φµ). In the situation of no signal observed, an
upper limit of the parameter of interest B(τ → φµ) can be set. This can be done
by comparing the test hypothesis with the background only hypothesis.
In order to perform such a comparison, the so-called CLs technique [70] is used.

The CLs technique is usually used to distinguish the test hypothesis (in our case,
the background plus a signal corresponding to a certain B(τ → φµ)) against the al-
ternative hypothesis (in our case, the background only hypothesis). In this analysis,
the toolkit RooStats [71] is used to implement this technique.
In the following chapter, the method used for the upper limit setting will be intro-

duced and the upper limit on the branching fraction B(τ → φµ) will be estimated
as the result of this search.

11.1 Evaluation method

The CLs method for the upper limit determination is introduced in this section
based on the reference [70] and [72].

11.1.1 Test statistics

To distinguish the test hypothesis from the alternative hypothesis, certain criteria
need to be set. A test statistic is constructed as a variable to set up the criteria. The
distribution of the test statistic will be used to separate different hypotheses. We
use the symbol qµ as the notation for the test statistic, with the index µ denoting
the test value of the parameter of interest. There are several test statistics available
for different purposes. In this analysis, the one side profile likelihood ratio (qµ) test
is used, which is defined as follows:

qµ =

{
− 2ln(L(µ, ˆ̂ν)/L(µ̂, ν̂)) if µ̂ ≤ µ

0 if µ̂ > µ
(11.1)

In this equation, µ and µ̂ stand for the parameter of interest i.e. the branching
fraction B(τ → φµ). The notations ˆ̂ν and ν̂ stand for the nuisance parameters (e.g.
the normalisation factor α in our case, the detailed description and treatment of
the nuisance parameters can be found in section 11.1.2). The numerator and the
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denominator L(µ, ˆ̂ν), L(µ̂, ν̂) stand for two likelihoods obtained from the maximum
likelihood fits under two different assumptions. The parameter µ is fixed to the test
value of the parameter of interest, and ˆ̂ν stands for the fitted value of the nuisance
parameter under the condition that µ is fixed. The parameters µ̂ and ν̂ stand for
the fit result without additional constraints (the best fit values).

The test statistic qµ can be considered as a measurement of the compatibility
between the data sample (information contained in µ̂) and the test hypothesis (in-
formation contained in µ). A high value of qµ indicates the incompatibility between
the data sample and the test hypothesis. Since we are testing against the back-
ground only hypothesis (no signal is expected in the Standard Model), only the
upper limit of the branching fraction is of interest (we are not interested in a po-
tential lower limit which can be caused by fluctuation). In this case, the situation
µ̂ > µ is not considered as a sign of incompatibility between the data sample and
the test hypothesis. Thus, for µ̂ > µ, the test statistic is set to zero.

For a certain data sample with an observable ~x (in this case, the invariant mass),
the likelihoods in the above equation are calculated as follows:

L(µ, ν) = fm(~x|µ, νi)×
∏
i

G(νi,obs|νi, νi,err) (11.2)

where the different nuisance parameters are denoted by νi and the function fm stands
for the distribution function of ~x. The distribution of ~x depends on the parameters
µ, νi. Function G(ξ|νi, νi,err) stands for a gaussian distribution function for the
variable ξ with the mean value νi and the standard deviation νi,err. During the
maximum likelihood fit, the parameters νi are allowed to float, while the parameters
νi,obs and νi,err are fixed to constant. In this way, the nuisance parameters are
considered as global observables and constrained with the gaussian distributions.
A global observable is a variable which has been measured before the CLs method
is applied. It has an observed value νi,obs and an uncertainty νi,err, which can be
determined by an initial fit prior to the procedure of the CLs method.
In this analysis, due to the large statistics of the data sample, a binned likelihood

for the invariant mass spectrum is used.
With the form of the likelihood given, the distribution of the test statistic qµ is

then explored under the two hypotheses: the signal-plus-background model (S+B
model) and the background only model (B only model). The two hypotheses lead
to two different distributions of ~x. For a fixed test value µ, the test statistic qµ is
a function of the observable ~x. With the given distribution of ~x, the distribution
of qµ can be derived. When ~x is set to the observed value ~xobs corresponding to
the observed data, the observed value of test statistic (qµ,obs) is calculated. The
distribution of qµ can be evaluated with a toy MC simulation. In addition, there
is an asymptotic theory for the distribution of qµ, which requires less computation
resources and time [72].
Based on the distributions of qµ under the two hypotheses, the p-value of the two
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Figure 11.1: An example for the test statistic distribution (normalised). The black
line stands for the observed value derived from the data. The red
shaded part represents the p-value of S+B model and the blue shaded
part represents the p-value of B only model.

models are calculated as follows:
pS+B =

∫ +∞

qµ,obs

f(qµ|S +B)dqµ

pB =

∫ +∞

qµ,obs

f(qµ|B)dqµ

(11.3)

where f(qµ|H) stands for probability density function of the test statistic qµ under
the hypothesis H. Fig. 11.1 shows an example of the distribution of the test statistic
qµ in case of the background only hypothesis and signal-plus-background hypothesis.

The observed CLs value is then defined:

CLs =
pS+B

pB
(11.4)

For each test branching fraction value, a CLs value is evaluated. A larger test
branching fraction tends to result in a larger discrepancy between the B-only model
and the S+B model, and hence a smaller CLs value. When a scan of the test
branching fraction is performed, the CLs values constitutes a CLs curve. The
CLs curve is considered as a criterion for the upper limit evaluation, e.g. the 90%
confidence level upper limit is set with requirement 1−CLs = 90%. Fig. 11.2 shows
basic idea of setting upper limit of a certain confidence level with the CLs curve.
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Figure 11.2: A sketch of CLs curve. The red confidence level line intercepts with
the CLs curve. The intercept point is taken to set the limit on the
parameter of interest corresponding to the confidence level c.

11.1.2 Nuisance parameters

In addition to the parameter of interest (B(τ → φµ)), the distribution function for
the observable ~x also depends on other parameters i.e. the nuisance parameters.
In this analysis, the parameters used in the description of the invariant mass dis-

tribution include the branching fraction of the signal decay, the normalisation factor
α, the signal shape parameters, the background shape parameters and the expected
background yields. The branching fraction of the signal decay is the parameter of
interest. The other parameters can be treated in two ways. Before performing the
CLs evaluation, an initial fit is performed. The parameters other than the parame-
ter of interest can be fixed to the result of this fit or they can be constrained with
gaussian distributions as described in Eq. 11.2. In the case of a gaussian constraint,
the value derived from the initial fit can be used as the observed value of the nui-
sance parameters (νi,obs) and the corresponding uncertainty derived from the fit can
be used as the uncertainty of the nuisance parameters (νi,err).
During the evaluation of the test statistic distribution using the toy MC method,

when a toy MC sample is generated, a set of pseudo-observed value of nuisance
parameters can be generated. In this way, the uncertainty of nuisance parameters
is considered in the final result.

11.1.3 Expected limit

Under the background only hypothesis, an expected limit can be evaluated without
involving the observed data. Given the information of the signal and background
models, the distribution of the test statistic qµ can be derived. As in Eq. 11.3,
the median value of the test statistic (qµ,med) under the background only model can
substitute the observed value qµ,obs as the integral boundary. This substitution gives
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the expected CLs curve and the corresponding expected upper limit. Similarly, the
CLs curve can also be evaluated for the median value minus or plus some deviations
(e.g. ±σ,±2σ with σ being the standard deviation of the test statistic distribution
under the background only hypothesis). When comparing with the observed CLs
curve (derived using qµ,obs as the integral boundary), the deviation can help to
evaluate to what extent the observed data is compatible with the background only
hypothesis.

11.2 Extrapolated result from sidebands fit

Before unblinding the signal region, it is possible to evaluate an expected upper limit
under the background only hypothesis. The background model can be extracted
from the sidebands and extrapolate to the signal region. Based on the sidebands
fit in section 9.2, the expected number of events per background source (i.e. the
Chebychev-shaped background and the D−→ K+K−π− crossfeed) and the shape
parameters for these background models are derived. Together with the signal model
derived in section 9.1, they are used as the input for the CLs method. All the
background shape parameters and the tail parameters of the signal peak are fixed to
the fit result shown in section 9.1 and section 9.2. The mean parameter of the signal
peak, the width parameter of the signal peak, the expected yields of the background
sources and the normalisation factor are constrained with gaussian distributions.
Based on the qµ distribution under the background only model, the CLs curves

corresponding to median value, median plus/minus 1σ and median plus/minus 2σ
are calculated. Fig. 11.3 shows the evaluation result of these expected CLs curves.
With the extrapolated background model from the sidebands fit, the median value

of the expected upper limit at 90% confidence level takes the value:

B(τ → φµ) < 4.2× 10−6 (11.5)
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Figure 11.3: The expected CLs curve and its corresponding upper limit, calculated
with toy MC method. The background models are extrapolated from
the data sidebands. The red line marks the 90% confidence level.

11.3 Unblinded result

Evaluated in a wide mass window, the aforementioned background model does not
perfectly describe the mass distribution. Especially, it does not include the infor-
mation in the blinded region. With the signal region unblinded, the background
can be evaluated more accurately using a smaller sidebands region. In the mass
window MPDG(τ)±30MeV/c2, a fit is performed. The background is modelled with
a 3rd-order Chebychev polynominal. The signal shape is fixed to the result of the
signal MC fit described in section 9.1. The fit of the unblinded data sample is shown
in Fig. 11.4 and the parameters of the fit are shown in Tab. 11.1.
With the fit of the unblinded data and the fit of the signal peak (section 9.1),

the models are used as the input for the CLs method. The three background shape
parameters (c0, c1, c2), the mean parameter of the signal peak, the width parameter
of the signal peak, the expected background yield (Nbkg) and the normalisation
factor are treated as floating nuisance parameters with gaussian constraints. The
tail parameters of the signal peak are fixed to the fit result in Tab. 9.1.
Using the unblinded data sample, the CLs curve evaluation is shown in Fig. 11.5.

At 90% confidence level, the expected upper limit under the background only model
takes the value:

B(τ → φµ) < 5.2× 10−6 (11.6)
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Figure 11.4: Fit on the unblinded data sample.

Table 11.1: Parameters of the fit of the unblinded data sample
Parameters Fit result
Background shape (3rd-order Chebychev polynomial)

c0 −0.0965± 0.0016
c1 −0.0084± 0.0018
c2 0.0010± 0.0013

Expected yields
Nsig (1.4± 1.1)× 103

Nbkg (1.6011± 0.0017)× 106
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Figure 11.5: Evaluation of the CLs curve on the unblinded data sample. The dis-
tribution of the test statistics is calculated with the toy MC method.

and the observed upper limit takes the value:

B(τ → φµ) < 9.4× 10−6 (11.7)

Comparing with the extrapolated result from the sidebands fit (section. 11.2),
the expected upper limit has shifted. The reason is that the background model
extrapolated from the sidebands fit does not describe the actual background well.
A systematic uncertainty asscoiated with the fit model should be considered.
Comparing the observed CLs curve with the expected CLs curve, there is an

upwards fluctuation. The observed curve is compatible with the background only
hypothesis within 2σ. This does not include a complete evaluation of the systematic
uncertainty.
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12 Conclusion

In the analysis described in this thesis, the feasibility of a search for the LFV decay
τ− → φ(K+K−)µ− at the LHCb experiment is studied. The data samples used
include the data collected by LHCb during the years 2016-2018, which corresponds
to an integrated luminosity of 5.6 fb−1. No signal has been observed. The search
result is presented as an upper limit of the branching fraction B(τ → φµ). Without
fully evaluating the systematic uncertainty, estimation on the branching fraction
B(τ → φµ) is made. The expected upper limit of B(τ → φµ) under the background
only hypothesis is:

B(τ → φµ) < 5.2× 10−6 (12.1)

at 90% confidence level. The observed data in the signal region gives the observed
upper limit:

B(τ → φµ) < 9.4× 10−6 (12.2)

at 90% confidence level. Considering the fluctuation and the uncertainty, the ob-
served CLs curve is compatible with the background only hypothesis. Comparing
with the world’s best result set by Belle [2], the upper limit of this analysis is about
2 orders worse.
The search result is dominated by the background decay D+

s → φ(K+K−)µ+νµ ,
which has the same final state particles except for the missing neutrino. As neutrinos
are undetectable with LHCb, the ability to distinguish the signal decay from this
background decay is very limited.
If no significant background reduction can be achieved in the future, the LHCb

experiment is not competitive with respect to the B-factories. A better signal to
background separation is restricted by the nature of the background.
In the data sample used in this analysis, only the signal candidate part of the

event is stored in order to save disk space. If in the future other tracks of the event
(underlying event) are available, a better background reduction might be achievable.
Under the background only hypothesis, the upper limit is expected to scale as

α
√
Nbkg, where α is the normalisation factor and Nbkg is the background yield. The

normalisation factor is related to the integrated luminosity (L) of the data sample
and the signal efficiency (εsig):

α ∝ 1/(Lεsig) (12.3)

which leads to the expected luminosity scaling of the upper limit (U.L.):

U.L. ∝
√
Nbkg

Lεsig
∝
√
Lεbkg
Lεsig

=

√
εbkg

εsig
· 1√
L

(12.4)
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If the ability to distinguish the signal against the background (i.e. √εbkg/εsig) stays
the same, the upper limit will improve as (L)−1/2. As described in chapter 3, the
LHCb experiment is going through an upgrade and will operate at a higher lumi-
nosity in the future. In the future Run 3 and Run 4, LHCb experiment is expected
to collect data samples with an integrated luminosity of about 50fb−1 [73, 74]. How-
ever, if no significant improvement in the signal/background separation is achieved,
this increase in luminosity will only be able to improve the upper limit of B(τ → φµ)
by a factor about 3, which is still not a competitive result.
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A Supplements

A.1 Trigger line requirements

Two of the L0 trigger lines are of particular interest for this analysis i.e. the L0Muon
line and the L0DiMuon line. A description of them can be found in section 3.4. The
thresholds of these two lines are shown in Tab. A.1. The thresholds of the L0 trigger
lines can change with different setups during the different time of the data taking.
The thresholds in the table are shown as an example.

Table A.1: The thresholds of the L0Muon and L0DiMuon trigger lines during the
years 2016, 2017 and 2018. The values are the setup used for the majority
of the data [42].

L0 trigger line pT (2016) pT (2017) pT (2018) SPD threshold
L0Muon > 1.8GeV > 1.35GeV > 1.75GeV < 450

L0DiMuon > 2.25GeV2 > 1.69GeV2 > 3.24GeV2 < 900

For the HLT trigger, same as the L0 trigger, the exact configurations also change
during the operation of the experiment. As an example, the configurations of the
lines of interest are listed as follows.
The HLT1 trigger lines:

• HLT1DiMuonLowMass line:

– previous level requirement: L0Muon or L0DiMuon.

– track requirement: pT > 0MeV/c and p > 3GeV/c and χ2/ndf < 4 and
χ2
IP > 4 and track ghost probability < 0.2.

– IsMuon

– two tracks DOCA < 0.2mm. DOCA (Distance Of Closest Approach)
means the closest distance of two tracks.

– two tracks vertex χ2
vtx < 25.

– m(µµ) > 220MeV/c2 or the two muons have opposite charges.

• HLT1TrackMuon line:

– previous level requirement: L0Muon or L0DiMuon.

– track requirement before fit: pT > 1045MeV/c and p > 5.7GeV/c.
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– track requirement after fit: pT > 1.1GeV/c and p > 6GeV/c and χ2/ndf <
3 and χ2

IP > 35 and track ghost probability < 0.2.

– IsMuon

• HLT1TrackMVA line:

– track requirement before fit: pT > 570MeV/c and p > 4.75GeV/c.

– track requirement after fit: pT > 600MeV/c2 and p > 5GeV/c and
χ2/ndf < 2.5 and track ghost probability < 0.2.

– further track requirement:

one of them being true:

∗ pT > 25GeV/c and χ2
IP > 7.4

∗ 1GeV/c < pT < 25GeV/c and

log(χ2
IP) >

(
1

(pT/(GeV/c)− 1)2
+ 1.1× (1− pT

25GeV/c
) + log(7.4)

)
• HLT1TrackMuonMVA line:

– previous level requirement: L0Muon or L0DiMuon

– IsMuon

– track requirement after fit: pT > 600MeV/c and p > 5GeV/c and χ2/ndf <
2.5 and track ghost probability < 0.2.

– further track requirement:

one of them being true:

∗ pT > 25GeV/c and χ2
IP > 7.4

∗ 1GeV/c < pT < 25GeV/c and

log(χ2
IP) >

(
1

(pT/(GeV/c)− 1)2
+ 1.1× (1− pT

25GeV/c
) + log(7.4)

)
The HLT2 trigger lines:

• HLT2PhiIncPhi line:

– φ candidate requirement: pT (φ) > 2GeV/c and |M(φ)−MPDG(φ(1020))| <
20MeV/c2 and χ2

vtx/ndf < 20

– kaon daughters requirement: pT > 1GeV/c and χ2
IP > 9 and PIDK > 0

and track χ2/ndf < 5

• HLT2DiMuonDetached line

– all muon tracks: pT > 300MeV/c and χ2
IP > 25 and track χ2/ndf < 5
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– pT (µµ) > 600MeV/c and χ2
vtx/ndf < 9

– decay length significance > 9

• HLT2TopoMuMu2Body line

– require 2 muon daughter candidates by criteria: ProbNNµ > 0.2 and
IsMuon and ISLONG

– requirement on the output of a BDT classifier [75], which is evaluated
mainly based on the topological structure of the candidates.

– corrected mass (Mcor): 1GeV/c2 < Mcor < 10GeV/c. The corrected mass
is defined by:

Mcor =
√
M2 + |pT,missing|2 + |pT,missing|

where pT,missing stands for the missing transverse momentum with respect
to the particle flight direction [75, 76].
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A.2 Multivariate hyperparameters tuning

With the hyperparameters combination: learning rate αlr=0.1, depth=6, subsam-
ple=0.5, iterations=1000, the training is performed. Fig. A.1 shows its output.
Comparing with the output shown in section 7.4, the ROC curve does not show
too much improvement. However, as shown in the left plot of Fig. A.1, there is a
considerable discrepancy of the CatBoost output distributions between the train-
ing sample and the evaluation sample. The classifier is considered overtrained. The
overtraining can introduce a bias in later analysis e.g. the evaluation of the efficiency
for the selection based on the MV output.
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Figure A.1: The multivariate output with the hyperparameters combination: learn-
ing rate αlr=0.1, depth=6, subsample=0.5, iterations=1000
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A.3 Punzi Figure of Merit slices

Fig. A.2,A.3 andA.4 show the slices of the 2-dimensional Punzi FoM optimization
(Fig. 8.3). Each plot shows a curve of FoM against the muon PID variable cut with
the MV selection fixed.
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Figure A.2: Punzi Figure of Merit slices (1)
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Figure A.3: Punzi Figure of Merit slices (2)
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Figure A.4: Punzi Figure of Merit slices (3)

77



B Bibliography

[1] B. Aubert, Y. Karyotakis, J. P. Lees, V. Poireau, E. Prencipe, X. Prudent,
V. Tisserand, J. Garra Tico, E. Grauges, M. Martinelli, and et al. Improved
limits on lepton-flavor-violating τ decays to lφ, lρ, lk∗ and lK̄∗. Physical Review
Letters, 103(2), Jul 2009.

[2] Y. Miyazaki, H. Aihara, K. Arinstein, V. Aulchenko, A.M. Bakich, and et al.
Search for lepton-flavor-violating τ decays into a lepton and a vector meson.
Physics Letters B, 699(4):251 – 257, 2011.

[3] R. Aaij et al. Search for the lepton flavour violating decay τ− → µ−µ+µ−.
JHEP, 02:121, 2015.

[4] R. Aaij et al. Searches for violation of lepton flavour and baryon number in tau
lepton decays at lhcb. Physics Letters B, 724(1):36 – 45, 2013.

[5] The Wikipedia community. Standard model, from wikipedia, the free encyclo-
pedia, https://en.wikipedia.org/wiki/standard_model.

[6] Y. Fukuda et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev.
Lett., 81:1562–1567, 1998.

[7] Paul Seyfert. The search for τ → µµµ at LHCb. PhD thesis, Heidelberg U., 1
2015.

[8] Roel Aaij et al. Search for the lepton flavour violating decay τ− → µ−µ+µ−.
JHEP, 02:121, 2015.

[9] P.A. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020.

[10] Jogesh C. Pati and Abdus Salam. Lepton number as the fourth "color". Phys.
Rev. D, 10:275–289, Jul 1974.

[11] Howard Georgi and S. L. Glashow. Unity of all elementary-particle forces. Phys.
Rev. Lett., 32:438–441, Feb 1974.

[12] Harald Fritzsch and Peter Minkowski. Unified interactions of leptons and
hadrons. Annals of Physics, 93(1):193 – 266, 1975.

[13] Roel Aaij et al. Search for lepton-universality violation in B+ → K+`+`−

decays. Phys. Rev. Lett., 122(19):191801, 2019.

78



[14] R. Aaij et al. Test of lepton universality with B0 → K∗0`+`− decays. JHEP,
08:055, 2017.

[15] R. Aaij et al. Measurement of the ratio of branching fractions B(B+
c →

J/ψτ+ντ )/B(B+
c → J/ψµ+νµ). Phys. Rev. Lett., 120:121801, 2018.

[16] R. Aaij et al. Measurement of the ratio of branching fractions B(B0 →
D∗+τ−ντ )/B(B0 → D∗+µ−νµ). Phys. Rev. Lett., 115:111803, 2015.

[17] R. Aaij et al. Test of lepton flavor universality by the measurement of the
B0 → D∗−τ+ντ branching fraction using three-prong τ decays. Phys. Rev.,
D97:072013, 2018.

[18] J.P. Lees et al. Measurement of an Excess of B̄ → D(∗)τ−ν̄τ Decays and
Implications for Charged Higgs Bosons. Phys. Rev. D, 88(7):072012, 2013.

[19] Y. Sato et al. Measurement of the branching ratio of B̄0 → D∗+τ−ν̄τ relative
to B̄0 → D∗+`−ν̄` decays with a semileptonic tagging method. Phys. Rev. D,
94(7):072007, 2016.

[20] R. Aaij et al. Angular analysis of the B0 → K∗0µ+µ− decay using 3 fb−1 of
integrated luminosity. JHEP, 02:104, 2016.

[21] Roel Aaij et al. Measurement of CP -Averaged Observables in the B0 →
K∗0µ+µ− Decay. Phys. Rev. Lett., 125(1):011802, 2020.

[22] Wolfgang Altmannshofer, Stefania Gori, Maxim Pospelov, and Itay Yavin.
Quark flavor transitions in Lµ − Lτ models. Phys. Rev. D, 89:095033, 2014.

[23] Andreas Crivellin, Lars Hofer, Joaquim Matias, Ulrich Nierste, Stefan Pokorski,
and Janusz Rosiek. Lepton-flavour violating B decays in generic Z ′ models.
Phys. Rev. D, 92(5):054013, 2015.

[24] E. Arganda, M.J. Herrero, and J. Portoles. Lepton flavour violating semilep-
tonic tau decays in constrained MSSM-seesaw scenarios. JHEP, 06:079, 2008.

[25] Andrea Brignole and Anna Rossi. Anatomy and phenomenology of mu-tau
lepton flavor violation in the MSSM. Nucl. Phys. B, 701:3–53, 2004.

[26] Lyndon Evans and Philip Bryant. LHC machine. Journal of Instrumentation,
3(08):S08001–S08001, aug 2008.

[27] S. Amato et al. LHCb technical proposal. 1998.

[28] A. A. Alves Jr. et al. The LHCb detector at the LHC. JINST, 3:S08005, 2008.

[29] LHCb collaboration. LHCb- large hadron collider beauty experiment. online
at https://lhcb-public.web.cern.ch/.

79



[30] R. Aaij et al. Performance of the LHCb Vertex Locator. JINST, 9:P09007,
2014.

[31] LHCb collaboration. LHCb VELO (VErtex LOcator): Technical Design Report.
Number CERN-LHCC-2001-011 in Technical design report. LHCb. CERN,
Geneva, 2001.

[32] LHCb collaboration. LHCb magnet: Technical Design Report. Number CERN-
LHCC-2000-007 in Technical design report. LHCb. CERN, Geneva, 2000.

[33] C. Abellan Beteta et al. Monitoring radiation damage in the LHCb Tracker
Turicensis. 2018.

[34] LHCb collaboration. LHCb inner tracker: Technical Design Report. Num-
ber CERN-LHCC-2002-029 in Technical design report. LHCb. CERN, Geneva,
2002. revised version number 1 submitted on 2002-11-13 14:14:34.

[35] Ph. d’Argent et al. Improved performance of the LHCb Outer Tracker in LHC
Run 2. JINST, 9:P11016, 2017.

[36] M. Adinolfi et al. Performance of the LHCb RICH detector at the LHC. Eur.
Phys. J., C73:2431, 2013.

[37] R. Aaij et al. The LHCb trigger and its performance in 2011. JINST, 8:P04022,
2013.

[38] F. Archilli et al. Performance of the muon identification at LHCb. JINST,
8:P10020, 2013.

[39] LHCb collaboration. The LHCb starterkit lessons. online at
https://lhcb.github.io/starterkit-lessons/first-analysis-steps/run-2-data-
flow.html.

[40] LHCb collaboration. The Moore project. online at
http://lhcbdoc.web.cern.ch/lhcbdoc/moore/.

[41] LHCb collaboration. The Brunel project. online at
http://lhcbdoc.web.cern.ch/lhcbdoc/brunel/.

[42] Roel Aaij et al. Performance of the LHCb trigger and full real-time reconstruc-
tion in Run 2 of the LHC. (LHCb-DP-2019-001), 2018.

[43] R. Aaij et al. Tesla: an application for real-time data analysis in High Energy
Physics. Comput. Phys. Commun., 208:35–42, 2016.

[44] LHCb collaboration. The DaVinci project. online at
https://lhcbdoc.web.cern.ch/lhcbdoc/davinci/.

[45] Root data analysis framework. online at https://root.cern/.

80



[46] LHCb collaboration. The Gauss project. online at
http://lhcbdoc.web.cern.ch/lhcbdoc/gauss/.

[47] Torbjörn Sjöstrand, Stephen Mrenna, and Peter" Skands. PYTHIA 6.4 physics
and manual. JHEP, 05:026, 2006.

[48] Torbjörn Sjöstrand, Stephen Mrenna, and Peter" Skands. A brief introduction
to PYTHIA 8.1. Comput. Phys. Commun., 178:852–867, 2008.

[49] D. J. Lange. The EvtGen particle decay simulation package. Nucl. Instrum.
Meth., A462:152–155, 2001.

[50] John Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, et al. Geant4
developments and applications. IEEE Trans.Nucl.Sci., 53:270, 2006.

[51] S. Agostinelli et al. Geant4: A simulation toolkit. Nucl. Instrum. Meth.,
A506:250, 2003.

[52] LHCb collaboration. The Boole project. online at
http://lhcbdoc.web.cern.ch/lhcbdoc/boole/.

[53] M. Tanabashi et al. Review of particle physics. Phys. Rev., D98:030001, 2018.
and 2019 update.

[54] R. Aaij et al. Erratum to: Measurements of prompt charm production cross-
sections in pp collisions at

√
s = 13 TeV. JHEP, 05:074, 2017.

[55] R. Aaij and et al. Erratum to: Measurement of forward J/ψ production cross-
sections in pp collisions at

√
s = 13TeV . JHEP, 05, 2017.

[56] G. A. Cowan, D. C. Craik, and M. D. Needham. RapidSim: an application for
the fast simulation of heavy-quark hadron decays. Comput. Phys. Commun.,
214:239–246, 2017.

[57] LHCb collaboration. The stripping project. online at
https://lhcbdoc.web.cern.ch/lhcbdoc/stripping/.

[58] Lucio Anderlini, Sean Benson, Olli Lupton, Barbara Sciascia, and Vladimir
Gligorov. Computing strategy for PID calibration samples for LHCb Run 2.
Technical Report LHCb-PUB-2016-020. CERN-LHCb-PUB-2016-020, CERN,
Geneva, Jul 2016.

[59] S Tolk, J Albrecht, F Dettori, and A Pellegrino. Data driven trigger efficiency
determination at LHCb, 2014.

[60] Muriel Pivk and Francois R. Le Diberder. sPlot: A statistical tool to unfold
data distributions. Nucl. Instrum. Meth., A555:356–369, 2005.

81

http://pdg.lbl.gov/
http://pdglive.lbl.gov/
https://doi.org/10.1007/JHEP05(2017)074
https://doi.org/10.1007/JHEP05(2017)074
https://doi.org/10.1007/JHEP05(2017)063
https://doi.org/10.1007/JHEP05(2017)063


[61] Tomasz Skwarnicki. A study of the radiative CASCADE transitions between
the Upsilon-Prime and Upsilon resonances. PhD thesis, Cracow, INP, 1986.

[62] Fabian Pedregosa et al. Scikit-learn: Machine learning in
Python. J. Machine Learning Res., 12:2825, 2011. and online at
http://scikit-learn.org/stable/.

[63] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika
Dorogush, and Andrey Gulin. Catboost: unbiased boosting with categorical
features, 2017.

[64] Jerome H. Friedmann. Stochastic gradient boosting. 1999.

[65] G Mancinelli and J Serrano. Study of Muon Isolation in the B0
s → µ+µ−

Channel. Technical Report LHCb-INT-2010-011. CERN-LHCb-INT-2010-011,
CERN, Geneva, Mar 2010.

[66] Flavio Archilli, Matteo Palutan, Matteo Rama, Alessio Sarti, Barbara Sciascia,
and Ricardo Vazquez Gomez. Background studies for B0 → µ+µ− analysis
optimization. Technical Report LHCb-INT-2014-047. CERN-LHCb-INT-2014-
047, CERN, Geneva, Nov 2014.

[67] Lucio Anderlini, Andrea Contu, Christopher Rob Jones, Sneha Sirirshku-
mar Malde, Dominik Muller, Stephen Ogilvy, Juan Martin Otalora Goic-
ochea, Alex Pearce, Ivan Polyakov, Wenbin Qian, Barbara Sciascia, Ricardo
Vazquez Gomez, and Yanxi Zhang. The PIDCalib package, 2016.

[68] R. Aaij et al. Selection and processing of calibration samples to measure the
particle identification performance of the LHCb experiment in Run 2. 2018.

[69] Giovanni Punzi. Sensitivity of searches for new signals and its optimization.
eConf, C030908:MODT002, 2003.

[70] A L Read. Presentation of search results: The CLs technique. J. Phys.,
G28:2693, 2002.

[71] Roostats package. online at https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome.

[72] Glen Cowan, Kyle Cranmer, Eilam Gross, and Ofer Vitells. Asymptotic formu-
lae for likelihood-based tests of new physics. The European Physical Journal
C, 71(2), Feb 2011.

[73] I. Bediaga et al. Framework TDR for the LHCb Upgrade: Technical Design
Report. Technical report, Apr 2012.

[74] Physics case for an LHCb Upgrade II. Technical Report LHCb-PUB-2018-009.
CERN-LHCb-PUB-2018-009, CERN, Geneva, May 2018.

82

http://scikit-learn.org/stable/


[75] R Aaij et al. The LHCb Trigger and its Performance in 2011. JINST, 8:P04022,
2013.

[76] Albert Puig. The LHCb trigger in 2011 and 2012. Technical Report LHCb-
PUB-2014-046. CERN-LHCb-PUB-2014-046, CERN, Geneva, Nov 2014.

83



Erklärung:

Ich versichere, dass ich diese Arbeit selbstständig verfasst habe und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den (Datum) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

84


	Introduction
	Theories introduction
	Standard Model and massive neutrinos
	Physics beyond Standard Model

	LHCb experiment
	LHCb project
	LHCb detector
	LHCb data flow and its softwares
	LHCb trigger system

	Contributing channels
	Signal  production
	Reference channel
	Crossfeed Background

	Data and Monte Carlo samples preparation
	Data stripping
	Monte Carlo samples
	Mass distribution and signal region blinding
	Sample preselection
	Trigger selection

	Kinematic correction of Monte Carlo simulation
	sPlot technique
	Reference channel fit
	Correction table

	Multivariate analysis
	Introduction to classifiers
	Training input
	Hyperparameter optimization
	Training output

	Multivariate and PID selection optimization
	PID selection strategy
	PID Calibration method
	MV and PID selection working point

	Signal and background models
	Signal shape
	Background shape

	Efficiency and normalisation
	Overview of efficiency evaluation
	Acceptance
	Reconstruction, stripping and preselection
	Trigger Efficiency
	Kaon PID selection
	Multivariate and muon PID selection
	Normalisation factor

	Upper limit
	Evaluation method
	Extrapolated result from sidebands fit
	Unblinded result

	Conclusion
	Supplements
	Trigger line requirements
	Multivariate hyperparameters tuning
	Punzi Figure of Merit slices

	Bibliography

