
Department of Physics and Astronomy
Heidelberg University

Master Thesis in Physics
submitted by

Sachin Gupta

born in Haldwani (India)

2024

Track Reconstruction Using Cellular Automata for the
High Luminosity LHC

This Master Thesis has been completed by

Sachin Gupta

at the Physikalisches Institut, Heidelberg University

under the supervision of

Prof. Dr. André Schöning

Dedicated to

Maa (Rani Gupta), Papa (Yogendra Kumar Gupta),

and my sister Neelam Gupta

Abstract

The Large Hadron Collider (LHC) is set to reach unprecedented luminosity in the High-
Luminosity LHC (HL-LHC) phase. This increase in luminosity will result in a substantial
rise in the volume of data recorded by detectors. The surge in data will significantly
increase the complexity of track reconstruction, especially for the central silicon-based
tracker of general-purpose detectors like ATLAS and CMS. The TrackML dataset was
introduced as a machine learning challenge on the Kaggle platform, generating a silicon-
based tracker dataset that mimics conditions expected at the HL-LHC. Particle tracking,
which involves grouping 3D space points into track candidates, becomes extremely chal-
lenging under high particle densities. The current state-of-the-art algorithm for tracking,
the combinatorial Kalman filter, operates iteratively and dominantly relies on CPUs,
though GPU-based implementation also exist.

This thesis explores the performance of a track-finding algorithm using cellular au-
tomata (CA), where triplets are employed as cells. The implementation has been carried
out on CPUs, without GPU acceleration. The CA-based algorithm utilizes the Triplet
Fit and Global Triplet Track Fit algorithms to assess the track quality at two stages,
filtering out unwanted triplets and track candidates. Both the CA approach and the fit-
ting algorithms are parallelizable, making them well-suited for acceleration on Graphics
Processing Units (GPUs).

For this study, the barrel region of the TrackML dataset is selected, focusing on
particles originating near the luminous region that deposit hits across all barrel layers,
defined as signal tracks. The algorithm achieves an average perfect matching signal
efficiency of ≈ 96%, with an impressive signal purity of ≈ 99%. These results demonstrate
the potential of this parallelizable local tracking algorithm for handling the high pile-up
conditions expected at the HL-LHC.

Zusammenfassung

Der Large Hadron Collider (LHC) wird in der High-Luminosity-Phase (LH-LHC) eine bis-
her unerreichte Luminosität erzielen. Diese Steigerung führt zu einem erheblichen Anstieg
des Datenvolumens und trägt somit maßgeblich zur wachsenden Komplexität der Spur-
rekonstruktion bei, insbesondere in den inneren, siliziumbasierten Tracker von Universal-
detektors wie ATLAS und CMS. Der TrackML-Datensatz wurde als Machine-Learning-
Herausforderung auf der Kaggle-Plattform eingeführt und simuliert die Anforderungen an
das Spurtracking, die am HL-LHC erwartet werden. Herkömmliches Tracking, bei dem
3D Raumkoordinaten zu Spur-Kandidaten zusammengefasst werden, gestalte sich auf-
grund der hohen Teilchendichte als Herausforderung. Der derzeit führende Algorithmus
zur Spurrekonstruktion, der kombinatorische Kalman-Filter, arbeitet iterative und ist
überwiegend auf CPUs angewiesen, wenngleich auch GPU-basierte Implementierungen
existieren.

Diese Arbeit untersucht die Leistungsfähigkeit eines Spurfindungsalgorithmus auf Ba-
sis von zellulären Automaten (CA), bei dem Triplets als Zellen verwendet werden. Die
Implementierung erfolgt auf CPUs ohne Einsatz von GPU-Beschleunigung. Der Algo-
rithmus verwendet einen lokalen Triplet Fit und einen globalen Triplet Track Fit, um
die Qualität der Spuren auf zwei Stufen zu bewerten und unerwünschten Triplets, sowie
Track-Kandidaten herausfiltern zu können. Sowohl der CA-Ansatz als auch die Fitting-
Algorithmen sind parallelisierbar und daher gut für die Beschleunigung auf Grafikprozes-
soren (GPUs) geeignet.

Im Rahmen dieser Arbeit wurde die Barrel Region des TrackML Datensatzes genauer
untersucht, wobei der Fokus auf sogenannten Signalspuren liegt. Diese umfassen Teilchen,
die aus dem luminösen Bereich stammen und Treffer in sämtlichen Barrel-Lagen hinter-
lassen. Der Algorithmus erreicht eine durchschnittliche, perfekte Zuordnungseffizienz von
≈ 96 %, bei einer optimalen Reinheit von ≈ 99 %. Dieses Ergebnis demonstriert das
Potential dieses parallelisierbaren lokalen Spurfindungsalgorithmus, zur Bewältigung der
hohen Pile-up Bedingungen am HL-LHC.

Contents

1 Introduction 3
1.1 High Luminosity LHC upgarde . 3
1.2 Tracking Detectors . 3
1.3 Track Reconstruction . 4

2 Track Finding 6
2.1 Cellular automata (CA) . 6

2.1.1 Example: The Glider Gun . 7
2.2 Track Finding with Cellular Automata 8
2.3 Triplet as a Cell . 11

3 Track Fitting 12
3.1 Genereal Idea . 12
3.2 Track Fitting . 12

3.2.1 Triplet Fit . 13
3.2.2 Global Triplet Track Fit (GTTF) 13

4 CA for the TrackML Dataset 14
4.1 TrackML dataset . 14
4.2 Target Signal . 15
4.3 Track Finding with CA . 15
4.4 Software Environment and Libraries . 16

5 Triplet Generation 17
5.1 Doublet Generation . 17

5.1.1 The z0 based cut . 18
5.1.2 The transverse momentum (pT) cut 19

5.2 Efficiency and Purity . 20
5.3 Doublet cut selection nz0 , pTcut . 21
5.4 Doublet Metric . 22
5.5 Triplet Formation . 23

5.5.1 The Polar Angle Difference dθ . 23
5.5.2 The Curvature Difference dκ . 25

5.6 Triplet cut selection ndθ, ndκ . 26
5.7 Triplet Metric and χ2 cut . 28

1

6 Track Collection and Results 33
6.1 Track Collection . 33
6.2 CA Performance Evaluation . 34
6.3 Ambiguity Resolution . 35

6.3.1 χ2 and Momentum p cut . 35
6.3.2 Track Trimming . 37
6.3.3 Track Sharing Hits . 39

6.4 Results . 39

7 Discussion and Outlook 44
7.1 Discussion . 44
7.2 Outlook . 45

2

Chapter 1

Introduction

1.1 High Luminosity LHC upgarde
The Large Hadron Collider (LHC) [1] at CERN is the largest scientific machine ever built
to study the fundamental building blocks of our universe and their interactions. Major
experiments at the LHC, such as ALICE [2], ATLAS [3], CMS [4], and LHCb [5], have
been designed to investigate different aspects of high-energy particle collisions and probe
the nature of matter at unprecedented scales. The LHC is currently preparing for the
upgrade High-Luminosity LHC (HL-LHC) phase [6, 7] to achieve its full potential. The
goal of this upgrade is to achieve unprecedented luminosity, increasing it by 5 to 7.5 times
the current nominal value. Luminosity is a measure of the number of potential collisions
per bunch crossing. For ATLAS and CMS experiments the average pileup is expected to
reach around µ = 200 for the HL-LHC phase. This means that for each bunch crossing,
there will be an average of 200 proton-proton interactions occurring simultaneously. This
high pileup environment will enable physicists to study phenomena with low probabilities,
as it will provide the large data necessary for various rare processes in particle physics.

The timeline for LHC operation is shown in figure 1.1. During the HL-LHC phase, the
total integrated luminosity is anticipated to be 4000 fb−1. To give a sense of scale, 1 fb−1

corresponds to approximately 100 million million collisions. Foreseeing this, experiments
involved in LHC are also going through significant upgrades [8]. Currently (October
2024), the Large Hadron Collider (LHC) is amid Run 3 [9], which began in July 2022. This
run is expected to continue until 2026. In parallel with Run 3 operations, preparations for
the High-Luminosity LHC (HL-LHC) upgrade are underway. The HL-LHC is expected
to begin operations around 2029, following the completion of major upgrades to the
accelerator complex and detectors [10].

1.2 Tracking Detectors
Tracking detectors are integral components of high-energy physics experiments, designed
to record the trajectories of charged particles produced during collision. A range of
technologies exists for tracking that employs gaseous, semiconductor, and fiber detectors
[11]. They are capable of precisely measuring a particle position in the form of “hits”.
Multiple detector layers are used that constitute a tracking system that allows us to
measure trajectory in the magnetic field which further helps to obtain the following
information about the charged particle :

3

Figure 1.1: LHC timeline showing collision energy and luminosity evolution, including
major upgrades during long shutdowns (LS2 and LS3) leading to the high-luminosity era.
This plot is taken from [6]

1. Measurement of Particle Kinematics: Tracking detectors enable highly precise
measurements of particle momenta and other kinematic properties, which are crucial
for studying particle physics processes.

2. Particle Identification: The bending and the momentum help us to identify the
particle type. For example in a process where a particle decays into a particle-anti-
particle pair, one will have a positive bending and vice-versa.

3. Vertex Reconstruction: These detectors also allow us to reconstruct both pri-
mary and secondary vertices that play a crucial role in studying short-lived particles
and decay processes.

This thesis focuses on track finding for silicon-based trackers, specifically, those employed
in the central region of the ATLAS [3] and CMS [4] experiments. The analysis presented
in this thesis is based on the TrackML detector [12] which was designed for the conditions
expected during the Hl-LHC phase. The TrackML dataset [13] contains the simulated
hits produced after collisions (Chapter 4).

1.3 Track Reconstruction
Track reconstruction is a crucial step in analyzing data from tracking detectors. It is a
two-step process. The first step, Track Finding, groups the hits into track candidates
and is known as a combinatorial problem. This step utilizes a dedicated pattern recogni-
tion algorithm. The second step, Track Fitting, estimates the parameters of each track
candidate. This step employs statistical techniques that fit a theoretical model to the
measured data, considering both hit positions and their uncertainties.

4

Tracking becomes particularly challenging in the high multiplicity environment ex-
pected during the HL-LHC phase. The most commonly used track reconstruction algo-
rithm in HEP experiments is the combinatorial Kalman filter [14] which has an iterative
nature, making it well-suited for implementation on CPUs, though it may not benefit
much from being ported to GPUs. Given the potential of parallel computing hardware
like GPUs [15] to improve computational efficiency, it is crucial to explore algorithms
that can effectively leverage this hardware for better performance in the HL-LHC phase.
This thesis explores a local tracking algorithm, utilizing methods that are both paralleliz-
able and suitable for implementation on GPUs. The track-fitting approach is primarily
used for quality metrics, while the final performance is analyzed specifically for the track-
finding component based on Cellular Automata (CA). This thesis presents the physics
performance of the track-finding algorithm and explores its performance for the barrel
region of the TrackML dataset [12].

The structure of the thesis is organized as follows: Chapters 2 and 3 provide a theoret-
ical overview of the algorithms for track finding and track fitting, respectively. Chapter
4 offers a brief review of the TrackML dataset and outlines the implementation roadmap
for the track-finding algorithm. Chapters 5 and 6 present the performance of the algo-
rithms at the triplet and the final track level. The discussion and outlook of the thesis
are detailed in Chapter 7.

5

Chapter 2

Track Finding

Track finding is a combinatorial problem that groups 3d space points i.e. hits into track
candidates. Generating all possible combinations of hits becomes unfeasible due to a large
number of hits recorded during a collision event. For this, dedicated pattern recognition
algorithms are used that utilize information related to the detector geometry and physical
information (particle’s bending, particle’s origin, etc.). There are various algorithms for
this task: Hough transform, Legendre transform, Graph neural network, cellular automa-
ton, Combinatorial Kalman Filter [11]. The Hough and Legendre transform are robust for
shape detection but struggle with computational costs and simple patterns [11]. Graph
neural networks [16] capture complex relationships yet demand extensive datasets and
iterative message-passing steps. The Combinatorial Kalman Filter is also computation-
ally intensive with iterative state estimation [14]. In contrast, cellular automata provide
efficiency and flexibility with straightforward rules, making them well-suited for complex,
noisy environments. This chapter discusses how we can utilise CA for track-finding step.

In an event 1 consisting of N hits, denoted as {h1, h2, . . . , hN}, the process of track
finding attempts to identify sets of hits that correspond to distinct particle trajectories.
After applying the track finding algorithm, the hits are grouped into subsets, each rep-
resenting potential track candidates. These subsets can be written as {hi1, hi2, ..., hip},
{hj1, hj2, ..., hjq},{hk1, hk2, ..., hkr}, ..., where subscript i, j, k... corresponds to track candi-
date and p, q, r, corresponds to the number of associated hits within the track candidate.
This procedure can also be visualized with the help of Figure 2.1. In this thesis, the
cellular automata-based track finder is designed to find the longest track chain in the
barrel region of the TrackML dataset [12].

2.1 Cellular automata (CA)
Cellular automata (CA) were first introduced by John von Neumann in the 1940s [17]
as a mathematical model for self-reproduction in biological systems. The concept was
popularized by the work of John Conway’s Game of Life in 1970 [18], which demonstrated
how simple rules could lead to complex and dynamic patterns. Cellular Automata (CA)
are simple mathematical models describing how a one or two-dimensional “grid” structure
evolves in discrete time steps. The smaller grid unit is called a “cell” that carries a numeric
value. In a single time step, all cells in the grid change their values simultaneously. The
value of a particular cell at time step t+1 is determined by a fixed local rule that the entire

1An event is a collection of measurements of particles generated during a single bunch crossing.

6

(a) Recorded hits after an event. All hits
are uni color that specifies they are not
grouped yet.

(b) Hits after the track finding step. The
hits are color-coded based on the track can-
didates to which they belong to.

Figure 2.1: Toy representation of track finding step. The detector has 5 layers. (a) shows
the recorded “ungrouped” hits from three particles, while (b) displays “grouped” hits that
belong to three different track candidates.

grid follows during the evolution. This local rule is determined by the ‘local neighbors’
of the cell. For example, given a cell i with value ci(t), the evolution is given as:

ci(t+ 1) = f (ci(t),N (ci)) (2.1)

where N (ci) denotes the set of local neighbors of the cell i and their values at time
t. The neighbors and the law of evolution remain unchanged throughout time iterations.
CA is constructed by defining a cell, its neighbors, and the local rule of evolution. The
entire CA construction is problem-specific and gives full freedom to specify its structure
and evolution. This is the reason why this simplest architecture has found applications
in various fields, including Computer Science, Physics, Chemistry, and biology.

2.1.1 Example: The Glider Gun

The example presented here illustrates one of the early implementations of cellular au-
tomata and demonstrates how a simple model can lead to compelx results. Gliders are
a fascinating phenomenon in cellular automata, particularly in Conway’s Game of Life.
They are patterns that move across the grid, demonstrating the ability of simple rules to
produce dynamic and self-replicating behavior.

The glider gun, discovered by Bill Gosper in 1970 [19], was a groundbreaking pattern
in the study of cellular automata. It was the first known finite pattern with unbounded
growth, proving that the Game of Life could support infinite growth from a finite starting
configuration. Following the definition of cellular automata discussed earlier, the glider
gun setup is described below:

1. Grid Initialization: The grid is theoretically infinite, but in practice, it is repre-
sented by a large enough two-dimensional array. Each cell in the grid can exist in

7

one of two states: alive (usually represented by 1 or a filled square) or dead (0 or
an empty square). In a 2D grid, each cell is surrounded by 8 neighboring cells that
act as its neighbors.

2. The Rule: The glider gun follows Conway’s game of life rules which are applied
to each cell in the grid simultaneously:

• Any live cell with fewer than two live neighbors dies (underpopulation).

• Any live cell with two or three live neighbors lives on to the next generation.

• Any live cell with more than three live neighbors dies (overpopulation).

• Any dead cell with exactly three live neighbors becomes a live cell (reproduc-
tion).

Figure 2.2: Evolution of the glider in Conway’s Game of Life from t = 0 to t = 7. The
grid is usually infinite, but for demonstration 5 x 5 grid is shown. The figure illustrates
how the glider pattern moves diagonally and replicates itself over time after every four
iteration.

The evolution in the Figure 2.2 shows the glider moves diagonally across the grid. It
replicates itself after every four iterations, and this evolution continues indefinitely. This
demonstrates how a simple pattern can evolve into a complex, self-sustaining structure.

2.2 Track Finding with Cellular Automata
The local nature of CA, and its simple implementation makes it suitable for particle
tracking. In addition to their simplicity, CA algorithms can be efficiently accelerated
using GPUs[20]. Earlier applications of CA in high-energy physics tracking were inspired
by Conway’s Game of Life, utilizing CA to filter out noisy hits. For instance, in the ARES
experiment [21], detector hits were represented as cells, and the evolution process allowed

8

for the removal of noisy hits and the recovery of missing hits. Different versions of CA-
based track finders exist for various high-energy physics experiments like ALICE [2], CMS
[22] etc. The CA algorithm in this thesis is inspired by the CATS (cellular automaton
for tracking in silicon detector) algorithm implemented for the HERA-B vertex detector
[23]. The algorithm has also been extensively studied for the CBM experiment [24].
The CATS algorithm [23] performs track finding by considering track segments as a cell.
A track segment is formed by grouping hits. In track reconstruction, the most commonly
used track segments are doublets (a pair of two hits in consecutive layers) and triplets
(three hits in consecutive layers). In the example presented below, hits are used as cells
CA2. However, this does not introduce any fundamental difference, in the end, the track
is formed by connecting hits or segments. The ultimate goal remains clear: “grouping
of hits and forming track candidates”. The example with five detector planes along with
some hit configuration is shown in Figure 2.3. Specific to this detector geometry, the
CATS algorithm forms track candidates as follows:

Figure 2.3: An example of five detector planes with a specific hit configuration is shown.
The particle’s direction is assumed to be from left to right, with each hit represented as
a cell initialized to zero. Neighboring cells are connected by edges.

1. Grid Initialization:

• Cell: Single detector hit is described as a cell.

• Neighbors: All hits lying in the previous layer i.e. towards “left” plane. Ac-
cording to this definition, the first plane’s detector hits will have no neighbors.

• Cell’s value: Each cell contains an integer value, and at the beginning of the
grid, all cells are initialized to zero.

The grid initialization is shown in Figure 2.3

2. The Rule: The evolution rule implemented in the CATS algorithm, serves to find
the longest track chain with minimum scattering angle for the specific detector
geometry. In this example, the longest track chain will consist of five hits. In each
iterative step, a cell (ci) examines its left neighbors and identifies the cell with the

2In this thesis, triplets have been used as a cell

9

maximum value 3 (cmax
j). The new value for ci is then obtained by incrementing

this maximum value by one:

cnewi = cmax
j + 1 (2.2)

3. Evolution and Track Collection: The evolution of the CA is depicted in the
Figure 2.4. The evolution process stops when no further updates are possible (Fig-
ure 2.4d). Track collection begins from the final configuration of the CA. In the
final column of the CA grid, a cell with the highest value (in this case, 4) is se-
lected. From this cell, a backward propagation step is implemented that collects all
possible cells in the descending order 4 → 3 → 2 → 1 → 0. In this simple example,
there are two possible paths and thus two track candidates.

(a) Iteration = 1 (b) Iteration = 2

(c) Iteration = 3 (d) Iteration = 4

Figure 2.4: CA evolution and cell values at different iterations. The evolution remains
unchanged after the 4th iteration

We have successfully achieved our goal of grouping hits using cellular automata. How-
ever, further track selection is needed to finalize the best possible track candidates within
an event. In this process, the CATS algorithm is complemented by a track fitting step,
which includes the calculation of the χ2 for the track candidates and selecting the track
based on some threshold χ2 value. There are also cases when track candidates may share
hits. Such cases require additional treatment and are discussed in Chapter 6.

3This ensures the longest track chain is preferred

10

2.3 Triplet as a Cell
The example discussed in the previous section uses hits as cells in CA grid. This approach
might not be suited for the high particle density environment where the total number of
hits are expected to be O(105) per event [12]. Handling CA with many cells and neighbor
connections will become computationally challenging and memory-expensive. Instead, we
can utilize the flexibility of CA by redefining the “cell" and using “triplet of hits" as a
definition for a cell. Three consecutive layer hits are combined to form a triplet. In the
example given above, triplets will be formed between layers(1, 2, 3), layers (2, 3, 4), and
layers (3, 4, 5). The track will be formed by linking these three triplets as shown in Figure
2.5.

Figure 2.5: Track comprising of 5 hits and three triplets. Two consecutive triplets share
one hit in common.

The chapter 5 discusses how triplets are generated with the physical cuts that allow
certain configurations of triplets based on detector geometry and experimental setup.
These triplets are further filtered by the quality metric χ2 as discussed in the Section
3.2.1. The fitting algorithm is also parallelizable [25] and implemented at two levels:
triplet level and track level. The next chapter discusses briefly the fitting procedure and
fit quality χ2 calculation.

11

Chapter 3

Track Fitting

Track fitting is the process of estimating a particle’s parameters, covariance matrix, and
track quality. This is a complex task that requires proper statistical treatment. The
complexity arises due to factors such as the detector geometry, hit position uncertainties,
multiple Coulomb scattering, and the influence of the inhomogeneous magnetic field.
While the traditional Kalman filter, an iterative algorithm, is commonly used for track
fitting, this chapter provides a qualitative overview of a non-iterative approach based
on triplets is presented. In this thesis, the track fitting algorithm is used to assess the
quality of a fit, represented by the χ2, which is evaluated at two levels: triplet and track
candiadate.

3.1 Genereal Idea
The general idea behind track fitting is to extract track parameters from the recorded n
measurements m1,m2,,mn. The fitted track model f(p) = f1, f2,fn are obtained
from the track parameters p. The distance to be minimized is also known as χ2 which is
given by :

χ2 = (m− f(p))TV −1(m− f(p)) (3.1)

Where the matrix V denotes the covariance matrix of the measurements. The χ2 is
also used as a quality metric. The χ2 minimization method is not feasible for the final
track fit due to several limitations. First, there is no closed-form solution for the track
model due to the material interactions. The iterative nature of χ2 minimization requires
repeated matrix inversions, which become computationally intensive as the number of
measurements increases. In contrast, the Kalman filter [11], archives the same minimiza-
tion iteratively and is used widely for track-fitting [11]. The next section discusses a
non-iterative algorithm that calculates χ2 for triplets and track candidates, allowing for
efficient processing suitable for implementation on GPUs.

3.2 Track Fitting
The track fitting implemented in this thesis is based on the algorithm presented in
[25]. The track fit aims to fit particle momentum p and the hit position shift (⃗δxk =
x⃗fit,k − x⃗meas,k). These quantities carry full information about the particle’s trajectory.
The algorithm is divided into two parts: Triplet Fit and Global Triplet Track fit

12

(GTTF). The triplet fit is applied after building triplets with preselection cut (Chapter
5). The GTTF is applied to the track candidates generated by the cellular automata
algorithm. The next two sections describe the qualitative description of the fit quality
(χ2) calculation.

3.2.1 Triplet Fit

Triplet fit is performed by minimizing the multiple scattering angles and hit uncertainty.
These two terms are included in the triplet fit quality χ2 whose formula is given by :

χ2(p; δ⃗) =
∆ΘMS(p; δ⃗)

σ2
MS(p)

+ sin2 ϑ
∆ΦMS(p; δ⃗)

σ2
MS(p)

+

j+2∑
k=j

δ⃗x
t

kVk
−1 ⃗δxk (3.2)

Where δ⃗ represents hit position shifts of all hits in a triplet. The variables ΘMS and
ΦMS are the polar and azimuthal scattering kink angles of a triplet calculated in their
respective planes. The uncertainty in the scattering angle σMS is given by the Highland
formula [26]. The azimuthal scattering term also contains an additional sin2 ϑ arising
from the transformation from cartesian to polar coordinates. The matrix Vk is a 3x3
covariance matrix that contains the spatial uncertainty of each kth hit. The third term is
a sum that runs over hits from layer j to j+2. The fit solution is achieved by minimizing
Equation 3.2 with respect to momentum p1 and the hit position shifts δ⃗.

The fitting approach described in [25] is based on linearization around a known circular
solution that shows no multiple scattering kink angle in the transverse plane i.e. ∆Φ = 0.
For the sake of brevity, the detailed calculation is omitted. The linearisation is performed
for both kink angles, by also taking the effect of hit position shifts. The hit position shifts
are also calculated in the local frame, which makes the error matrix Vk diagonal. The
fitting method calculates the triplet parameters (p and δ⃗) and track quality χ2.

3.2.2 Global Triplet Track Fit (GTTF)

The GTTF algorithm is applied to all track candidates obtained by the final configuration
of the CA evolution. As mentioned in Section 2.3, a track can be assumed as joining
consecutive triplets. The triplet parameters obtained from the Triplet fit algorithm, are
utilized here to find the track parameters (p and δ⃗) and the fit quality χ2. A track
candidate with N hits can be visualized as N − 2 linked triplets. The fit quality of a
track is given by:

χ2 =
N−2∑

triplet j=1

(
∆ΘMS,j(p; δ⃗j)

σ2
MS,j(p)

+ sin2 ϑj
∆ΦMS,j(p; δ⃗j)

σ2
MS,j(p)

)
+

N∑
k=1

δ⃗x
t

kVk
−1 ⃗δxk (3.3)

The first sum with subscript j runs over all triplets and minimizes multiple scattering
kink angle for the entire track. The second term with subscript k runs over all the hits in a
track. We minimize the same terms as we did for the triplet fit. The triplet fit parameters
are used in the minimization of the track’s χ2. These parameters are organized into a
matrix, and the final minimized χ2 value is obtained through a matrix multiplication, as
outlined in [25].

1In the main paper [25] the minimization of χ2 is done with respect to curvature κ = qB
p

13

Chapter 4

CA for the TrackML Dataset

4.1 TrackML dataset
The tracking machine learning challenge (TrackML [12]) was set up on the Kaggle [27]
platform which hosts a variety of datasets for various problems in data science and ma-
chine learning. The dataset was simulated by LHC physicists to reach out to computer
scientists to explore new approaches for tracking. The detector design was chosen inde-
pendently of ATLAS and CMS upgrade tracker designs [[28],[29]]. The central region of
the detector has a barrel-like geometry and the forward region has a disk-like geometry.

Figure 4.1: Detector layout of the TrackML detector. The left side displays the three
main sub-detectors: pixel, short strips, and long strips. The right diagram illustrates the
full layout and its coverage in the radial, longitudinal, and η directions. Different colors
denote the various sub-detectors, with marked numbers indicating the internal volume
and layer identifiers.

The full detector geometry is shown in Figure 4.1. The detector is split into three sep-
arate sub-detectors that differ in spatial resolution and material budget. The innermost
sub-detector is a pixel detector with a spatial resolution of 50 µm x 50 µm. Surrounding
it are two types of strip detectors: short strips with a resolution of 80 µm x 1200µm
and long strips with a resolution of 0.12mm x 10.8mm. The particle content of the
collision was generated using the Pythia 8 event generator [30]. A hard QCD interaction
that produces a tt̄ pair serves as the signal. Additionally, 200 soft QCD interactions are
overlaid to simulate the expected pile-up conditions at the HL-LHC. Generated charged

14

particles were propagated using fast simulation (FATRAS) of the ACTS software [31] by
considering the magnetic field and material interaction. The fast simulation step does
not include hadronic interactions. The TrackML dataset is challenging due to the high
track multiplicity, with around 10, 000 charged particles producing O(105) [13] hits per
event. This dense environment leads to significant overlap among particle trajectories,
which complicates the track finding process.

The dataset contains of spatial coordinates (x, y, z) of hits in the global coordinates.
Each hit has several identifiers for example volume id, layer id, particle id, hit id etc. that
allow easy handling of the dataset and grouping hits. The particle id help us to identify
weather a track candidate belong to a particle or not. If all hits within a track candidate
have same particle id, that means a track candidate is an actual particle track.

4.2 Target Signal
The CA based algorithm implemented in this thesis is implemented for the barrel region
of the TrackML dataset (volume 8, 13, 17 in Figure 4.1) and for specific tracks. The al-
gorithm is designed to track particles that originate near the luminous region and deposit
hits in all 10 barrel layers. These tracks will be called signal tracks throughout this
thesis. The signal tracks also satisfied cuts based on the particle’s transverse momentum
pT =

√
p2x + p2y and origin (vx, vy, vz). Both quantities are given in the dataset and cuts

are selected to ensure they originate near the luminous region. The particle origin in the
transverse (x − y) plane is given by r0 =

√
v2x + v2y . The signal track cuts are listed in

Table 4.1 where r1 is the radius of the first barrel layer1. The performance of the CA
algorithm, as discussed in Chapters (5 and 6) are evaluated concerning these signal
tracks.

Parameter Constraint
pT pT ≥ 1GeV
z0 |vz| ≤ 200mm
r0 r0 < r1 = 32.30mm

Table 4.1: Parameter Constraints for Signal Tracks.

The barrel region contains more than 50% of hits (≈ 60,000) of an event. The average
number of the signal tracks we are trying to reconstruct is around 250 per event consti-
tuting around ≈ 3, 000 hits. This explains the complexity of reconstruction. Not only do
we have to filter out signal hits (≈ 3, 000 hits from ≈ 60, 000 hits) but later group them
into track candidates as well.

4.3 Track Finding with CA
The track-finding algorithm based on Cellular automata as described in Chapter 2 is im-
plemented in the barrel region of the TrackML dataset [12]. The algorithm is also comple-
mented by the track fitting (Chapter 3) algorithm that allows only a certain combination

1TrackML dataset [12] does not provide radii of the barrel layers explicitly. The radii for the barrel
layers are calculated implicitly by the hits belonging to a particular barrel layer and taking the average.

15

of hits at triplet and track level by applying χ2 cut. The track finding is performed
sequentially as described by the following steps :

1. Data selection: The TrackML dataset is filtered for the barrel region by selecting
hits belonging to the barrel layers which are given by the volume identifier: [8, 13, 17]
as described in Figure 4.1.

2. Doublet Formation: With the barrel dataset doublets of hits are formed with
consecutive layers and preselection cuts. The procedure for doublet formation is
described in Section 5.1.

3. Triplet Generation: Two consecutive doublets that share a hit are joined together
to form a triplet that satisfies some preselection cuts. Triplet formation is described
in Section 5.5.

4. Triplet Fit: Triplet fit is performed to all triplets and χ2 cut is applied.

5. Cellular automata: Triplets that satisfy the χ2 cut processed further to generate
CA grid and track candidates are formed after the evolution.

6. Track Selection: The GTTF algorithm (Section 3.2.2) is applied to track can-
didates and χ2 is calculated. The tracks are further selected by the χ2 cut and
ambiguity resolution (Section 6.3).

4.4 Software Environment and Libraries
The track-finding algorithm utilizing cellular automata is implemented in Python, lever-
aging various libraries to enhance performance and data handling. The following libraries
and their versions are employed in this implementation:

Python: version 3.10.9 [32]. NumPy: version 1.23.5 [33], used for efficient numeri-
cal computations and array operations. Pandas: version 1.5.3 [34], which simplifies the
manipulation and analysis of datasets, including the TrackML dataset provided in CSV
format. Matplotlib: version 3.7.0 [35], utilized for data visualization and graphical repre-
sentation of results. The use of these libraries facilitates efficient processing and analysis
of the dataset, allowing for an effective implementation of the track-finding algorithm.

The tracking pipeline is available at the following web-link :
https://gitlab.cern.ch/guptasa/cellular_automata

16

Chapter 5

Triplet Generation

Triplets are track segments consisting of hits belonging to three consecutive layers. Before
generating triplets, doublets of two hits are formed that belong to adjacent layers. Triplets
are then built by joining two doublets that share a hit in the middle layer. Both track
segments are formed by certain physical cuts that are discussed in great details in this
chapter. After this step, the triplet fit algorithm calculates the track quality χ2 for each
triplet that further helps to reduce the number of reconstructed triplets.

5.1 Doublet Generation
Doublets are formed by pairing hits of two consecutive layers as shown in Figure 5.1. The
TrackML dataset [12] has 10 barrel layers, thus doublets will be formed between layers
1− 2, 2− 3,9− 10. If the total number of hits in each layer are given (N1, N2,N10),
one can calculate the total number of possible doublets for the barrel region as :

#doublets = N1N2 +N2N3 ++N9N10 (5.1)

To have a rough estimate, the number of hits in each barrel layer is expected to be of
the order of O(104). Thus for one event, the total number of doublets will be around a
billion, which is a lot. However, we do not need to create all possible doublets. Physical
information such as detector geometry, magnetic field, and beamline constraints are used
to only allow doublet with certain types. The next two sections discuss “physcical cuts”
which are implemented in this thesis.

Figure 5.1: An example of four parallel detector planes with 3 hits each. The doublets
are formed between layers and represented by an edge drawn between the hits. The total
number of doublets in this example is 27.

17

Figure 5.2: The normalized z0 distribution for the signal tracks are shown for different
layer combinations (i, i + 1). The distribution mean (µ) and standard deviation (σ)
are displayed above each plot, alongside the corresponding layer numbers. For instance,
“Layers (1,2)" indicates that the distribution corresponds to the true doublet between
layer 1 and layer 2.

5.1.1 The z0 based cut

The quantity z0 defines the luminous region along the beam axis. Primary particles are
produced along the beam axis from −z0 to z0. The beam axis is parallel to the z-axis.
Since we are aiming to reconstruct the longest track chain in the barrel region as described
in Section 4.2, a data-driven approach is utilized in this thesis. There is no bending in
the longitudinal plane. The quantity z0 is calculated for true doublets1 as an intercept
in the (r − z) plane. For a true doublet, having hit coordinates (r1, z1) and (r2, z2), the
z0 is given by:

z0 =
r1z2 − r2z1
r1 − r2

(5.2)

The z0 is calculated from true doublets and for each pair of layers the distributions are
shown in Figure 5.2. From the distribution, Gaussian is fitted and (µ, σ) are obtained.
This distribution is layer-dependent due to the cumulative effect of multiple coulomb
scattering as charged particle traverses through barrel layers. These distributions even-
tually help to create a selection region while creating doublets between any two layers.
The strategy implemented in this thesis is based on the selection of an integer nz0 which
essentially specifies layer-wise (i, i+ 1) selection window [µ− nz0σ, µ+ nz0σ]i,i+1.

1True doublets are pairs of hits that correspond to an actual signal track (Section 4.2).

18

Figure 5.3: The longitudinal plane (r, z) view of two barrel layers Li, Li+1. The selection
region for a particular hit Hp with coordinates (rp, zp) is shown by extending two lines
from the z axis. The green hits in the next layer Li+1 satisfy the selection cut and proceed
for further analysis. The red hits do not satisfy the selection cut and therefore do not
form doublet with the hit Hp.

Now let us understand how this selection window helps to form doublets between
two layers. Suppose we are at layer Li and have a hit Hp with coordinates (rp, zp). We
create a selection window in the next layer Li+1 by drawing two straight lines. The
first line passes through the point (0, µ − nz0σ)i,i+1 and (rp, zp) extended to the next
layers. Similarly, the second line is drawn through points (0, µ + nz0σ)i,i+1 and (rp, zp)
and extended to the next layer as shown in Figure 5.3. The subscript (i, i + 1) specifies
the layer-dependent cuts. The z coordinate of the intersection points of these two lines
and the layer Li+1 is calculated. Once the selection window is mapped to the next layers
only hits having z coordinates within this region are processed for further analysis. The
next section discusses a second physical cut that is applied to the hits that are selected
from the current step (Green hits in Figure 5.3).

5.1.2 The transverse momentum (pT) cut

The final preselection cut implemented for doublet formation is based on the transverse
momentum pTcut. This cut utilizes information from beamline constraints and mag-
netic field. In an ideal world, primary vertices will be along the origin of the transverse
(x − y) plane. The TrackML dataset is simulated where the magnetic field is along the
beam direction (z axis) and has a central field strength of 2 Tesla [36]. Particles pro-
duced during the collision event traverse through the magnetic field which bends their
trajectory. This bending is visible in the transverse plane (x− y).

We aim to utilize the pTcut and find the angular section of layer Li+1 which contains
hits that will form doublet with the hit Hp as discussed in the previous step. We draw
two circles passing through the points (0, 0) and the hit Hp. One circle represents the
trajectory of a positively charged particle, while the other corresponds to a negatively
charged particle. Both circles have the same radius, which is given by:

19

Figure 5.4: Representation of pTcut in the transverse (x, y) plane, barrel layers Li and
Li+1 are shown as two concentric circles. Two circles passing through the hit Hp and
the origin (0, 0) are shown along with their intersection with the layer Li+1. Only two
hits pass the cut from the green hits selected from Section 5.1.1. The chosen purple hits
ultimately form a doublet with the hit Hp, represented by an edge connecting the selected
hits and Hp.

pTcut[GeV] = 0.3B[T]r[m] (5.3)

Where pTcut is given in GeV, magnetic field B in Tesla, and r is in meters. These two
circles are extended to the next layer and two points in the next layer Li+1 eventually give
the desirable section as shown in Figure 5.4. If the hit Hp has polar coordinates (ri, ϕp),
the selection window in the next layer will be from (ri+1, ϕp−dϕ) to (ri+1, ϕp+dϕ). Where
ri and ri+1 are radii of the barrel layers respectively. Note that in the TrackML dataset,
the radii for the barrel layers are not stated specifically. For this, specific barrel layers are
selected and then the radius is calculated by taking the average radius calculated from
each hit coordinates (x, y, z) by the formula r =

√
x2 + y2

Note that, unlike the previous cut, this cut is automatically layer-specific. And we do
not need to calculate its value from the signal tracks.

5.2 Efficiency and Purity
When building any segments i.e. doublets, triplets, or track candidates we need to keep
a score of whether all signal segments are reconstructed or not. Efficiency and purity

20

are the key quantities that quantify the performance of any tracking algorithm. Note
that in this thesis only these scoring metrics are evaluated unlike the scoring
scheme mentioned in the TrackML challenge [12]. Typically, these two metrics
are calculated concerning segments belonging to any track. However, in this thesis, they
are calculated concerning segments that belong to signal tracks2 (Section 4.2). This
efficiency is the ratio of reconstructed signal segments to total signal segments.

(a) Truth Space (b) Reconstructed Space

Figure 5.5: An example of segments (here doublets) in two cases. The green segments
represent signal segments, while the blue ones correspond to non-signal segments. In (a)
all segments are signal which means both efficiency and purity are 100% while in (b)
efficiency can be 100% but not purity due to the presence of non-signal segments.

Efficiency =
#reconstructed signal segments

#total signal segments
(5.4)

100% efficiency means that our algorithm captures all possible signal segments. While
creating segments, certain segments may not belong to signal tracks as shown in Figure
5.5b. The goal is to reconstruct signal segments and avoid non-signal segments as much
as possible. This is quantified by the purity that calculates how many reconstructed
segments are signal and given by the ratio:

Purity =
#reconstructed signal segments
#total reconstructed segments

(5.5)

The goal of any track reconstruction algorithm is to keep the reconstructed segment
space as efficient and as pure as possible. Note that if we generate all possible combina-
tions then the efficiency will be 100% but purity will be minimum.

5.3 Doublet cut selection nz0, pTcut
The cuts discussed in the previous sections are implemented for the barrel region of the
TrackML dataset. Only muon (µ+ and µ−) tracks are used to select the optimal cut values
nz0 and pT for doublet reconstruction. Once the target signal is obtained as described
in Section 4.2, muon tracks are filtered out by selecting particles belonging to pdg id
[−13, 13]. The idea behind this is to achieve 100% reconstruction efficiency for the muon
tracks as they are less affected by the material interaction.

2Essentially, we calculate signal efficiency and signal purity, which will be used synonymously
with efficiency and purity throughout this thesis.

21

Figure 5.6: Muon reconstruction efficiency for the total of 862 signal muon doublets with
pTcut = 0.4GeV. The layer-wise selection window [µ− nz0σ, µ+ nz0σ]i,i+1 expands as nz0

increases, resulting in a corresponding increase in efficiency.

For the analysis purpose, we have chosen 90 events of the TrackML dataset. First, we
select muon tracks that satisfy the signal definition (Section 4.2). A total of 61 muon
tracks are obtained that has 862 muon signal doublets 3. We aim to choose the cuts
such that we are able to capture all of these doublets. To select the cuts, a differential
approach has been carried out. First doublet formation is made almost independent of one
variable and the efficiency metric (Eq. 5.4) is obtained by varying the second variable and
vice-versa. The efficiency plot shown in Figure 5.6 is obtained by fixing pTcut = 0.4 GeV.
This makes the angular selection region larger (Figure 5.4) and doublet formation is
independent of pTcut. The figure shows we reach 100% efficiency when nz0 = 4.

In the second case, we fix nz0 = 7 and plot the efficiency by varying the pTcut as
shown in Figure 5.7. We achieve 100% efficiency for pTcut = 0.6GeV. The efficiency
starts decreasing after that value.

5.4 Doublet Metric
From the differential study of the previous section, by setting up the doublet cuts to
nz0 = 7 and pTcut = 0.6 GeV we get 100% efficiency for muon doublets i.e. we successfully
reconstruct 862 muon signal doublets. We now utilize these cuts to form doublets in the
barrel region of the TrackML dataset and the signal efficiency and purity are calculated
for each event separately. The metric now is calculated with respect to true doublets
of all particle type. The metrics are displayed as box plots for 90 events in Figure 5.8,
accompanied by their mean values. These plots provide a visual representation of the
range, showing where 50% of the data values fall, as well as the minimum and maximum
values represented as whiskers. Additionally, total signal doublets and total reconstructed
doublets per event are included in the same figure. The doublet cuts generate doublets
with an average efficiency of 99.9% and an average purity of 0.5%. The mean number of

3One would expect this number to be 61× 9 = 549. But a particle may deposit more than one hit in
one layer giving rise to more number of doublets.

22

Figure 5.7: Muon doublet efficiency vs pTcut at the nz0 = 7. The increase in pTcut results
in a smaller angular window (Figure 5.4) and the efficiency decreases.

generated doublets (≈ 600,000) is quite higher than the mean number of true or signal
doublets (≈ 3,000). Since this is the very first stage of building segments, we prefer
having higher efficiency. These formed doublets are now processed to form triplets in the
barrel region.

5.5 Triplet Formation
After creating doublets between all the layers with the optimal cut values, the next step
is to join two consecutive doublets and form a triplet. A triplet is comprised of two
doublets sharing a hit as shown in Figure 5.9. For ten barrel layers of the TrackML
dataset, triplets are formed with hits belonging to layers: L1L2L3, L2L3L4,, L8L9L10

the total number of possible triplets are given by :

#triplets = N1N2N3 +N2N3N4 ++N8N9N10 (5.6)

where Ni is the number of hits belonging to the layer Li. The total number of possible
triplets for the barrel region of the TrackML dataset is of the order of O(1013) per event,
given that the number of hits belonging to one barrel layer is O(104). Therefore, we apply
two preselection cuts to a pair of consecutive doublets that share a hit in the middle layer,
which allows only certain geometrical configurations.

5.5.1 The Polar Angle Difference dθ

This cut utilizes the information from the longitudinal plane (r − z), where particle’s
trajecotries are straight line. The polar angle is defined as the angle made by a doublet
with respect to z axis. A triplet that is formed by two doublets d1, d2 with polar angles
θ1, θ2, the polar angle difference is defined as dθ = θ1 − θ2. By following the similar
approach as described in Section 5.1.1, this quantity is calculated for true triplets4 in

4A true triplet comprised of hits that belong to a signal track (Section 4.2).

23

(a) Efficiency (b) Purity

(c) Total Reconstructed Doublets (d) Total signal doublets

Figure 5.8: Doublet metric and total reconstructed and signal doublets with doublet cuts
nz0 = 7 and pTcut = 0.6 GeV. Each figure is a box plot obtained for 90 events for the
barrel region of the TrackML dataset. The rectangular box in each plot shows the region
where 50% of the values fall. The upper and lower whiskers represent the maximum and
minimum value obtained.

Figure 5.9: Visual representation of a triplet formed by two doublets sharing one hit in
the middle layer.

24

Figure 5.10: Triplet selection cut visualization with three detector layers in the longitu-
dinal plane (r − z). Doublet di+1 shares a hit with the other 5 doublets. Only three of
them satisfy the selection criteria dθ < [µ− ndθσ, µ− ndθσ]i+1 and are processed for the
next selection cut.

a layer-specific manner and the distributions are shown in Figure 5.12. The TrackML
dataset’s barrel layers comprise of different material budgets [12] resulting in different
amounts of multiple scattering across various layer combinations. The amount of multiple
scattering (σ) increases as we move towards the end of the barrel layers.

The polar angle difference cut is implemented after selecting a positive integer ndθ

which gives a layer-wise selection window. Now let us try to understand how this cut
filters out doublets. This can be understood with an easy example. Say we have three
layers Li, Li+1, Li+2. The doublet di,i+1 is a doublet between layer Li, Li+1. Doublets
in the next two layers Li+1, Li+2 sharing one hit with the doublet di,i+1 and polar angle
difference dθ < [µ − ndθσ, µ − ndθσ]i+1 are selected for the next step. The selection can
also be understood as a shaded angular region in between the layers as depicted in Figure
5.10. If no such doublets exist in the next two layers then no triplets are formed stemming
from the doublet di,i+1.

5.5.2 The Curvature Difference dκ

A pair of doublets passing through the criteria described above are then processed for
a different cut. This cut is based on the transverse plane and uses beamline constraints
and magnetic field bending information together. To calculate a curvature, a minimum
of three points in the space are required. The curvature of a circle passing through three
points in space r⃗1, r⃗2, r⃗3 is given by the formula :

κ =
2 |r2 − r1| × |r3 − r1|

|r2 − r1| |r3 − r1| |r3 − r2|
(5.7)

The curvature of a triplet (κtriplet) can be calculated from the spatial coordinates of
three hits. The second curvature incorporates the beamline constraint and is represented
by κO. The origin of the transverse plane and the first and third hit of the triplet are
used to calculate κO. The visualization of both curvatures and their respective circles are
shown in Figure 5.11. The quantity that eventually help us to create a selection window
in the transverse plane is the curvature difference [37] which is given by:

dκ = κO − κtriplet (5.8)

25

(a) Calculation of κtriplet from the three
hits h1, h2, h3

(b) Calculation of κO from the three hits
h1, h3 and the origin

Figure 5.11: Visualization of the two curvatures κtriplet, κO and their respective circles.

Similar to the polar angle difference-based cut, we calculate curvature difference dκ
for true triplets. The layer-wise distributions are shown in Figure 5.13. Contrary to
dθ distribution (Figure 5.12), dκ distributions shrinks as we move farther from the beam
axis. This arises because not only dκ account for multiple scattering but include beamline-
constriant as well. The curvature of triplets lying closer to the beam axis is larger than
those triplets lying in the outer section of the barrel layers. That is why the distribution
shrinks as we move towards outer region of the barrel. To implement this cut a positive
integer ndκ is chosen that gives a layer-wise selection window. Thus for a specific layer
combination Li, Li+1, Li+2 only those pair of doublets are allowed whose dκ lies within
the interval [µ − ndκσ, µ − ndκσ]i+1 where µ and σ are obtained from the distributions
shown in Figure 5.13

5.6 Triplet cut selection ndθ, ndκ

Once we have generated doublets with cuts nz0 = 4, pTcut = 0.6 GeV as mentioned in
Section 5.3, they are joint together to form a triplet. For a triplet to be formed between
two consecutive doublets, three conditions must be satisfied :

1. Two doublets must share a hit in the middle layer.

2. The polar angle difference dθ of doublets must lie within a selection window [µ −
ndθσ, µ+ ndθσ]i+1

3. If the doublets satisfy the dθ cut, the curvature difference dκ is calculated. If dκ
lies within the selection window [µ− ndκσ, µ + ndκσ]i+1, then the triplet is formed
between two doublets.

Thus with two numbers ndθ and ndκ we can formulate triplets from doublets for the
entire barrel region of the TrackML dataset. These cuts are selected by a differential
approach and with the muon signal triplets, similar to the doublet cut selection (Section
5.3). There are a total of 963 muon signal triplets. We select cuts such that we
successfully reconstruct these 963 muon signal triplets. Figure 5.14 shows the efficiency
of muon signal triplets for the different values of the cut ndθ by fixing the second cut at

26

Figure 5.12: The layer-wise distribution of dθ for signal triplets in the TrackML dataset,
with the mean and standard deviation displayed in each subplot title.

Figure 5.13: The layer-wise distribution of dκ for signal triplets in the TrackML dataset,
with the mean and standard deviation displayed in each subplot title.

27

Figure 5.14: Muon signal triplets efficiency at different values of ndθ. The second cut is
set large enough (ndκ = 7) that makes the triplet formation independent of it.

higher value ndκ = 7. The 100% muon signal efficiency at triplet level is achieved from
values ndθ ≥ 3.
The effect of the second cut ndκ at fixed ndθ = 7 is shown in Figure 5.15. In this case,
100% muon efficiency is achieved at ndκ ≥ 6. The cut values ndθ = 3, ndκ = 6 gives
100% muon signal efficiency at triplet level and thus selected for generating triplets for
all events of the TrackML dataset.

5.7 Triplet Metric and χ2 cut
The differential study carried out for muon signals segments (doublets and triplets) in
Section 5.3 and 5.6, gives the following values of four selection cuts for doublet and triplet
formation :

Segment Preselection Cut Value
Doublet nz0 4
Doublet pTcut 0.6 GeV
Triplet ndθ 3
Triplet ndκ 6

Table 5.1: Preselection cuts for triplet formation.

These four cuts eventually help us to build and validate doublets which later are used
to form triplets. The performance metric for triplets generation is also evaluated by the
efficiency and purity as discussed in Section 5.2. For each event of the TrackML dataset,
we build triplets in the barrel region and calculate signal efficiency and purity with respect
to all signal triplets. The metrics are shown as a box plot in Figure 5.16. The average
number of reconstructed triplets is around ≈ 154, 000 per event. These triplets are further
processed to the fitting algorithm as discussed in Section 3.2.1 which calculates fit quality
χ2 for their early validation. The normalized χ2 distribution for signal and non-signal

28

Figure 5.15: Muon signal triplets efficiency at different values of ndκ. The first cut is set
large enough (ndθ = 7) that makes the triplet formation independent of it.

triplets are shown in Figure 5.17. For a triplet, the degrees of freedom of χ2 is 1.
Based on the distribution, the χ2

cut = 6 is selected, and triplets whose χ2 is less than
this threshold value proceed to track building stage with the cellular automata algorithm
(Section 2.1).
The power of the χ2 cut can be observed in Figure 5.18. The benefit of this step is that
we keep the signal triplets as much as possible while discarding the unwanted triplets.
This is why average efficiency remains almost the same and the average purity increases
from 2.4% to 10.5%. Without applying the χ2 cut, we would have had to process, on
average, ≈ 154, 000 triplets per event. However, after the cut, this number is reduced to
an average of about ≈ 34, 000 triplets (≈ 80% reduction) per event that will proceed to
the next CA track-finding stage. The following table summaries the average number of
generated segments and signal segments with preselection and χ2 cut :

Segment # Signal Segments # Reconstructed Segments Average Efficiency Average Purity
Doublet 3,255 614,145 99.9% 0.5%

Triplet (before χ2 cut) 3,526 153,953 99.8% 2.4%
Triplet (after χ2 cut) 3,526 34,036 99.6% 10.5%

Table 5.2: Metric summary for different segments. The values are obtained by taking the
average of 90 events of the TrackML dataset.

Triplets that pass successfully the χ2
cut are used to create the CA- grid and evolution

is done similarly to the process discussed in Section 2.1. The next chapter discusses how
the tracks are collected and how do we get the best track by resolving ambiguity.

29

(a) Efficiency (b) Purity

(c) Total Reconstructed Triplets (d) Total Signal Triplets

Figure 5.16: Triplet metric along with reconstructed and signal triplets, calculated for
the barrel region of the TrackML dataset. The triplets are formed with the preselection
cuts described in Table 5.1. Each plot shows the ranges of values obtained for 90 events
of the TrackML dataset.

30

Figure 5.17: The normalized χ2 distribution for signal and non-signal triplets, with the
y-axis on a logarithmic scale. The peak of non-signal triplets around zero occurs because
we also construct triplets with pT less than 1 GeV due to the momentum cut on doublets
(Section 5.1.2). Hence non-signal triplet may belong to an actual physical track but not
signal tracks as described in Section 4.2.

31

(a) Efficiency (b) Purity

(c) Reconstructed Triplets after χ2
cut

Figure 5.18: Triplet metric after applying χ2
cut = 6. The efficiency remains almost similar

as before applying χ2 cut (Figure 5.16a) and the mean purity increase from 2.4% to
10.5%. The average number of triplets reduces to ≈ 34, 000 per event after applying the
cut.

32

Chapter 6

Track Collection and Results

Triplets obtained after χ2 cut are used to build CA grid. After the evolution, all possible
track candidates are formed. This chapter discusses how we collect tracks from the
final configuration of CA and select the best tracks based on χ2, fitted momentum, and
ambiguity resolution. Ultimately, we get a collection of track candidates that do not
share any hits.

6.1 Track Collection
Once the CA evolution with triplets is performed and the final configuration is obtained
for an event, a track collection step is applied that groups triplets into track candidates.
The process is similar to the one discussed in Section 2.2. In the track collection step, a
triplet is selected with a cell value1 of 8 belonging to barrel layers (8, 9, 10). From this
selected triplet (say J), its neighbors are collected in descending order of cell values, and
the tree-like structure is obtained as shown in Figure 6.1.

Figure 6.1: Tree structure originating from a triplet J in the layers (8,9,10). The circle
represents a cell i.e. triplet with their letter identifier and the cell value. Above each cell,
their respective layer combinations are shown.

There are a total of 4 track candidates that originate from triplet (J). The four
possible tracks can be arranged in a 2-dimensional matrix where each row represents a
track candidate. The obtained tracks from the configuration shown in Figure 6.1 is given
by the following matrix :

1The maximum value of a cell belonging to layers (8, 9, 10) can be 8 and we intend to find only the
longest track chain.

33

J I H G F D C A
J I H G F D C B
J I H G F E C A
J I H G F E C B

 (6.1)

Note that the track candidates are now constructed with triplet identifiers. They can
also be converted to their respective hit identifiers as well. The same procedure is done
for all the triplets that has a cell value of 8 and belong to layers (8, 9, 10). Once all
possible track candidates from an event are generated the χ2 for all track candidates are
calculated using the algorithm described in Section 3.2.2. The χ2 further helps to filter
out the best track among track candidates that share one or more hits/triplets.

6.2 CA Performance Evaluation
Once all possible track candidates from the CA algorithm are reconstructed, the algorithm
performance is evaluated by signal efficiency and signal purity as discussed in Section 5.2.
The goal is to reconstruct as many signal tracks (Section 4.2) as possible. To analyze the
performance two matching schemes have been used in this thesis :

1. 50% Matching: If within a reconstructed track candidate, more than 50% of hits
match to a signal track, then it is counted as a successfully reconstructed signal
track. If two or more track candidates correspond to the same signal track, the
reconstructed track is counted only once, avoiding any double-counting.

2. Perfect Matching: If within a reconstructed track candidate all hits (100 %)
correspond to a signal track, then only it is counted as a successfully reconstructed
signal track.

Figure 6.2: Performance metric of CA algorithm implemented on triplets satisfying χ2

cut (Figure 5.18), along with their mean value for 90 events of the TrackML dataset.
The efficiency is shown for two matching i.e. 50% and perfect matching. The second plot
shows the total tracks reconstructed by CA and the actual signal tracks.

34

Therefore both efficiency and purity will be calculated for two matching crite-
ria. In both definitions only the idea of when a track candidate is called “signal" changes.
The efficiency for an event is calculated by the following ratio:

Track Efficiency =
#reconstructed signal tracks

#total signal tracks
(6.2)

At the early stage of performance evaluation of CA, the quantity purity can be
misleading due to the presence of tracks sharing one or multiple hits and belonging to
one signal track, it is calculated during the final steps when reconstructed track candidates
do not share any hits among them. The purity is determined using a similar formula as
shown in Equation 5.5 :

Track Purity =
#reconstructed signal tracks
#total reconstructed tracks

(6.3)

For the 90 events of the TrackML dataset, the performance plots are shown in Figure 6.2.
The average efficiency is 98.5% which is same to both matchings. This shows the capa-
bility of CA algorithm to reconstruct a significant amount of signal tracks. However, the
number of reconstructed tracks per event is almost 18 times higher than the actual signal
tracks. This discrepancy arises because tracks share hits or triplets. The next section
discusses how to filter the best tracks from the reconstructed ones without significantly
impacting the efficiency.

6.3 Ambiguity Resolution
The reconstructed tracks by CA are further analyzed to reduce the combinatorics. For
this, the track fit algorithm GTTF (Section 3.2.2) is implemented for all tracks and their
χ2 and fitted momentum p is calculated. Based on these values the ambiguity resolution
is performed. The next two sections describe them briefly.

6.3.1 χ2 and Momentum p cut

The normalized χ2 distribution for signal tracks and all tracks (obtained after CA) is
shown in Figure 6.3. The GTTF algorithm also gives the fitted momentum value after
minimization of χ2 [25]. The degrees of freedom for track fitting in 10 barrel layers are
8. The momentum p distribution is shown in Figure 6.4. Based on the signal track
distribution the following cuts are applied to the tracks obtained from CA.

χ2 < 45
p ≥ 1GeV/c

Table 6.1: Selection cuts for track candidates

Only tracks satisfying these cuts are processed for further analysis. The track metric is
calculated for the selected tracks. The performance of the selection cut is shown in Figure
6.5. The mean value of efficiency for both 50% and 100% matching, reduces by the small
amount. The average total number of track candidates after applying the cuts is nearly
halved. The selected tracks are now proceed for further analysis.

35

Figure 6.3: Normalized χ2 distribution (degrees of freedom = 8) for signal tracks and all
tracks (signal+non-signal tracks) obtained by implementing GTTF (Section 3.3) on the
tracks reconstructed by the CA algorithm (Fig. 6.2).

Figure 6.4: Normalized momentum p distribution for signal tracks and all tracks
(signal+non-signal tracks) obtained by implementing GTTF (Section 3.3) on the tracks
reconstructed by the CA algorithm (Fig. 6.2).

36

Figure 6.5: Track metric after applying χ2 and momentum cuts described in Table 6.1

6.3.2 Track Trimming

After applying selection cuts, we address the problem of track candidates sharing multiple
triplets among them as described in Matrix 6.1. The tree structure emerges because the
CA algorithm (CATS [23]) implemented in this thesis lacks terminal points at both ends
of the grid. The trimming step refers to a selection of one best track from tree-like
structure as shown in Figure 6.1. The example shown has the total number of four
possible tracks, we select the track that has minimum χ2. We perform the same step for
all the triplets lying in the last region of the barrel (layers (8, 9, 10)). After applying this
we get the track candidates that do not share any triplet in the outermost region of the
barrel. These filtered tracks are further processed to perform similar trimming from the
other end of the barrel i.e. Layers (1, 2, 3). After this step, the filtered track candidates
do not share any triplets from both ends. The trimming step for the track candidates
can be performed in two ways as listed below :

1. Inside-out: The track candidates obtained after selection cuts (Table 6.1) are first
trimmed from the innermost region of the barrel i.e. layers (1, 2, 3). The filtered
tracks are then trimmed from the outermost region of the barrel (Layers (8, 9, 10)
). The track metric is shown in Figure 6.6.

2. Outside-in: In this approach, tracks are trimmed from the outermost region of the
barrel (Layers (8, 9, 10)) first and then from the inner region (Layers (1, 2, 3)).
The metric for this approach is shown in Figure 6.7

Note that both approaches are symmetric and almost perform similarly after both
trimming steps are implemented. The average 50% matching efficiency remains similar
to the metric we get after the selection cuts (Figure 6.5). However in both cases, after
the second trimming, the average perfect matching efficiency is 97.6%. Which is almost
a 1% reduction compared to CA metric. The average number of tracks at the final stage
in both cases is around ≈ 300 which is closer to the number of average signal tracks
≈ 243. Thus we have reduced the total number of track candidates without affecting
both efficiencies significantly.

37

Figure 6.6: Performance metric for Inside-out approach after applying selection cuts (Fig-
ure 6.5) along with their mean values. The plots show the sequential effect of trimming
performed first from layers (1,2,3) and then layers (8,9,10). The light green box in the
first two efficiencies plots corresponds to the CA metric (Figure 6.2) while in the third
plot it corresponds to the signal tracks we want to reconstruct.

Figure 6.7: Performance metric for Outise-In approach after the selection cuts (6.5)) along
with their mean values. The plots show the sequential effect of trimming performed first
from layers (8,9,10) and then layers (1,2,3). The light green box plot in the first two
efficiencies plots corresponds to the CA metric (Figure 6.2) while in the third plot it
corresponds to signal tracks we want to reconstruct.

38

Figure 6.8: Track performance metric after sequentially applying steps to tracks recon-
structed by CA: selection cuts (χ2, p) → trimming → track sharining hits. The two
approaches for trimming are shown. The efficiency plots show how much we lose in com-
parison to CA (Figure 6.2). The third plot shows how many track candidates we get at
the end. Both trimming steps give similar efficiency and total tracks at the end.

Figure 6.9: Flow diagram of the inside-out approach, with the final box showing the track
after all ambiguity resolution steps, color-coded for clarity.

6.3.3 Track Sharing Hits

After applying trimming there may be a possibility that two or more than two tracks
share one or more than one hit. Earlier the tracks sharing triplets (Equation 6.1) at the
end of the track chain were analyzed by the trimming steps. However, track-sharing hits
may still be present after trimming from both ends. For this, the tracks obtained after
the trimming step (either from the inside-out or outside-in approach) are converted to
their respective hit representation. Then if a hit is common among tracks then the track
with minimum χ2 is selected. The metric obtained from the inside-out and outside-in
approach is shown in Figure 6.8. Both efficiencies remain similar to the performance
shown in Figure (6.6 and 6.7). The average number of reconstructed tracks after this
step does not change significantly.
The three steps of ambiguity resolution are applied to tracks reconstructed by the CA
algorithm sequentially. The two approaches inside-out and outside-in are shown in Figure
6.9 and 6.10. Both approaches are almost symmetric and give equal track metrics at the
end (Figure 6.8).

6.4 Results
After successfully reducing combinatorics without affecting efficiencies significantly the
purity is calculated for both 50% matching and perfect matching. The purity is shown in
Figure 6.11, for the final step of ambiguity resolution (Section 6.3.3). The average signal
purity and efficiency for both matchings are around ≈ 79% and ≈ 98% respectively.

39

Figure 6.10: Flow diagram of the outside-in approach, with the end box showing the
track after all ambiguity resolution, color-coded for clarity.

Figure 6.11: Purity plots for both matchings. The plots are shown for the final config-
urations after applying ambiguity resolution steps sequentially as mentioned in Section
6.3

.

However, it does not mean that the rest of the ≈ 20% particles constructed are fake
tracks. They may belong to physical tracks as well. They are counted as non-signal
because they do not satisfy our signal track definition (Section 4.2). This is shown in
χ2 distribution obtained after the inside-out approach 2 in Figure 6.12 that shows non-
signal tracks have meaningful χ2. Thus we can not get any benefit from the χ2 cut for
improving signal purity of tracks.

To further improve the purity we can utilize the fitted transverse momentum
(pTfit) obtained from the GTTF algorithm. The distribution is shown in Figure 6.13 for
the final configuration of tracks obtained from the inside-out approach. The non-signal
distribution peaks much higher before pT <= 1GeV which shows that non-signal tracks
are essentially the ones that do not satisfy our signal definition.

Thus we pass one more selection cut based on fitted transverse momentum to the
track candidates obtained from the final stage of the inside-out (Figure 6.9) approach for
every event and then the mean is calculated. For various cut values3 of pT the metrics
are listed in Table 6.2. The efficiency and purity for pT = 1 GeV gives the maximum
value for both matchings (The working point is selected based on F1-score [38]).

2Both approaches (Figure 6.9 and 6.10) give similar results thus the analysis in this section is based
on inside-out approach.

3This cut is different than the one introduced for doublets 5.1.2

40

Figure 6.12: Normalized χ2 distribution (degrees of freedom = 8) for signal and non-
signal tracks obtained from the final tracks from the inside-out approach (Fig. 6.9).

Figure 6.13: Normalized fitted pT distribution for signal and non-signal tracks obtained
from the final tracks from the inside-out approach (Fig. 6.9).

pT cut (GeV/c) Mean Efficiency Mean Purity
50% Matching Perfect Matching 50% Matching Perfect Matching

0.5 0.9811 0.9756 0.7939 0.7894
0.6 0.9811 0.9756 0.7939 0.7894
0.7 0.9811 0.9756 0.7975 0.7930
0.8 0.9811 0.9756 0.8326 0.8280
0.9 0.9811 0.9756 0.8992 0.8941
1.0 0.9627 0.9573 0.9943 0.9887

Table 6.2: Mean Efficiency and Mean Purity per event, for two matching criteria obtained
after applying pT cut to tracks from the final stage of the inside-out approach.

41

Figure 6.14: Final track performance metric along with their mean obtained after ap-
plying steps sequentially - CA Tracks → ambiguity resolution (inside-out) → pT cut
on tracks. The efficiency and purity are shown for two matchings. The rightmost plot
describes the number of remaining tracks after applying the steps in comparison to an
actual number of signal tracks.

With this, the final metric of the CA algorithm combining ambiguity resolution
(inside-out) plus additional pT = 1 GeV/c cut on resulted tracks are shown in. The
average efficiency and purity per event are ≈ 96% and ≈ 99% for both matchings respec-
tively. The average number of total tracks per event has also been reduced to 236 which
was originally 4235 obtained from CA (Figure 6.2). Table 6.3 summarizes the sequential
effect of the ambiguity resolution along with pT cut to the tracks reconstructed by CA.

Stage Mean Efficiency (%) Mean Purity (%) Reconstructed
50% Matching Perfect Matching 50% Matching Perfect Matching Tracks

CA algorithm 98.5 98.5 - - 4235
χ2 and p cut 98.1 98.1 - - 2339
Trim(1,2,3) 98.1 97.7 - - 607
Trim(8,9,10) 98.1 97.6 - - 301

Track Sharing hits 98.1 97.6 79.5 79.1 300
pT cut = 1 GeV 96.3 95.7 99.4 98.9 236

Table 6.3: The summary table of average track metrics and the average reconstructed
tracks at different stages. All stages are applied sequentially (top to bottom) and the
inside-out approach is chosen for ambiguity resolution. The entries in purity are only
filled when track candidates do not share any hits among them. The average number
of present signal tracks is 244. The last row is highlighted in bold to indicate the final
track metric.

This final tracks (last row of Table 6.3) can be used for further analysis. The pT
distribution of the reconstructed final tracks and the signal tracks is shown in Figure 6.15
which shows the reasonably good agreement between the reconstructed pT and signal
track pT obtained from the TrackML dataset.

42

Figure 6.15: The normalized distribution of pT with y axis is in logarithmic scale. For
final tracks, the pt is reconstructed from the GTTF algorithm. For the signal tracks this
is already given in the TrackML dataset.

43

Chapter 7

Discussion and Outlook

The CA algorithm, fitting methods, and ambiguity resolution techniques give an impres-
sive signal efficiency of ≈ 96% and signal purity of ≈ 99% for perfect matching. This
explains the potential of the algorithm for track reconstruction for the HL-LHC phase.
This chapter concludes the thesis with a comprehensive discussion of the results with the
outlook.

7.1 Discussion
Forming track candidates with CA was inherently simple but the complexity of the al-
gorithm arose in forming triplets with preselection cuts and applying triplet fit to them.
The following sections conclude results obtained ion chapter 5 and 6 as follows:

1. Triplet Formation: The triplet-building stage along with fitting constitutes the
most computationally intensive portion of the algorithm, consuming a substantial
amount of the overall processing time. With the four preselection cuts for building
doublets and triplets (nz0 = 4, pTcut = 0.6, ndθ = 3, ndκ = 6), the flow table
describes how much average metric per event we get -

Segment # Signal Segments # Reconstructed Segments Average Efficiency Average Purity
Doublet 3,255 614,145 99.9% 0.5%

Triplet (before χ2 cut) 3,526 153,953 99.8% 2.4%
Triplet (after χ2 cut) 3,526 34,036 99.6% 10.5%

Table 7.1: Metric summary for different segments. The values are obtained by taking the
average of 90 events of the TrackML dataset.

The doublets and triplets were initially formed using loose selection criteria by
taking the integer values of the layer-wise cuts, resulting in approximately 600,000
doublets and 154,000 triplets per event. This high segment generation yields good
efficiency, capturing all signal segments, with the number of triplets further reduced
after applying the χ2 cut. However, the purity was very low with these cut values.
If the algorithm is further targeted for hardware acceleration, this step can be
optimized by taking real values for the layer-wise selection cuts (nz0 , ndθ, ndκ).

2. Tracking Performance: The reconstructed track candidates by CA, were much
higher due to the heavy pile-up environment. This step reconstructs signal tracks

44

with good efficiency but also gives rise to many combinations of tracks. The am-
biguity resolution implemented in this thesis was a very robust way of reducing
combinatorics. The perfect matching efficiency goes from 98.5 % to 95.7 % (Table
6.3). The performance metric as outlined in Table 6.3, shows the effect of pT cut
to the final track metric. This cut affects both efficiency compared to other stages
but also increases purity to 99%. The distribution shown in Figure 6.15 shows the
reconstructed tracks and their fitted momentum pT does agree with the TrackML
dataset value.

7.2 Outlook
The implementation of the cellular automata-based track finder in this thesis opens up
several avenues for future exploration with this aspect:

1. We devised CA for finding the longest track chain in the barrel region (10 hits), and
avoid calling a “track” a signal if it misses a detector hit due to detector inefficiency.
The algorithm can also be used for reconstructing track candidates with hits < 10
and accounting for detector inefficiencies. Thus the tracking performance can be
calculated concerning all physical tracks.

2. The trimming step of finding a track from a tree was a robust way of constructing
tracks which could also benefit by some advanced algorithm for pile up [39].

3. The region of interest in this thesis was only barrel, the CA algorithm could be
extended to the other part of the detector and evaluate full tracking performances.
When we extend to the other region of the barrel the algorithm will require some
additional handling because now the track collection would be complicated having
different number of hits. Usually, the longest tracks are found first and then tracks
with shorter lengths are built.

4. The CA approach implemented in this thesis was solely on CPUs and further this
can benefit from hardware acceleration with GPUs along with fitting algorithms to
explore its online tracking capability.

5. The algorithm performance can also be compared to the state-of-the-art combina-
torial Kalman filter and studied for ATLAS ITk [40].

45

Bibliography

[1] L. R. Evans. The Large Hadron Collider Project. Technical Report LHC Project
Report 53. Geneva: CERN, 1996.

[2] David Rohr et al. “Track Reconstruction in the ALICE TPC using GPUs for
LHC Run 3”. In: arXiv preprint arXiv:1811.11481 (2018). arXiv: 1811 . 11481
[physics.ins-det].

[3] ATLAS Collaboration. “The ATLAS Experiment at the CERN Large Hadron Col-
lider”. In: Journal of Instrumentation 3 (2008), S08003. doi: 10 . 1088 / 1748 -
0221/3/08/S08003. url: https://doi.org/10.1088/1748-0221/3/08/S08003.

[4] CMS Collaboration. “The CMS Experiment at the CERN LHC”. In: Journal of
Instrumentation 3 (2008), S08004. doi: 10.1088/1748-0221/3/08/S08004. url:
https://doi.org/10.1088/1748-0221/3/08/S08004.

[5] LHCb Collaboration. “The LHCb Detector at the LHC”. In: Journal of Instrumen-
tation 3 (2008), S08005. doi: 10.1088/1748-0221/3/08/S08005.

[6] Béjar Alonso, I. and Brüning, O. and Fessia, P. and Lamont, M. and Rossi, L. and
Tavian, L. and Zerlauth, M. “High-Luminosity Large Hadron Collider (HL-LHC):
Technical design report”. In: CERN Yellow Reports: Monographs 10 (2020). doi:
10.23731/CYRM-2020-0010. url: https://cds.cern.ch/record/2749422.

[7] CERN. High-Luminosity LHC. https://hilumilhc.web.cern.ch/. Accessed:
2024-08-23. 2024.

[8] D. Contardo. Highlights of LHC, ATLAS, CMS and LHCb upgrades. Séminaire
thématique GT01: « Physique des particules », 12-13 Mars 2020, IP2I Lyon. 2020.

[9] CERN. Run 3: an opportunity to expand the LHC physics programme. https :
//www.home.cern/press/2022/run-3. Accessed: August 29, 2024. 2022.

[10] G. Arduini et al. “LHC Upgrades in preparation of Run 3”. In: Journal of Instru-
mentation 19.05 (May 2024), P05061. doi: 10.1088/1748-0221/19/05/P05061.
url: https://dx.doi.org/10.1088/1748-0221/19/05/P05061.

[11] Rudolf Frühwirth et al. Pattern Recognition, Tracking and Vertex Reconstruction
in Particle Detectors. Particle Acceleration and Detection. Springer, 2013. isbn:
978-3-642-35099-5.

[12] Moritz Kiehn et al. “The TrackML high-energy physics tracking challenge on Kag-
gle”. In: EPJ Web Conf. 214 (2019), p. 06037. doi: 10.1051/epjconf/201921406037.
url: https://cds.cern.ch/record/2699475.

[13] TrackML. TrackML Particle Tracking Challenge. https://www.kaggle.com/c/
trackml-particle-identification. Accessed: 2024-10-22. 2018.

46

https://arxiv.org/abs/1811.11481
https://arxiv.org/abs/1811.11481
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1088/1748-0221/3/08/S08005
https://doi.org/10.23731/CYRM-2020-0010
https://cds.cern.ch/record/2749422
https://hilumilhc.web.cern.ch/
https://www.home.cern/press/2022/run-3
https://www.home.cern/press/2022/run-3
https://doi.org/10.1088/1748-0221/19/05/P05061
https://dx.doi.org/10.1088/1748-0221/19/05/P05061
https://doi.org/10.1051/epjconf/201921406037
https://cds.cern.ch/record/2699475
https://www.kaggle.com/c/trackml-particle-identification
https://www.kaggle.com/c/trackml-particle-identification

[14] R Mankel. “Pattern recognition and event reconstruction in particle physics exper-
iments”. In: Reports on Progress in Physics 67.4 (Mar. 2004), pp. 553–622. issn:
1361-6633. doi: 10.1088/0034-4885/67/4/r03. url: http://dx.doi.org/10.
1088/0034-4885/67/4/R03.

[15] Wikipedia contributors. Graphics processing unit. Accessed: 2024-10-22. 2024. url:
https://en.wikipedia.org/wiki/Graphics_processing_unit.

[16] Javier Duarte and Jean-Roch Vlimant. “Graph Neural Networks for Particle Track-
ing and Reconstruction”. In: Artificial Intelligence for High Energy Physics. WORLD
SCIENTIFIC, Feb. 2022, pp. 387–436. isbn: 9789811234033. doi: 10.1142/9789811234033_
0012. url: http://dx.doi.org/10.1142/9789811234033_0012.

[17] Stephen Wolfram. Notes on Cellular Automata and Complexity. Accessed: 2024-08-
26. 2023. url: https://www.wolframscience.com/reference/notes/876b/.

[18] Martin Gardner. “Mathematical Games – The fantastic combinations of John Con-
way’s new solitaire game “life””. In: Scientific American 223 (Oct. 1970), pp. 120–
123.

[19] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning Ways for
Your Mathematical Plays. Natick, MA, 2001.

[20] Michael J. Gibson, Edward C. Keedwell, and Dragan A. Savić. “An investigation
of the efficient implementation of cellular automata on multi-core CPU and GPU
hardware”. In: Journal of Parallel and Distributed Computing 75 (2015), pp. 1–15.
doi: 10.1016/j.jpdc.2014.10.011.

[21] B. Marchetti et al. “ARES: Accelerator Research Experiment at SINBAD”. In:
Proceedings of IPAC15. JACoW. Richmond, VA, 2015, TUPWA029.

[22] D Funke et al. “Parallel track reconstruction in CMS using the cellular automaton
approach”. In: Journal of Physics: Conference Series 513.5 (2014), p. 052010. doi:
10.1088/1742-6596/513/5/052010.

[23] I. Abt et al. “CATS: a cellular automaton for tracking in silicon for the HERA-B
vertex detector”. In: Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 489.1-3 (Aug.
2002), pp. 389–405. doi: 10.1016/S0168-9002(02)00790-8.

[24] Valentina Akishina. “Four-dimensional event reconstruction in the CBM experi-
ment”. PhD thesis. Frankfurt am Main, Germany: Goethe University Frankfurt,
2019.

[25] Andre Schöning. A General Track Fit based on Triplets. 2024. arXiv: 2406.05240
[physics.ins-det]. url: https://arxiv.org/abs/2406.05240.

[26] V. L. Highland. “Some Practical Remarks on Multiple Scattering”. In: Nucl. In-
strum. Methods 129 (1975), p. 497. doi: 10.1016/0029-554X(75)90743-0.

[27] Kaggle. Kaggle: Your Home for Data Science. https://www.kaggle.com. Accessed:
2024-10-21. 2024.

[28] Sebastien Roy-Garand. “ATLAS Inner TracKer Upgrade”. In: 11th Edition of the
Large Hadron Collider Physics Conference. On behalf of the ATLAS ITk collabo-
ration. ATLAS ITk collaboration. Belgrade, Serbia, May 2023. url: https://cds.
cern.ch/record/2869708/files/ATL-ITK-PROC-2023-011.pdf.

47

https://doi.org/10.1088/0034-4885/67/4/r03
http://dx.doi.org/10.1088/0034-4885/67/4/R03
http://dx.doi.org/10.1088/0034-4885/67/4/R03
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://doi.org/10.1142/9789811234033_0012
https://doi.org/10.1142/9789811234033_0012
http://dx.doi.org/10.1142/9789811234033_0012
https://www.wolframscience.com/reference/notes/876b/
https://doi.org/10.1016/j.jpdc.2014.10.011
https://doi.org/10.1088/1742-6596/513/5/052010
https://doi.org/10.1016/S0168-9002(02)00790-8
https://arxiv.org/abs/2406.05240
https://arxiv.org/abs/2406.05240
https://arxiv.org/abs/2406.05240
https://doi.org/10.1016/0029-554X(75)90743-0
https://www.kaggle.com
https://cds.cern.ch/record/2869708/files/ATL-ITK-PROC-2023-011.pdf
https://cds.cern.ch/record/2869708/files/ATL-ITK-PROC-2023-011.pdf

[29] Simone Paoletti. The CMS Tracker Upgrade for the High Luminosity LHC. Tech.
rep. Geneva: CERN, 2020. doi: 10.22323/1.364.0138. url: https://cds.cern.
ch/record/2723307.

[30] T. Sjöstrand, S. Mrenna, and P. Skands. “A brief introduction to PYTHIA 8.1”.
In: Computer Physics Communications 178 (2008), pp. 852–867. doi: 10.1016/j.
cpc.2008.01.036.

[31] Xiaocong Ai et al. “A Common Tracking Software Project”. In: Computing and
Software for Big Science 6.1 (Apr. 2022). issn: 2510-2044. doi: 10.1007/s41781-
021-00078-8. url: http://dx.doi.org/10.1007/s41781-021-00078-8.

[32] Python Software Foundation. Python. Accessed: YYYY-MM-DD. 2023. url: https:
//www.python.org/.

[33] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2.

[34] Wes McKinney. Data Analysis in Python. ISBN: 978-1-449-34889-0. O’Reilly Media,
2010.

[35] J. D. Hunter. “Matplotlib: A 2D Graphics Environment”. In: Computing in Science
& Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[36] Sabrina Amrouche et al. “The Tracking Machine Learning Challenge: Throughput
Phase”. In: Computing and Software for Big Science 7.1 (2023), p. 1. doi: 10.1007/
s41781-023-00094-w. url: https://doi.org/10.1007/s41781-023-00094-w.

[37] Tamasi Rameshchandra Kar. “A Triplet Track Trigger for Future High Rate Collider
Experiments”. PhD thesis. Heidelberg University, 2020. doi: 10.11588/heidok.
00029043. url: https://archiv.ub.uni-heidelberg.de/volltextserver/
29043/.

[38] Roy Van and Patrick Raes. “The F1 score and its application to classification prob-
lems”. In: Journal of Machine Learning Research 16 (2015), pp. 103–117. url:
http://www.jmlr.org/papers/volume16/van15a/van15a.pdf.

[39] Ferenc Siklér. Dense tracking: for efficient track reconstruction in high multiplicity
events. Talk presented at Connecting The Dots / Intelligent Trackers 2017. Ac-
cessed: [Insert access date]. Mar. 2017. url: https://indico.cern.ch/event/
577003 / contributions / 2415235 / attachments / 1424172 / 2183976 / sikler _
denseTracking_ctdwit17.pdf.

[40] ATLAS Collaboration. “Technical Design Report for the ATLAS Inner Tracker Strip
Detector”. In: CERN-LHCC-2017-005 (2017). arXiv: 1707.04669 [physics.ins-det].

48

https://doi.org/10.22323/1.364.0138
https://cds.cern.ch/record/2723307
https://cds.cern.ch/record/2723307
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1007/s41781-021-00078-8
https://doi.org/10.1007/s41781-021-00078-8
http://dx.doi.org/10.1007/s41781-021-00078-8
https://www.python.org/
https://www.python.org/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1007/s41781-023-00094-w
https://doi.org/10.1007/s41781-023-00094-w
https://doi.org/10.1007/s41781-023-00094-w
https://doi.org/10.11588/heidok.00029043
https://doi.org/10.11588/heidok.00029043
https://archiv.ub.uni-heidelberg.de/volltextserver/29043/
https://archiv.ub.uni-heidelberg.de/volltextserver/29043/
http://www.jmlr.org/papers/volume16/van15a/van15a.pdf
https://indico.cern.ch/event/577003/contributions/2415235/attachments/1424172/2183976/sikler_denseTracking_ctdwit17.pdf
https://indico.cern.ch/event/577003/contributions/2415235/attachments/1424172/2183976/sikler_denseTracking_ctdwit17.pdf
https://indico.cern.ch/event/577003/contributions/2415235/attachments/1424172/2183976/sikler_denseTracking_ctdwit17.pdf
https://arxiv.org/abs/1707.04669

Acknowledgments

I would like to express my heartfelt gratitude to my supervisors, Prof. Dr. André Schön-
ing and Dr. Sebastian Dittmeier of the Physikalisches Institute, Heidelberg, for offering
me the opportunity to work on this exciting project on Cellular Automata. Their guid-
ance and insightful discussions throughout the project were invaluable, and I thoroughly
enjoyed exploring, creating, and learning within such an intellectually stimulating envi-
ronment. I would also like to thank our group secretary, Claudia Wallenwein, for her
assistance with complex travel arrangements, which eased the logistics of my work. The
weekly group meetings were instrumental to the progress of this thesis, enhancing my un-
derstanding of the algorithms involved. I am sincerely grateful to all the members of the
Mu3e and ATLAS groups for their support and camaraderie. Additionally, I would like
to thank my past supervisors from DESY, David, Yee, and Dr. Federico Meloni, whose
encouragement and support during my summer project provided a strong foundation for
this work.

Coming from the foothills of the Himalayas, I have always been drawn to the concept
of “SANGATKAAR” in pahadi music—a term that embodies the essence of musicians
supporting one another in harmony. I feel incredibly blessed to have so many sangatkaar
in my life, without whom this MSc journey would not have been possible. My deepest
thanks go to my siblings and cousins: Saurabh, Neeru, Laxmi, Hema, Deepak, Shivam,
Deepika, Ankur, and Kavita. My sister, Neelam, played a particularly vital role, through-
out this time.

Alongside my family, I am grateful for an amazing set of friends who have stood by me
unconditionally. My high school friend, Rishabh Rathor, and my BSc friends, Anuj and
Sukhveen, have been pillars of support, offering invaluable guidance and companionship.
During this journey, our online musical nights and philosophical discussions about life
were a breath of fresh air.

In Heidelberg, I was fortunate to meet friends like Shreya, David, and Kanika, whose
kindness and encouragement helped me through challenging times. The constant support
and encouragement from Shreya and Kanika were invaluable throughout this journey.

As a musician, I find that research is quite similar to music where unknown melodies
can be created from known notes. The way music encapsulates the breadth of human
emotion is a profound inspiration, and I am deeply grateful to the artists whose creations
helped me stay focused and connected throughout this thesis. I sincerely thank Nusrat
Fateh Ali Khan, Rahat Fateh Ali Khan, Pt. Hariprasad Chaurasia, Amjad Ali Khan, Pt.
Shiv Kumar Sharma, Zakir Hussain, Rakesh Chaurasia, Anoushka Shankar, Coke Studio
Pakistan, Hans Zimmer, Satinder Sartaaj, Ludovico Einaudi, and Hadiqa Kiani.

In closing, I would like to share a final lesson that guided me through this journey:

“Take care of small things, and the big things will take care of themselves.”

	Introduction
	High Luminosity LHC upgarde
	Tracking Detectors
	Track Reconstruction

	Track Finding
	Cellular automata (CA)
	Example: The Glider Gun

	Track Finding with Cellular Automata
	Triplet as a Cell

	Track Fitting
	Genereal Idea
	Track Fitting
	Triplet Fit
	Global Triplet Track Fit (GTTF)

	CA for the TrackML Dataset
	TrackML dataset
	Target Signal
	Track Finding with CA
	Software Environment and Libraries

	Triplet Generation
	Doublet Generation
	The z0 based cut
	The transverse momentum (pT) cut

	Efficiency and Purity
	Doublet cut selection nz0, pTcut
	Doublet Metric
	Triplet Formation
	The Polar Angle Difference d
	The Curvature Difference d

	Triplet cut selection nd, nd
	Triplet Metric and 2 cut

	Track Collection and Results
	Track Collection
	CA Performance Evaluation
	Ambiguity Resolution
	2 and Momentum p cut
	Track Trimming
	Track Sharing Hits

	Results

	Discussion and Outlook
	Discussion
	Outlook

