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Abstract

This dissertation presents a search for physics beyond the standard model by the
study of lepton flavour violation in four-body charm decays. A search for the decays
D0 → π−π+µ±e∓, D0 → K−π+µ±e∓ and D0 → K−K+µ±e∓ using data collected by the
LHCb experiment is performed. These decays provide a unique opportunity to search
for new physics in the up-type quark sector, similar to multiple searches performed
in the down-type quark sector in other works. The decays are studied using proton-
proton collision data corresponding to 6 fb−1 of integrated luminosity recorded at a
centre-of-mass energy of 13TeV during the years 2015-2018. An expected upper limit on
the branching fraction for these decays is estimated at the order of 10−8. Furthermore,
separate expected limits for decays with different relative charge constellations in the
final dilepton state in respect to the flavour of the D0 meson are reported, providing
increased sensitivity to new physics scenarios. It is shown that the current best limit
on the branching ratios can be improved by two orders of magnitude with the LHCb
dataset. This analysis is performed on a blind dataset with possible D0 → π−π+µ±e∓,
D0 → K−π+µ±e∓ and D0 → K−K+µ±e∓ candidates removed from the dataset. The
results are therefore validated by performing an updated measurement of the branching
fraction for D0 → π−π+µ−µ+ and D0 → K−K+µ−µ+ decays.





Zusammenfassung

Diese Dissertation befasst sich mit einer Suche nach Physik jenseits des Standard-
modells durch die Untersuchung von Lepton-Flavour-Verletzung in Vierkörper -Charm-
Zerfällen. Es wird eine Suche nach den Zerfällen D0 → π−π+µ±e∓, D0 → K−π+µ±e∓ und
D0 → K−K+µ±e∓ unter Verwendung der vom LHCb-Experiment gesammelten Daten
durchgeführt. Diese Zerfälle bieten eine einzigartige Gelegenheit, nach neuer Physik im Up-
Typ-Quark-Sektor zu suchen, ähnlich wie bei mehreren Suchen im Down-Typ-Quark-Sektor
in der Vergangenheit. Die Zerfälle werden anhand von Proton-Proton-Kollisionsdaten
untersucht, die einer integrierten Luminosität von 6 fb−1 entsprechen und bei einer
Schwerpunktsenergie von 13TeV in den Jahren 2015-2018 aufgezeichnet wurden. Eine
erwartete Obergrenze für den Verzweigungsverältnisse für diese Zerfälle wird bestimmt
und liegt in der Größenordnung von 10−8. Darüber hinaus werden separate erwartete
Grenzwerte für Zerfälle mit unterschiedlichen relativen Ladungskonstellationen im finalen
Zwei-Leptonystem im Vergleich zum D0-Meson angegeben, die eine erhöhte Empfind-
lichkeit für Szenarien der neuen Physik bieten. Es wird gezeigt, dass die derzeit beste
Grenze für die Verzweigungsverhältnisse mit dem LHCb-Datensatz um zwei Größenord-
nungen verbessert werden kann. Für diese Analyse eine Blindstudie ist durchgeführt, wo
mögliche D0 → π−π+µ±e∓, D0 → K−π+µ±e∓ und D0 → K−K+µ±e∓ aus dem Daten-
satz entfernt werden. Die Ergebnisse sind daher durch eine aktualisierte Messung der
Verzweigungsverhältnisse für D0 → π−π+µ−µ+ und D0 → K−K+µ−µ+ Zerfälle validiert.





Preface

This analysis was performed with a small analysis team within the LHCb collaboration.
The LHCb collaboration is an international association of more than 1500 scientists and
engineers from 99 institutes in 22 countries (April 2024). This implies the usage of common
software to analyse the data collected by the LHCb experiment. The collection of the
data and the development of common software used to analyse the data result from the
efforts of many current and former collaboration members.
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Chapter 1

Introduction

The universe, by today’s understanding, is in physical terms described by two prevailing
theories, General Relativity and the Standard Model (SM) of particle physics. General
Relativity is used to describe gravitational effects, which typically manifest at macroscopic
scales. The SM describes the three other fundamental forces, the electromagnetic, the
weak and the strong force, including their interaction with the basic building blocks of
matter. The SM itself was confirmed and completed with the discovery of the Higgs boson
2012 [1, 2]. To date, the SM describes experimental results of high-energy physics with
great accuracy. However, the SM can not explain the large matter-antimatter asymmetry
seen in the universe [3]. Other examples of phenomena unexplained by the SM are the
non-zero neutrino mass or the presence of dark matter and dark energy observed at large
scales. One of the fundamental goals in physics is to understand and describe nature
through a universal theory, which the SM does not. Most high-energy experiments aim,
therefore, to find its limits, for example by the search for forbidden processes.

Proposed by Sakharov [4], three so-called ”Sakharov conditions” have to be fulfilled in
order to explain the large matter-antimatter asymmetry in the universe:

1. Interactions out of thermal equilibrium

2. Baryon number violation

3. Charge conjugation Parity violation (CP violation)

Baryon number violation refers to a hypothetical physical process that took place
in the universe’s early phases, introducing a large baryonic asymmetry, also often
referred to as baryogenesis. Similar to this, leptogenesis refers to a hypothetical
physical process in the universe’s early phases that introduces a lepton-antilepton
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asymmetry. Leptogenesis is not strictly necessary to explain the large matter-antimatter
asymmetry. However, charge conservation suggests that lepton- and baryon-asymmetry
should be of the same order of magnitude [5]. In addition, the baryon-lepton number
difference is a precisely conserved property of the SM. Consequently, Leptogenesis
without Baryogenesis is not possible within the SM, implying Physics Beyond the
SM [6]. Therefore, many measurements focus on the search for a lepton number asymmetry.

The LHCb collaboration’s goal is to study flavoured hadrons containing c- and b-quarks.
For this purpose, the LHCb detector is built at the Large Hadron Collider (LHC), a
circular collider situated at the European Organization for Nuclear Research (CERN).
The detector is built at one of four proton-proton collision points, providing many b-
and c-hadrons to study1. This allows the study of Lepton Number (LN) and Baryon
Number (BN) violations. Instead of just the LN, the lepton flavour number, the
generation-dependent lepton number, is often studied. In studies of rare b-hadron decays
sensitive to transitions of the form b → sl+l−, multiple hints for violation of lepton
universality (LU) have been observed [8–12], some but not all could be refuted [13, 14].
These hints further increase the interest in searches of lepton number violation as many
New Physics (NP) models naturally link LU and LN violation.

Searches of lepton flavour number violation (LFV) in c-hadron transitions are less widely
studied than in b-hadron decays, even though c-hadron decays are also sensitive for
searches for LFV [15]. With b-hadrons, the so-called down-type sector, named after the
quark with the same charge in the first generation, is tested. Complementary searches for
the up-type sector can be performed when studying c-hadrons. New Physics does not
necessarily couple equally to down-type quarks (b-decays) and up-type quarks (charm
decays). These studies are crucial to understanding the flavour pattern of possible
SM extensions. The LHCb collaboration is playing a leading role in studying rare
and forbidden decays of charm hadrons, which might be sensitive to effects beyond
the Standard Model. As such, two-body, D0 → µ±e∓ decays [16] and three-body,
D+

(s) → h+l+l− decays [17], decays were already studied at LHCb. The h stands for either
a pion or kaon2.

The BaBar collaboration published a recent search for four-body D0 → h−h(
′)+µ±e∓

1Around 1013 cc̄ quark pairs are produced within the LHCb detectors acceptance between 2015 and
2018 [7].

2This abbreviation will be used throughout this work.
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decays with an upper limit on the branching ratio at around 10−6 at the 90% confidence
level [18]. Up until now, these decays have never been studied within the LHCb
collaboration. This doctoral work presents the search for lepton flavour violation in
four-body charm decays using LHCb data collected between 2015-2018, the world’s
largest dataset of charm decays to date.

This thesis aims to update the limits set by the BaBar collaboration and further explore
lepton flavour violation/conservation in charm decays. With the work already done
for this thesis, it is possible to set up an expected limit in the range of 10−8 − 10−7,
increasing the search sensitivity for this decay by two orders of magnitude. In addition, a
branching fraction measurement for D0 → h−h+µ−µ+ decays is performed, which is used
to validate and crosscheck the still blinded search for LFV. The analysis will only be
unblinded after an internal review and approval from the collaboration.

The structure of the thesis is as follows: chapter 2 introduces the concept of lepton
flavour violation. The LHC accelerator and the LHCb detector with its sub-detectors are
described in chapter 3. In chapter 4, measurement strategy and important methods are
outlined and described. In chapter 5, the possible decay candidate reconstruction and
selection are discussed. From these selected decays, a branching ratio will be calculated.
Two ingredients are needed for this: the number of observed candidates and the efficiency
ratio. The efficiency ratio calculation can be found in chapter 6. The number of observed
candidates and their significance are evaluated by a fit explained in chapter 7. Afterwards,
with the help of pseudo experiments and data-driven methods, all dominant systematic
uncertainties are estimated as explained in chapter 8, followed by a brief summary in
chapter 10. The D0 → h(

′)−h+µ±e∓ decays and D0 → h−h+µ−µ+ decays are studied and
reported alongside each other. The main purpose of this work’s study of D0 → h−h+µ−µ+

decays is to crosscheck the main analysis steps; therefore, no detailed study about all
systematic uncertainties is performed.
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Chapter 2

Phenomenology of LFV in charm
decays

This chapter covers the theoretical background needed to study rare and forbidden four-body
decays of hadrons containing charm quarks. The chapter is split into four parts. First,
a slightly more general overview of the current theoretical framework, provided by the
Standard Model, to describe charm decays is given. Second, the phenomenological
formalism used to describe four-body charm decays is introduced. Third, LFV is explained
as a concept to search for physics beyond the Standard Model. Lastly, the branching
fraction is introduced as an observable to measure the decay rate.

The Standard Model (SM) of particle physics was formulated to describe the interaction
of elementary particles with each other. It has undergone successful validation through
numerous experiments in the last 50 years. Nevertheless, the SM as such is an incomplete
theory, and many unresolved questions remain. One example of its incompleteness is
the absence of gravity within its formalism. Also, none of the particles accounted for in
the SM appear as plausible candidates for dark matter, and the theory fails to explain
the dark matter observed in astrophysical experiments [19–21]. Furthermore, symmetry
violations, like charge-parity violation, present in the SM fail to explain the significant
matter-antimatter asymmetry in the universe [22].

Two decay modes are studied in this thesis. First, D0 → h−h+µ−µ+ decays, which will
also serve as a reference to the primarily studied decays in this thesis. These decays were
already studied in a previous work [23]. Second, D0 → h(

′)−h+µ±e∓ decays are studied,
with the measurement of their branching ratio being the primary goal of this thesis.
D0 → h(

′)−h+µ±e∓ decays themselves are forbidden within the SM and thus cannot be
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described by it. However, an often applied assumption is that if new physics phenomena
exist, they behave similarly to the SM and can be described by minimal extensions. This
may be true or not. With the help of the existing effective field theory and its operators,
it is possible to introduce a generic parameterisation for possible new physics effects.

2.1 Standard Model

The Standard Model (SM) of particle physics, in its current formulation, describes all
interactions in particle physics. The current formulation of the SM dates back to the
mid-1970s [24–26]. For a more detailed and general description, see Ref. [27]. For a more
in-depth reading about D0 → h−h+µ−µ+ decays see Ref. [23].

The SM is a renormalisable quantum field theory. It combines Lorentz invariance (special
relativity) and quantum theory. The model describes twelve matter particles with spin
1/2, and interactions are described by force-carrying particles (gauge bosons) with spin 1.
The underlying symmetry, defining the three forces described by the SM, is given by the
special unitarity group:

GSM = SU(3)C × SU(2)L × U(1)Y (2.1.1)

where SU(3)C invariance leads to the strong interaction and SU(2)L × U(1)Y to the
electromagnetic and weak interaction. Each continuous symmetry of the system, indicated
by the index, leads to a conserved charge, according to Noether’s theorem [28]. The
interactions are mediated by gauge bosons1, coupling to particle fields that carry the
associated charge under the respective symmetry transformation. Like in a classical field
theory, the equation of motion can be determined by minimisation of the action computed
for the Lagrangian. The Lagrangian contains all possible renormalisable terms invariant
under the underlying symmetry group. Summarised in figure 2.1 is the particle content of
the SM.

Matter particles, called fermions, are categorised into two groups, depending on their
gauge-boson interactions: quarks and leptons. Up-type quarks (u, c, t) have an electric
charge of two-thirds, given in units of the electron charge e ≈ 1.6 × 10−19C, and
down-type quarks have an electric charge of −1/3. In the lepton group, it is possible to
separate between charged leptons (e−, µ−, τ−) with a charge of minus one and uncharged

1The integer spin property arises from the gauge invariance.
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Figure 2.1: Standard model of elementary particles grouped by family, generation and flavour [29].

neutrinos (νe, νµ, ντ ). For each particle, an antiparticle exists with inverted charges. As
depicted in figure 2.1, these particles can be divided into three so-called generations.

The strong force binds quarks together, preventing the observation of isolated ”free”
quarks. This force is described by eight massless gluons, which interact exclusively with
objects carrying colour charge, which are quarks and gluons themselves. Due to gluon
self-interactions, the strong force’s coupling strength, αs, increases at large distances,
leading to confinement and prohibiting freely propagating quarks. The typical length scale
of the strong force is 10−15 metres. Quarks combine to form colour-neutral bound states,
called hadrons, including mesons (quark-antiquark pairs) and baryons (combinations of
three (anti-)quarks). Recent experimental findings have confirmed more intricate hadron
structures with four or five quarks, called tetraquarks and pentaquarks, respectively [30,31].
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The theoretical framework governing the strong force is Quantum Chromodynamics
(QCD). Perturbation theory is applicable for predictions when αs is not too large, with
an energy scale ΛQCD ≈ 200MeV defining the boundary above which perturbative
methods can be utilised. Below ΛQCD, where the coupling strength becomes too large,
non-perturbative techniques like lattice QCD are employed. However, in scenarios like
charm physics, where the mass of the c-quark is marginally above ΛQCD, the reliance on
perturbation theory introduces uncertainties.

The electroweak force is a unified description of the electromagnetic and weak forces, and
its comprehension relies on the concept of spontaneous symmetry breaking, a phenomenon
enacted by the Higgs mechanism within the SM. In this framework, an additional scalar
field, known as the Higgs field, possesses a ground state that does not adhere to the
gauge symmetry of the SM. This results in a mixing of three SU(2)L gauge fields and
a single U(1)Y gauge field into two electrically charged gauge bosons, W+ and W−, a
neutral particle Z0 and the massless boson of the electromagnetic force, the photon
(γ). The W± and Z0 particles acquire significant masses, approximately 80GeV/c2 and
91GeV/c2, respectively, becoming massive mediators of the weak force. This high mass
limits the range of the weak interaction to approximately 10−18 metres. In contrast,
the electromagnetic force carried by the massless photon lacks such limitations on its range.

Flavour-changing currents in the SM occur only via weakly charged interactions, mediated
by W±. These interactions are usually in the form q → W+q′, where q and q′ are
quarks of different types, either up- or down-type. Due to a mismatch between the
quark electroweak flavour states and mass eigenstates, the non-diagonal Yukawa coupling
term to the mass introduces a quark mixing matrix called Cabibbo–Kobayashi–Maskawa
(CKM) matrix [32, 33]. The matrix elements of the CKM matrix give the strength of the
flavour-changing weak interaction. This can best be seen when writing the CKM matrix
in the Wolfenstein parameterisation [34]:

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =


1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) Aλ2 1

+O(λ4)

(2.1.2)

with λ ≈ 0.23, A ≈ 0.83, ρ̄ ≈ 0.16 and η̄ ≈ 0.35 [35]. The indices denote the
corresponding transition, Vqq′ . Diagonal elements, Vud, Vcs and Vtb, govern transitions
within a generation and are of the order O(1), while transitions between differ-
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ent generations experience suppression by powers of λ. The SM does not provide
predictions for the individual parameters; the values need to be determined experimentally.

2.1.1 Flavour within the SM and beyond

Baryon and Lepton Number conservation are both accidental symmetries of the SM,
meaning that no fundamental theoretical reason imposed by a SM symmetry exists for
them to be conserved. This thesis studies Lepton Number Violation; therefore, the
following discussion will be limited to leptons; however, in principle, the same string of
argumentation is also valid for Baryon Numbers2.

When studying a decay, the Lepton Number can be defined as L = Nl− − Nl+ , where
Nl−(Nl+) is the number of (anti-)leptons. Lepton Number conservation means that L is
the same for a decay’s initial and final state. This conservation also applies to the different
lepton species and their flavour numbers (Le, Lµ, Lτ ), respectively. The index indicates
the respective lepton and its associated neutrino. Contrary to what was initially stated
in the SM, the observation of neutrino oscillations leads to Lepton Flavour Violation
(LFV) and shows that neutrinos have small yet non-zero masses [36]. Nevertheless, due to
the small neutrino mass, LFV due to neutrinos can be neglected for most high-energy
collision experiments, including the measurement presented in this thesis, as the effects
are multiple orders of magnitudes below the typical experimental sensitivity.

2.2 Searches for New Physics

Two different methodologies are applied in the search for Physics Beyond the Standard
Model, direct and indirect searches. Direct searches involve the exploration of interactions
between new particles, such as potential dark matter candidates and conventional
baryonic matter. These direct searches extend to the direct production of new particles
in the high-energy environment of particle colliders, exemplified by detectors such as
XENONnT [37, 38] or future experiments like DARWIN [39]. These detectors aim to
identify rare interactions between dark matter candidates and the nuclei of a target
material, typically a noble gas e.g. xenon. A typical example of a direct search at particle
colliders is the search and discovery of the Higgs boson by ATLAS and CMS [1, 2].

2To explain the large matter-antimatter discrepancies in the universe both baryon and lepton number
violation would be required.
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Although successful in the past, the sensitivity of these searches is inherently constrained
by the available centre-of-mass energy in the collisions.

Indirect searches for New Physics are, for example, done by Muon g-2, Belle, LHCb or in
experiments measuring the electron electric dipole (EDM). According to Heisenberg’s
uncertainty principle, quantum loops allow the participation of heavy, as-yet-unobserved
particles in quantum mechanical processes, even when the energy is insufficient for direct
production. It is, therefore, possible to probe physics beyond the SM that goes beyond the
limitations of direct collider searches. With this approach, new physics may manifest itself
in processes forbidden by the SM or in modifications to existing SM processes through
interference with SM contributions. A typical example of this was the observation of
neutral kaon mixing and the following unexpected suppression of flavour-changing neutral
currents (FCNC) [40]. This motivated the formulation of the GIM mechanism [41] and
the consequent prediction of a fourth quark. This prediction was confirmed by the direct
discovery of J/ψ, a bound cc̄-state [42]3. This also highlights one of the weaknesses of indi-
rect searches. A direct observation is often needed to confirm the prediction unambiguously.

The study of FCNC transitions with leptons in the final state, typically referred to as
semileptonic decays, provides one such way to search for NP. These are, for example,
b→ sl−l+ and b→ dl−l+ transitions in B-decays, s→ dl−l+ transitions in kaon decays,
and c → ul−l+ transitions in charm decays, where l−l+ is a pair of oppositely charged
leptons. Of these transitions, those transitions of the form c→ ul−l+ play a unique role
as they are the only transitions accessing the bound up-type sector.

One of the main challenges in studying charm decays in general and semileptonic charm
decays specifically is the large uncertainties in predicting QCD effects. To circumvent this
problem, theoretical ”clean” observables are desired, which provide a smaller theoretical
uncertainty than experimentally expected. Angular observables or searches in phase-space
regions where QCD effects are suppressed provide good opportunities to search for
new physics contributions. For example, after the first observation of D0 → h−h+µ−µ+

decays [44], one goal was to measure the relative branching fraction in regions away
from phase-space regions dominated by intermediate resonances4 [44]. In figure 2.2,

3Three months earlier, a possible first observation of a charm decay in cosmic ray showers was
published [43].

4Intermediate resonances refer to decays via intermediate particle state for example via η((uū+ dd̄−
2ss̄)/

√
6), η′((uū+ dd̄+ ss̄)/

√
3), ρ0((dd̄+ uū)/

√
2; Isospin = 1), ω((dd̄+ uū)/

√
2; Isospin = 0) or φ(ss̄)

mesons.
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Figure 2.2: Theoretical predicted and experimental measured differential branching fraction
dD0 → π−π+µ−µ+/dq2. The SM-predicted differential branching fractions via intermediate
resonances are shown in red and green. The solid red and dashed red lines represent different
assumptions on the strong phase for the same model [46], while the green line assumes a different
theoretical model [48]. For the purpose of this illustration, the three lines (two red and one
green) illustrate uncertainties of the theoretical prediction related to the strong phase. The blue
bands represent non-resonant contributions, including theoretical uncertainties of hadronic form
factors. The grey dashed line shows the experimental upper limit on the branching fraction in
the grey shaded dimuon mass region [44]. Possible NP scenarios are illustrated in purple [46].
The figure is taken from Ref. [45]

predictions and the current experimental limit on the differential branching fraction
dD0 → π−π+µ−µ+/dq2 are displayed [45]. q2 is the squared four-momentum of the dimuon
system. The non-resonant (in blue) contribution is orders of magnitude smaller than the
resonant predictions (in red and green), making them non-accessible for experiments. For
high q2, away from the resonances, the sensitivity for New Physics scenarios (in purple)
is enhanced [46]. However, the uncertainty on the theoretical predictions would make
it hard to interpret the result if the decay would be observed in the high-q2 region. In
a second step, angular observables were defined, and an angular analysis was performed [47].

Another opportunity is to study decays forbidden in the SM5, like LFV decays. Next
to various decays studied in the b-sector, LHCb did also study D0 → µ±e∓ decays [16]
and D+

(s) → h+l+l− decays [17]. While D0 → µ±e∓ decays provide an experimentally
clean signature, they are strongly helicity suppressed because of no hadrons in the final
state, reducing the decay rate significantly. The expected branching fraction for the in

5Simplifying the theoretical prediction significantly.
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the SM allowed D0 → µ−µ+ decay is of order 10−11 [49, 50], which is well below the
current experimental sensitivity [51]. Another possible decay which was never studied is
D0 → τ∓e±, the only D0 decay which kinematically allows to study the tau system. The
helicity suppression is loosened in D+

(s) → h+l+l− decays due to the additional hadron in
the final state. Next to LFV decays also, lepton number violating decays of the form
D+

(s) → h+l+l− were studied. However, currently, for D+
(s) → h+l+l− decays, the Run 2

dataset is only partially studied [17].

This work covers the study of LFV in four-body charm decays, D0 → h(
′)−h+µ±e∓ decays.

The most stringent limits to date are given by the BaBar collaboration [18]. The decays
were not yet studied at LHCb. Noteworthy, LFV in the down-type quark sector does
not necessarily introduce LFV in the up-type quark sector and vice versa. Therefore,
the search in the up-type quark sector provides a complementary search for LFV to the
already existing searches in the down-type quark sector.

In the future, similar to searches in the down-type quark sector [13, 14], also the study of
Lepton Flavour Universality (LFU) will be of interest:

Rc
hh =

∫ q2max

q2min

dB(D0→h+h−µ+µ−)
dq2

dq2∫ q2max

q2min

dB(D0→h+h−e+e−)
dq2

dq2
(2.2.1)

Assuming Lepton Flavour conservation, this ratio Rc
hh, phase space corrected, is expected

to equal unity. The advantage of studying LFU is that from a theoretical point of
view, precise predictions are possible, as most hadronic effects cancel in the ratio.
Experimentally, a good understanding of electron and muon efficiencies is crucial.
Electrons interact more with the detector material, making predictions less precise and
more complicated for the trigger system, resulting in a lower trigger efficiency. This is
also a reason why D0 → h(

′)−h+e−e+ decays are not yet observed. However, they are
potentially within experimental reach using the full Run 2 dataset [52]. In addition, as
both D0 → h(

′)−h+e−e+ and D0 → h−h+µ−µ+ decays are rare decays, a sufficiently large
data sample will be needed6. LHCb published recently a similar combined measurement
of LFU in the b-sector for B+ → K+l+l− decays (RK) and B0 → K∗l+l− decays (RK∗)
(RX) [13, 14]. The results are compatible with the SM.

A comprehensive and well-explained overview of rare charm decays’ experimental and
theoretical status can be found in Ref. [45].

6Given the expected sensitivity and planned luminosity, this may be the case for Run 3 or Run 4.
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2.3 Phenomenology of rare and forbidden
charm decays

The argumentation and formalism in this chapter follow Ref. [15]. A good introduction to
effective field theories can be found in Ref. [53] and Ref. [54].

A model-independent effective field theory (EFT) is usually formulated to describe
processes in particle physics phenomenologically. EFT allows the simplification of practical
calculations in field theory, which often makes such calculations feasible, and it provides a
systematic formalism for the analysis of multi-scale problems. The basic idea is to restrict
oneself to the energy scale Λ of the physical phenomena7 while ignoring substructures
and degrees of freedom at higher energies. Intuitively, one integrates all heavy degrees of
freedom (m > Λ) out and absorbs them in some factor Ci. Lighter quark fields (m < Λ)
are expressed by local operators Pi and are considered as massless8. The Lagrangian of
these effective fields is written as a sum of local fields based on the operator product
expansion (OPE) [55]:

Leff ∼
∑
i

CiPi, (2.3.1)

where the strength Ci of the fields described by the operators Pi are called Wilson
coefficients. The SM operators up to dimension six for FCNC charm decays are the
following [56–58]:

P
(q)
1 = (ūLγµ1T

αqL)(q̄Lγ
µ1TαcL),

P
(q)
2 = (ūLγµ1qL)(q̄Lγ

µ1cL),

the so-called current-current operators;

P3 = (ūLγµ1cL)
∑

{q:mq<Λ}

(q̄γµ1q),

P4 = (ūLγµ1T
αcL)

∑
{q:mq<Λ}

(q̄γµ1Tαq),

P5 = (ūLγµ1γµ2γµ3cL)
∑

{q:mq<Λ}

(q̄γµ1γµ2γµ3q),

P6 = (ūLγµ1γµ2γµ3T
αcL)

∑
{q:mq<Λ}

(q̄γµ1γµ2γµ3Tαq),

7Typically, the mass scale of the W± boson or the c quark for charm decays.
8The operator product expansion is only possible because of the assumption m� Λ.
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the QCD and electroweak penguin operators;

P7 =
e

g2s
mc(ūLσµ1µ2cR)Fµ1µ2 ,

P8 =
e

gs
mc(ūLσµ1µ2T

αcR)G
α
µ1µ2

,

the electromagnetic and chromo-magnetic dipole operators and

P9 =
e2

g2s
(ūLγµ1cL)(l̄γ

µ1l),

P10 =
e2

g2s
(ūLγµ1cL)(l̄γ

µ1γ5l),

the leptonic operators. In the operators, q = d, s, b and γµ represent the Dirac matrices.
Left and right-handed quarks are donated by qL,R = PL,Rq, with the chirality operator
PL,R = 1

2
(1 ∓ γ5). The electromagnetic field strength tensor is denoted by F µν , and

T a represents the Gell-Mann matrices, which describe internal colour rotations of gluon
fields in QCD. Gα

µ1µ2
is the chromomagnetic field strength tensor. In charm decays, the

dominant operators are the current-current operators P1 and P2 at the scale mW because
the CKM matrix leads to an exact cancellation for massless light fields9. The effective
weak Lagrangian can be written down as follows:

Lweak
eff ∼

∑
q∈d,s

V ∗
cqVuq

(
2∑

i=1

C
(q)
i Pi +

10∑
i=3

C
(q)
i Pi

)
(2.3.2)

Given the large uncertainties in theory prediction by QCD effects, one usually tries
to define so-called null-tests. An example is the exploitation of the absence of axial
vector currents10, corresponding to P10 = 0. This allows to test specific angular
distributions [46, 47].

The model-independent representation via operators allows to parameterise NP effects.
Within the same formalism, the operator basis can be extended by lepton flavour-violating
currents:

P
(ll′)
9 = (ūγµ1cL)(l̄γ

µ1l′), P
(ll′)′
9 = (ūγµ1cR)(l̄γ

µ1l′) (2.3.3)

P
(ll′)
10 = (ūγµ1cL)(l̄γ

µ1γ5l
′), P

(ll′)′
10 = (ūγµ1cR)(l̄γ

µ1γ5l
′) (2.3.4)

P
(ll′)
S = (ūcL)(l̄l

′), P
(ll′)′
S = (ūcR)(l̄l

′) (2.3.5)

P
(ll′)
P = (ūγµ1cL)(l̄γ5l

′), P
(ll′)′
P = (ūγµ1cR)(l̄γ5l

′) (2.3.6)

P
(ll′)
T =

1

2
(ūσµ1µ2cL)(l̄σµ1µ2l

′), P
(ll′)′
T =

1

2
(ūσµ1µ2cL)(l̄σµ1µ2γ5l

′) (2.3.7)

9Normally referred to as GIM mechanism.
10This is due to the GIM mechanism.
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Resulting in the effective qq′ll′ Lagrangian11 of the form:

LLQ
eff ∼ λ∗cµλue

(∑
i

CiP
(′)
i

)
+ λ∗ceλuµ

(∑
i

CiP
(′)
i

)
, i ∈ (9, 10, S, P, T ) (2.3.8)

where λql, q is the quark and l is the lepton at the corresponding vertex. This gives the
strength of the lepton-flavour violating coupling, similar to the CKM matrix elements for
flavour-changing weak interactions. The exact form and contributing terms depend on
the structure of the qq′ll′ coupling, for example if it is a vector or scalar mediator, or its
charge. A listing of different Leptoquark scenarios can be found in Ref. [15]. By applying
experimental constraints on the Wilson coefficients, the approach is similar to the one in
Ref. [15]. It is possible to work out up to which branching fractions NP scenarios are not
yet excluded. The following limits are reported [46]:

B(D0 → π−π+µ±e∓) . 10−7, B(D0 → K−K+µ±e∓) . 10−9. (2.3.9)

The goal of this analysis is to improve and validate these limits, if possible.

Following the above discussion, and different to the previous measurement by the BaBar
collaboration [18], also an individual search for the differently charged D0 → h(

′)−h+µ−e+

(a) and D0 → h(
′)−h+µ+e− (b) decays is performed. This allows to test an increased

number of NP scenarios as a different set of couplings, λql matrix elements, are tested.
This is illustrated in figure 2.3a and b. The limits by the BaBar collaboration at 90% CL
are given by [18]:

B(D0 → π−π+µ±e∓) . 1.7× 10−6, (2.3.10)

B(D0 → K−π+µ±e∓) . 1.9× 10−6, (2.3.11)

B(D0 → K−K+µ±e∓) . 1.0× 10−6. (2.3.12)

Both limits for D0 → π−π+µ±e∓ decays and D0 → K−K+µ±e∓ decays are within the
for NP already excluded region.

The in the EFT formalism excluded regions are worked out on the basis of FCNC transi-
tions, which can only occur in loop processes. This is the case for D0 → π−π+µ−µ+

and D0 → K−K+µ−µ+ decays. These are then extended to D0 → π−π+µ±e∓ and
D0 → K−K+µ±e∓ decays. However, a limit for D0 → K−π+µ±e∓ decays is also pro-
vided as it is unknown in which ways NP may manifest12. Experimentally, the difference
between all three decays is small, allowing the simultaneous study of all three decays.

11In literature this is often referred to as Leptoquark-Lagrangian.
12Technically it would also be possible to study D0 → K+π−µ±e∓ decays. However, similar to
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(a)

c
λcµ λue

u

µ e

LQ
q̄ q̄

(b)

c
λce λuµ

u

e µ

LQ
q̄ q̄

Figure 2.3: Example diagrams for possible Leptoquark contributions.

2.4 Branching fraction

The branching fraction is the fraction of particles decaying by an individual decay mode,
here D0 → h(

′)−h+µ±e∓ decays. This number can be calculated by dividing the number of
D0 → h(

′)−h+µ±e∓ decays by the number of expected D0 mesons, scaled by the absolute
efficiency of detecting D0 → h(

′)−h+µ±e∓. To estimate the number of D0 mesons produced
in pp collisions, one needs to know the integrated luminosity of the detector and the
probability of an D0 to be produced in a proton-proton collision, the cross-section
σ(pp→ D0). The instantaneous luminosity is defined in such a way that:

L =
1

σ

dN

dt
(2.4.1)

where N is the number of detected particles. Knowing the geometry and number of
particles in each bunch, N1,2, the luminosity can be calculated by:

L = fcoll
N1N2

4πσ∗
xσ

∗
y

F , (2.4.2)

where fcoll is the frequency of collisions, σ∗
x, y is the root mean square of the transverse

beam size in horizontal and vertical directions at the interaction point, and F is a factor
to account for inefficient geometric overlapping of the two beams due to finite bunch
length and dynamic effects. The integrated luminosity,

Lint =

∫
L dt, (2.4.3)

is combined with the D0 meson cross-section. The branching fraction can then be
calculated as follows:

B(D0 → h(′)−h+l(′)−l+) =
N(D0 → h(′)−h+l(′)−l+)

σ(pp→ D0) Lint
× 1

ε(D0 → h(′)−h+l(′)−l+)
, (2.4.4)

D0 → K+π−π−π+ and D0 → K−π+π−π+ decays, with a branching fraction O(10−4) and O(10−2),
respectively, these decays are expected to be additionally suppressed by two orders of magnitude because
of the CKM matrix. For the Cabibbo favoured D0 → K−π+π−π+ decay λcsλud ∼ 1 contributes, while
for the double Cabibbo suppressed decays λcdλus ∼ 10−2 enters the calculation.
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where σ(pp→ D0) Lint corresponds to the number of produced D0 mesons at LHCb. Both
quantities can only be calculated to a limited precision around 8% for the cross-section [7]
and 1 − 3% for the luminosity [59, 60]. To circumvent this problem, the branching
fraction relative to a normalisation channel is calculated. For this, the measurement
D0 → K−π+[µ+µ−]ρ0/ω was chosen, as decay is well understood and has a similar decay
topology to the signal decay. The similar topology of the final state particles allows the
cancellation of possible biases which may affect the measurement. The relative branching
fraction can then be written as:

B(D0 → h(′)−h+l(′)−l+)

B(D0 → K−π+µ−µ+)
=
N(D0 → h(′)−h+l(′)−l+)

N(D0 → K−π+µ−µ+)
· ε(D

0 → K−π+µ−µ+)

ε(D0 → h(′)−h+l(′)−l+)
(2.4.5)

where ε donates the efficiency to detect the corresponding decay, N is the number and B
the branching fraction of the associated decay.

It is only necessary to estimate the yield and efficiency ratio between D0 → h(
′)−h+µ±e∓

andD0 → K−π+[µ+µ−]ρ0/ω, cancelling most systematic effects. For B(D0 → K−π+µ−µ+),
the previously measured value will be used [61].

The second advantage of performing a relative branching fraction measurement is that
possible systematic effects, for example an over- or underestimation of the efficiency due
to a wrongly assumed material budget of the detector. Ideally the effect on the efficiency
is multiplicative and will cancel.

2.4.1 Blinding data

Typically, when a measurement is made, the data is blinded to not bias the measurement
unconsciously. An example of such bias would be the so-called confirmation bias, which
is the tendency to favour one’s prior belief. The critical value, the value one wants to
measure in this measurement and the value that needs to be blinded, is the branching ratio
and its significance. For this purpose, a unknown blind b is introduced into equation 2.4.5:

B(D0 → h(′)−h+e∓µ±) + b

B(D0 → K−π+µ−µ+)
=
N(D0 → h(′)−h+e∓µ±)

N(D0 → K−π+µ−µ+)
· ε(D

0 → K−π+µ−µ+)

ε(D0 → h(′)−h+e∓µ±)
(2.4.6)

the blind b corresponds to a random number between 0 and 10−6. The blind makes
one blind to the actual measured branching fraction while not affecting the uncertainty.
The uncertainty of the branching ratio is the value one wants to minimise in such a
measurement. The result can later, as soon as the measurement is reviewed and approved
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by the collaboration, be unblinded by setting the value to zero. To not negate the blind, it
is not possible to look into the actual recorded data, as the existence of the decay is also
unknown and blind. However, this makes it nearly impossible to validate and crosscheck
this measurement. Therefore, a second unblinded measurement of the branching fraction
of two decays D0 → K−K+µ−µ+ and D0 → π−π+µ−µ+ is performed. Both decays, in
principle, can be treated the same as the LFV decay modes. The main difference between
the two decays is the electron in the final state. Both decays were already previously
observed, which allows to compare the results with the previous measurement [44].
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Chapter 3

The LHCb experiment

This chapter briefly describes the LHC and, in more detail, the LHCb detector and its
subsystems. The measurement performed uses data collected between the years 2015 and
2018. Therefore, only the detector’s design during this period is discussed in this thesis.
Thereafter, particle interactions with the detector, with a special focus on the electron
reconstruction, are explained. Lastly, the trigger system is detailed, and the procedure to
recover recorded events and create simulated events for this analysis is summarized.

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [62] is situated at the European Organization for
Nuclear Research (CERN). The LHC is a hadron collider inside a 27 km tunnel across the
French and Swiss border, designed to collide two proton beams at a centre of mass energy
of around 13TeV. This high energy can only be reached with the help of a complex
accelerator system, which provides particles to the LHC at 450GeV. The proton beams
are then further accelerated by superconducting dipole magnets up to 6.5TeV each,
providing a centre of mass energy of up to 13TeV. The beams are kept on a circular
orbit by superconducting magnets. Along the circumference of the LHC, the particles
are collided at four collision points at a collision rate of up to 40MHz1. Four large
experiments, CMS, ATLAS, ALICE and LHCb, are located at these points. ATLAS
and CMS are so-called general-purpose detectors designed to cover a broad spectrum of
high-energy physics. ALICE is specialised in the study of heavy ion collisions, increasing
the understanding of QCD. The LHCb experiment is a dedicated flavour physics detector
designed to understand the properties of c- and b-hadrons and their decays. Both LHCb

1This corresponds to one collision every 25 ns.
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and ALICE are operated with a lower luminosity2 than CMS and ATLAS.

The first protons started colliding in the LHC end of 2009. Between 2010 and 2012, the
first data-taking period, called Run 1, took place. In 2010 and 2011, a centre of mass
energy of

√
s = 7TeV was reached. This was increased to

√
s = 8TeV in 2012. Run 1

followed a long shutdown period of two years, during which modifications to the LHC
dipole magnets were performed to allow for a higher centre of mass energy. Between 2015
and 2018, the next data-taking period followed, called Run 2, which ended with a second
shutdown lasting until 2022. In Run 2, a centre of mass energy of 13TeV was reached.

3.2 The LHCb detector

The LHCb detector is designed to study heavy b- and c-flavoured hadrons, i.e. heavy
mesons containing a b-quark or c-quark. A more detailed description of the experiment
can be found in Ref. [63]. Due to their lifetime and their large boost, b-quarks decay, by
design, within the first 1− 2 cm of the detector. With the help of these data samples, the
LHCb collaboration has made significant contributions to the field of flavour physics. At
the energies provided by the LHC b- and c-quarks, typically produced as qq pairs, are
produced mainly in the forward or backward direction. This is illustrated in figure 3.1
when looking at simulated bb quark pairs. Around 1013 cc̄ [7] and around 1012 bb̄ [64] pairs
are produced within the LHCb acceptance during Run 2. To measure b- and c-hadrons,
the LHCb detector is built as a forward spectrometer3. The design is contrary to the
general-purpose detectors like ATLAS or CMS.

To be able to perform high-precision flavour physics measurements, the decay topology
needs to be accurately measured with an excellent momentum resolution. Additionally,
the final state particles need to be identified precisely. The LHCb detector provides all
these requirements. The sub-detectors can be categorized into two categories. First, the
tracking system to provide topological and momentum information. Second, the particle
identification systems to identify the particle species. The LHCb detector with its various
sub-systems is shown in figure 3.2. A right-handed cartesian coordinate system is used.
The z-axis points parallel to the beam. The y-axis points upwards.

2In the case of ALICE also with a lower collision rate.
3Forward represents here both directions along the beam pipe. The LHCb detector is equipped only

in one direction for practical and financial reasons.
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Figure 3.1: The heat map shown in these plots were created using PYTHIA8 [65] and CTEQ6
NLO [66]. The LHCb acceptance covers 1.8 < η < 4.9. The figure is taken from Ref. [67]. The
red square marking the LHCb acceptance contains 24% of the produced bb̄-pairs.

Figure 3.2: LHCb detector with its sub-systems [68].

3.2.1 Tracking system

A precise track reconstruction and momentum estimate is crucial to identify the decays
studied in this thesis. A track is defined as the trajectory of a charged particle. The
tracking system consists of three sub-detectors: The VErtex LOcator, VELO, the Tracker
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Figure 3.3: Schematic view of the Vertex Locator. At the top is the overall arrangement of the
stations along the z-axis. At the bottom, the two halves of one station [69].

Turicensis, TT, and the Tracking Stations, T1-3. The tracking stations themselves consist
of the Inner Tracker, IT, and the Outer Tracker, OT.

The first component of the LHCb tracking system is the VELO. The VELO is used to
reconstruct the decay of heavy-flavoured hadrons precisely. The typical b- and c-hadrons
lifetime of approximately 1 ps and their high boost allow a travel distance of about 1 cm

before decaying. Therefore, they decay within the VELO close to the primary vertex.
The detector is as close as 8mm to the collision point and consists of 21 stations aligned
in the z-direction with two different types of silicon-strip sensors. The R sensor measures
a particle’s radial distance, and the φ sensor measures the azimuthal coordinate. The
position of the stations measures the z component, see figure 3.3, allowing a precise
measurement of the decay vertex location. In order for a track to be identified, at least
three hits are necessary.
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The primary purpose of the Track Turicensis (TT) is to allow the reconstruction of
low-momentum particles (< 2GeV/c), which are bent by the magnetic field out of the
acceptance of the tracking stations downstream, and long-lived particles, which decay
outside of the VELO. The TT is a micro-strip silicon detector comprising of four sensor
layers in two stations. These stations have a distance of 30 cm to each other along the
beam axis. The first and last layers are aligned vertically in the y-direction. The middle
layers are rotated by an angle of +5◦ and −5◦ to provide the necessary resolution in
y-direction.

Crucial for the momentum measurement, a dipole magnet is placed between the TT and
the main tracking stations. The magnet has an integrated B-field strength of about 4Tm.
The main component of the magnetic field is along the y-axis. Therefore, the (x, z)-plane
is, in good approximation, the bending plane. The bending measured by the VELO
and the tracking stations after the magnet allows for precise, single-particle momentum
measurement.4 A special feature of LHCb is the ability to change the magnet’s polarity.
This allows any charge asymmetry introduced by the detector to be cancelled out to
a large extent if the collected data samples with the two different polarities (MagUp
and MagDown) have approximately the same size. The magnet polarity is reversed
approximately every two weeks.

The main tracker consists of three tracking stations (T1, T2, T3) located after the magnet,
which completes the tracking system. The IT, silicon-strip detectors, cover the inner area
close to the beamline. The large outer area at more central rapidity is covered by the
Outer Tracker (OT) straw-tube detector. The three tracking stations consist of 24 layers,
each split into four double layers. Each layer consists of two rows of straw tubes filled
with gas. In figure 3.4 the cross section of a single layer and the arrangement of all layers
within the detector is shown.

3.2.2 Particle identification system

The particle species of the quasi-stable final state particles are identified with the help
of the particle identification system. The particle identification system consists of a
Cherenkov detector system, the calorimeter system, and the muon stations. Typically,
the information of multiple subsystems is combined into one classifier, which is used

4This is in stark contrast to CMS and ATLAS, which have a more compact design and rely heavily on
their calorimeters.
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Figure 3.4: On the left schematically the cross-section of one double layer of the OT with the
straw tubes is shown. On the right, the overall arrangement of the different tracking stations
T1-3 is shown. [70]

to assign a particle type. In general, particles are categorised into photons, long-lived5

charged leptons, electrons and muons, and long-lived charged hadrons, pions6 and kaons.
Short-lived particles are then reconstructed by combining the decay products.

The first of the two Ring Imaging CHerenkov detectors, RICH 1, is directly behind the
VELO. The second RICH detector, RICH 2, is located between the tracking stations and
the calorimeter system. The two RICH detectors exploit the Cherenkov radiation emitted
by relativistic charged particles. When a charged particle traverses a medium with a
refractive index n > 1 at a velocity v exceeding the local phase velocity of light, it emits
Cherenkov light. The emitted photons follow the Cherenkov angle, θ, in relation to the
direction of the particle’s momentum.

θ =
c

nv
(3.2.1)

Different mass hypotheses for the particle can be tested with the candidate’s measured
Cherenkov angle (velocity) and momentum, as illustrated in figure 3.5. RICH 1 is used to
identify particles with low momentum of 1-60GeV/c, whereas RICH 2 is used for particles
with higher momentum of 15-100GeV/c.

Calorimeters measure a particle’s energy deposits either in its entirety if stopped within
the detector material, or parts of its energy while traversing7. The complete arrangement

5Particle with a lifetime long enough to pass through the magnet.
6By default, all particles are assumed to be pions until categorised differently.
7If the particle reacts with the detector material at all.

24



Figure 3.5: Reconstructed Cherenkov angle as a function of track momentum in the C4F10

radiator [71].

of the calorimeter system is shown in figure 3.6 on the left.

The first station of the calorimeter system is the Scintillating Pad Detector (SPD). It
detects charged particles which ionize the detector material. The detector material then
scintillates, and photomultipliers detect the released photons. The SPD separates photons
and electrons, as only the latter are detected.

Directly behind the SPD is the PreShower detector (PS), which measures the energy
deposited in the lead.

Afterwards, the electron and photons’ energy deposit is measured in the Electromagnetic
CALorimeter (ECAL). The ECAL is a shashlik calorimeter and consists of 2mm thick
lead and 4mm thick scintillating material installed alternately.

Downstream of the ECAL, the Hadronic CALorimeter (HCAL) is located, which is used
to measure the energy of hadrons. The HCAL is, in principle, similarly built to the
ECAL, with larger cells consisting of iron between the scintillators.
Behind the calorimeters the muon stations (M2-M5) are located. The muons produced
at LHCb penetrate through all detector subsystems, including calorimeters. The muon
stations are separated by 80 cm thick iron plates called the Muon filter. This ensures
that only muons can reach the last station as the filter absorbs all other particles,
particularly hadrons. The muon stations play an essential role in the trigger system8.
The arrangement of the muon stations in the detector is illustrated in figure 3.6 on the right.

8The measurement presented in this thesis heavily relies on the muon trigger.
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The RICH 1 and RICH 2 dominantly contribute to identifying charged hadrons, SPD and
ECAL electrons and photons, and the muon system, with the help of the HCAL to veto
other particles, muons.

Figure 3.6: Schematic view of the calorimeter system on the left and on the right the location of
the muon stations, including the position of the calorimeter system. The figures are taken from
Ref. [72, 73].

3.3 Interactions of charged particles within the
detector

To be able to measure the LFV decay D0 → h(
′)−h+µ±e∓, it is crucial to understand how

the final state particles used to reconstruct the decay react within the detector. For a
more in-depth reading, see Ref. [74].

The D∗+ meson decays via the strong interaction immediately after production, also
called prompt decay, because of the short decay time. The consequent D0 meson is
expected to fly up to a few millimetres before it decays into two hadrons, an electron
and a muon9. To be able to reconstruct the decays, a well-displaced secondary vertex
is needed, introducing a minimum requirement on the flight distance and consequently

9As the decay itself is forbidden; this is just an assumption and must not necessarily hold true.
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decay-time of the D0. The four possible final state particles, electron, muon and the two
hadrons, pion and kaon, leave the VELO area and traverse further through the detector.
A sketch of the decay topology underlaid by the LHCb detector is shown in figure 3.7.
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h(′ )∓

h+

h(′ )−
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p p

primary
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secondary
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Figure 3.7: Sketch of the D0 → h(
′)−h+µ±e∓ decay topology with the magnet bending plan

rotated by π/2 around the z-axis and underlaid by a projection of the detector. The relative
scale, including the angles, is arbitrary and not realistic. The figure of the detector is taken from
Ref. [68].

Electron energy loss is characterised by two types of interaction: ionisation and
bremsstrahlung. At low energies, the energy loss of electrons is dominated by ioni-
sation. The Bethe-Bloch formula describes the energy loss dE for charged particles in
matter due to ionisation. The formula depends on the mean excitation energy, E, the
particle mass, m, in the case of the electron m = me, and the nuclear charge of the
medium it traverses:(

dE

dx

)
ion

∼ Z · ln
(
E

m

)
(3.3.1)

Highly energetic, multiple GeV, electrons like the ones measured at LHCb undergo
bremsstrahlung emission as a consequence of their interaction with matter. This mechanism
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provides a second source of energy loss for charged particles. The electron energy loss due
to bremsstrahlung is proportional to the energy of the electron:(

dE

dx

)
brem

= −E

x0
(3.3.2)

resulting in

E(x) = e
− x

x0 (3.3.3)

where x0 is the so-called radiation length. The average distance an electron’s energy to
be reduced by a factor 1/e. The radiation length is given by the medium and scales
approximately by 1/Z2.(

dE

dx

)
brem

∼ Z2 · E
m2

(3.3.4)

To see at which energies the energy loss is dominated by which process, the so-called
critical energy, Ec, is calculated. The critical energy is the energy where the two energy
loss mechanisms are the same:(

dE

dx

)
brem

=

(
dE

dx

)
ion

. (3.3.5)

The resulting critical energy for electrons [74] is given by

Ec ≈
800

Z
MeV (3.3.6)

A similar calculation can also be performed for example for the muon. The resulting
rate of energy loss for muons is suppressed by a factor m2

e/m
2
µ ≈ 2.5× 10−5 compared to

electrons.

3.3.1 Reconstruction of electrons

To properly measure the electron energy at production to reconstruct the D0 meson, the
bremsstrahlung emitted within the detector needs to be measured and matched to the
electron. Bremsstrahlung is predominantly emitted when electrons pass through the
detector material. If this happens after the magnet, it does not influence the momentum
estimate, which is calculated by the bending of the electron track in the magnetic
field, as illustrated in figure 3.8a. However, around two-thirds of the electrons emit
bremsstrahlung before the magnet. If bremsstrahlung is emitted before the magnet, the
electron loses energy and velocity, consequently changing its momentum. This leads to an
underestimation of the momentum.
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Figure 3.8: a) Schematic illustration of bremsstrahlung correction [76]. b) Track-reconstruction
efficiency for muons and electrons as a function of the lepton’s transverse momentum [75]

The photon also does not interact with the magnetic field (and the tracking stations),
making a recovery of the lost momentum by the tracking system impossible. To correct
for this loss in energy, the possible bremsstrahlung is matched to the respective energy
cluster in the ECAL. This is done at the cost of a decreased resolution due to the added
photon detected in the ECAL. A second consequence of the energy loss is that the
particle’s trajectory can be altered such that the electron no longer traverses all tracking
stations, leading to a loss in the track reconstruction, or no or a wrong energy cluster
is found. The efficiency for long tracks, tracks reconstructed using the VELO, TT and
OT, significantly differs between electrons and muons, as shown in figure 3.8b10, while the
track reconstruction efficiency within the VELO, using only VELO information, is similar
for muon and electrons [75].

3.4 Trigger

To be able to process the collisions at a rate of 40MHz, a trigger system is used. The
trigger allows to discard randomly detected particles and events that are not of interest.
The trigger is built up in three successively executed steps called levels:

• Level-0 (L0): The Level-0 trigger is implemented on hardware level. Detector
information is processed on dedicated hardware. The trigger decision is made based
on either a high energy disposition ET in the calorimeters or a high transverse
momentum pT

11 signature in the muon stations. In this step, the rate is reduced to
10Most, ∼ 68%(95%), of the electrons and muons studied in this analysis have a transverse momentum

below 2000(5000)MeV/c.
11pT is the momentum component in the plane perpendicular to the beam axis.
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1MHz.

• High-Level Trigger 1 (HLT1): The first software-based trigger is used to trigger on
loose topological requirements, reducing the rate to 110 kHz. At this trigger level,
the event is only partially reconstructed.

• High-Level Trigger 2 (HLT2): The second level software trigger is used to trigger
on the fully reconstructed decay chain, which is reconstructed during the trigger
process. After this, the events passing the trigger are written to an offline storage
at a rate of 12.5 kHz.

An illustration of the trigger system can be found in figure 3.9.

The first trigger level, L0, differentiates between hadrons, electrons, photons and muons.
The hadron, electron and photon trigger decisions called L0Hadron, L0Electron, and
L0Photon are made by the energy disposition in the calorimeters. The thresholds were
adjusted multiple times during Run 2, but typical values for the minimal ET of the
hadrons were ET & 3.5GeV/c2 and ET & 3.0GeV/c2 for electrons and photons. For the
muon decision, called L0Muon, a hit in the last muon station and typically a value of
pT & 1.7GeV/c is required.

At HLT1, simplified tracking and vertexing algorithms are performed using information
from the tracking stations and the VELO. High (transverse) momentum tracks, typically
pT & 1.6GeV/c, originating from a secondary displaced vertex are searched and selected
at this stage. The criteria are called Hlt1Track or, in the case of the two-track
implementation, Hlt1TwoTrack. In the case that L0Muon was returned, a separate
algorithm with a lower pT is executed, pT & 1GeV/c, called Hlt1TrackMuon. Instead of
the static pT and displacement criteria, also a selection based on multivariate analysis
(MVA) techniques is implemented for the above-mentioned trigger decisions, notated by
an additional MVA supplement, i.e. Hlt1TrackMVA. Also here, the specific requirements
were adjusted during the data-taking period.

At HLT2, a full event reconstruction takes place, which includes information from all
detector subsystems. At this stage, two categories of trigger decisions are defined:
inclusive and exclusive trigger decisions. The inclusive selection requirements are typically
based on topological properties like the number of displaced vertices and the number
of final state particles. Also, loose kinematic properties are enforced. Especially in the
case of rare (or forbidden) decays and charm decays, because of the large production
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Figure 3.9: Overview of the LHCb trigger system [77].

cross section, typically exclusive trigger requirements are enforced. Decays passing the
exclusive trigger decision are fully reconstructed with specific final states enforced by
particle identification requirements. Specific exclusive lines are implemented for all the
decays studied in this work. The detailed requirements are explained and detailed in
chapter 5.

When talking about a trigger decision in context to one specific signal decay chain, one
can differentiate between decays/events triggered by the signal candidates, TOS, and
decays triggered independently of the signal candidates, TIS. A trigger decision on a signal
candidate can be both TIS and TOS, simultaneous12.

3.5 Recorded data samples and simulation

In Run 2, data from proton-proton collisions from 2015-2018 at a centre-of-mass energy of
13TeV corresponding to an integrated luminosity of 6 fb−1 was collected. The typical

12Depending on the trigger decision, a third possibility exists. It is also possible that a triggered event
is neither TIS nor TOS. This is the case if neither the presence of the signal alone nor the rest of the event
alone are sufficient to generate a positive trigger decision, but both are necessary.
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Run 2 data flow at LHCb starts with the trigger selection, first hardware (L0) and
then software (HLT). For each trigger level, all events passing any of the available
trigger decisions are saved. After this, a so-called stripping selection is applied to the
complete dataset13. The stripping selection consists of various topological, kinematic
and reconstruction quality requirements tuned for the desired decay one wants to study.
Particle candidates are selected and assigned to their respective hypotheses during this
step. All necessary variables needed for further analysis, including trigger decision criteria,
are assigned, calculated and provided in a standardised way for further analysis. After
this, the desired trigger selection is reapplied to the dataset, and additional selection
steps can be applied.

In this measurement, simulated samples are used for efficiency estimation and the
extraction of line shapes when the mass distributions in data are fitted. Simulated
samples for each year of data taking are generated. The simulation samples are
processed in the same way and under the same conditions as the data. Pythia [65, 78]
is used to generate events containing B- and D-mesons within the LHCb simulation
software framework GAUSS [79]. The EvtGen [80] package then simulates the decay
of the mesons. For the forbidden decays, no intermediate resonances are assumed in
the simulation. For the allowed D0 → h−h+µ−µ+ and D0 → K−π+µ−µ+ decays, a
sum of resonant and non-resonant contributions without interference is assumed. The
different assumed intermediate resonances and the fraction to the total simulation
sample are listed in table 3.1. Particle interactions with the detector are simulated with
the GEANT4 package [81]. The digitalization of the detector response is done with the
BOOLE package [82]. Afterwards, the events need to pass through the MOORE package [83]
emulating the trigger.

After the trigger, or MOORE, the recorded and simulated data samples are passed to the
Brunel application [84] for offline reconstruction. Within the DaVinci framework [85]
so, so-called stripping lines, which are similar to HLT2 trigger lines, are applied on the
reconstructed events. The output is then stored in so-called ROOT files, which allow
further offline analysis steps.

13Alternatively, also a so-called Turbo selection was already applied to some decays in Run 2, saving
immediately the output of the HLT2 step. This was made standard for Run 3.
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Channel Component Fraction

D0 → K−K+µ−µ+ φ(1020)(→ K−K+)ρ0(770)(→ µ−µ+) 0.25
φ(1020)(→ K−K+)µ−µ+ 0.25
K−K+ρ0(770)(→ µ−µ+) 0.25
K−K+µ−µ+ 0.25

D0 → K−π+µ−µ+ K∗0(892)(→ K−π+)ρ0(770)(→ µ−µ+) 0.166̄

K∗0(892)(→ K−π+)ω(782)(→ µ−µ+) 0.166̄

K∗0(892)(→ K−π+)µ−µ+ 0.166̄

K−π+ρ0(770)(→ µ−µ+) 0.166̄

K−π+ω(782)(→ µ−µ+) 0.166̄

K−π+µ−µ+ 0.166̄

D0 → π−π+µ−µ+ ρ0(770)(→ π−π+)ρ0(770)(→ µ−µ+) 0.125

ρ0(770)(→ π−π+)ω(782))(→ µ−µ+) 0.125

ρ0(770)(→ π−π+)φ(1020)(→ µ−µ+) 0.125

ρ0(770)(→ π−π+)µ−µ+ 0.125

π−π+)ρ0(770)(→ µ−µ+) 0.125

π−π+)ω(782)(→ µ−µ+) 0.125

π−π+)φ(1020)(→ µ−µ+) 0.125

π−π+µ−µ+ 0.125

Table 3.1: Simulated composition in terms of dimuon and dihadron intermediate resonances,
modified from Ref. [23].
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Chapter 4

Analysis Strategy and Statistical
Methods

This chapter provides an overview of the tools and more complex statistical methods
used in this analysis. Methods to calculate the uncertainties of efficiencies, optimise the
event selections and evaluate limits are reviewed. For the event selection, this includes
the principles of a multivariate classifier and the calculation and data-driven correction
in simulations of the particle identification variables. The Punzi figure of merit [86],
a measure of the statistical sensitivity of the selection procedure, is introduced. The
limit-setting procedure is explained, and lastly, an overview of the analysis strategy is
provided.

4.1 Bayesian error estimation

Usually, uncertainties of efficiencies are calculated using a binomial error estimate. However,
this description of the uncertainties is not necessarily true. Efficiencies are only well
defined between zero and one, inclusive. Therefore, a prior is introduced in addition to
the binomial error estimation. This is motivated by the argumentation in Ref. [87] and
leads to a more intuitive uncertainty estimate as the probability is set to zero for efficiency
values above and below one. Using the Bayesian theorem, the following ansatz is made:

P (ε; k, n) =
P (k; ε, n)P (ε;n)

C
(4.1.1)

where C is the overall normalisation constant,

C =
1

n+ 1
, (4.1.2)
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P (ε;n) is the prior,

P (ε;n) =

1 if 0 ≤ ε ≤ 1

0 otherwise
, (4.1.3)

and P (ε; k, n) is the final efficiency probability function, given by a Binomial distribution,

P (ε; k, n) = (n+ 1)

(
n

k

)
εk(1− ε)n−k. (4.1.4)

n is the number of events before the selection step, k after the selection step, and ε is
the efficiency of the selection step. The factor (n+ 1) is introduced by the normalisation.
This now allows calculating the following variables:

• mean: ε̄ = k+1
n+2

• mode: mode(ε) = k
n

(most probable value; the efficiency)

• variance: V (ε) = (k+1)(k+2)
(n+2)(n+3)

− (k+1)2

(n+2)2

The square root of the variance gives the error in the efficiency.

4.2 Multivariate Analysis

A multivariate classification model is used to discriminate between signal decays
and various background sources. This allows the combination of multiple features
and observables into a single discriminating variable between signal and background
candidates. In this analysis, a Gradient Boosted Decision Tree (BDT) classifier is used,
available in the Toolkit for Multivariate Data Analysis in short TMVA [88,89].

A decision tree is a binary tree-structured classifier, similar to the one sketched in
figure 4.1. Multiple decision nodes, which use a single discriminating variable, categorise
events as signal-like or background-like. These nodes are structured in a tree-like fashion,
starting with a so-called root node and ending with leaf nodes. A single event is then
categorised as background or signal depending on the classification of the leaf node it
ends up during the training. The maximal depth of a tree is defined by the longest path
in the tree from the tree root to a leaf. The root node has a depth of zero.

The tree is trained using a training sample. The training sample typically contains labelled
background and signal events, created either by simulations or extracted from recorded
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Figure 4.1: Sketch of a decision tree [89]. The variables x are split into two branches at each
node by the cut value ci. Signal and background leaves are marked by S and B.

events. Starting with the root node, the best variable and selection value to separate signal
from background in the training sample is selected. The sample is then divided into two
sub-samples by the selected cut criteria, and the process is repeated. This is done until a
certain maximum depth of the tree is reached or a minimum number of events is reached
at one of the nodes1. In the case of this measurement, until a depth of 2 or 2.5% of events
from the training sample are left. The last created set of nodes, leave nodes, are then cate-
gorised as signal or background depending on the dominant training event type in the node.

A single decision tree can be easily interpreted and trained but is also sensitive to statistical
fluctuations in the training sample. A so-called boosted decision tree is used to address this
problem. For this, multiple decision trees are trained by means of a stochastic resampling
of the initial training sample2. The parameters for each tree are determined by minimising
the mis-classification rate via a binomial-likelihood loss function, or cross-entropy loss
function [90]; because of this, the name Gradient Boosted Decision Tree.

1The purity of the sample is also commonly used.
2Another type of boosting commonly used, instead of resampling, is to re-weight the training sample

based on the results of the previously trained decision tree.
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4.3 Particle identification in data and simulations

The information from the particle identification systems is combined in two ways [91].
The first method calculates a log-likelihood difference, called DLL. A likelihood Ldet

for each particle for each sub-detector under different particle hypotheses is computed.
The log-likelihoods are then added linearly to a combined log-likelihood logL. The log-
likelihood difference of the tested particle hypothesis X is then calculated relative to the
pion hypothesis, the most abundant particle in the detector:

DLLX = ∆logL(X − π), (4.3.1)

where X can be the electron, muon, kaon, or proton hypothesis.

The second method uses a neural network, a multivariate analysis technique, to combine
the information of all sub-detectors. This method also considers correlations between the
information of the different subsystems. The neural network classifier, defined between
zero and one, for each particle hypothesis x is referred to as ProbNNx. The more simple
DLL classifier is typically used in the HLT 2 trigger stage, while the more complex,
better-performing ProbNN classifier is used for offline analysis.

In general, in the LHCb simulation, the more complex ProbNN variables are very difficult
to describe correctly. To enhance the agreement with data, a software package, PIDGen2

[92, 93], exists, which discards the simulated PID variables and resamples them based on
the observed PID variable distributions in calibration decays3. For this purpose is the
PID variable distribution parameterised as a function of the number of tracks in the event,
nTracks, the momentum, p, and the transverse momentum, pT4. Instead of resampling
the PID variable, x, according to the data distribution,

Pexp(xexp|pT , η, nTracks) =
∫ x

−∞
pexp(y|pT , η, nTracks)dy (4.3.2)

in bins of nTracks, p and pT the PID variable is corrected. For this the PID distribution,
which is typical unknown in its exact representation, a kernel density estimation is used [94].
The kernel density estimator for the PID distribution is given by:

PKDE(xexp|pT , η, nTracks) =
1

Nσ

N∑
i

K

(
xexp − xi

σ
|pT , η, nTracks

)
, (4.3.3)

3Dz → K−π+ for kaons and pions, J/ψ → µ+µ−(e+e−) for muons (electrons).
4Any two variables of p,pT and η do work for the binning.
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with the kernel K(x), given by gaussian distribution, the kernel width, or size, σ, number
of events N and corrected PID variable xi (i = 1...N). The advantage of the kernel
estimate, by construction, is that no knowledge about the exact model behind the process
is not needed while still ensuring a good quality of the PDF description. Using a gaussian
kernel also ensure a smooth distribution, different to the discreteness of a histogram. In
the limit of large N with fixed kernel size σ, PKDE corresponds to a convolution of the
true PDF Pexp with the kernel K(x). Asymptotically, for a large sample size and an
infinitesimal small kernel size, PKDE matches Pexp. However, for a limited sample size,
the kernel size is balanced in such a way that the kernel is as narrow as possible while
still allowing enough statistics within the kernel for a precise estimate of the PID variable.
The kernel density estimation procedure is performed using the Meerkat library [94].

4.4 Punzi figure of merit

A measure to quantify the statistical sensitivity of the selection is needed. The Punzi figure
of merit provides a definition of the said sensitivity that is unique and well-defined [86].
The definition is based on a frequentist approach, avoiding the choice of a prior distribution
for the searched signal. The full derivation of the Punzi figure of merit can be found in
Ref. [86]. The Punzi figure of merit of a given selection is calculated as follows:

FOM =
εsig

a
2
+
√
Nbkg

, (4.4.1)

where εsig is the signal efficiency and Nbkg is the number of expected background candidates
in the studied signal region. The tuneable character a corresponds to the significance in
standard deviations. This measurement aims to find hints for new physics; in particle
physics, this corresponds to a signal significance of 3σ; therefore, in this analysis, a = 3 is
used.

4.5 Limit setting

This section reviews, based on Ref [95] and Ref [96], the limit-setting procedure used
for this measurement. In the search for LFV in rare four-body charm decays, two
scenarios need to be considered. Either the LFV decays are observed, in which case
the signal branching fraction will be measured, or, in the case of no observation,
an upper limit on the branching fraction will be established using the so-called
CLs method. The quoted limit corresponds to the upper limit of the observable’s
confidence interval. A confidence interval of a parameter in its frequentist definition
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is called an interval containing the true value of the parameter at a given fraction,
called confidence level (CL). The upper limit for a given CL is defined such that the
fraction of limits exceeding the true value of the parameter of interest equals the chosen CL.

Numerous approaches have been suggested and are in use for establishing confidence
intervals for rare signal searches. The extent to which the fraction of confidence intervals
containing the true value of the parameter of interest matches the chosen CL for a
particular method is called coverage. Methods were this fraction matches the CL are
considered to have coverage, whereas those with a lower fraction have under-coverage.
Methods with a fraction higher than the CL have over-coverage. An optimal method
achieves coverage, but in practice, this is often reached only asymptotically with higher
statistics of the measurement. The CLs method is one such method.

4.5.1 Statistical tests

The general procedure of excluding or measuring a new signal is to define a null hypothesis
H0, which includes all known processes but not the sought-after signal, called background-
only hypothesis, and an alternative hypothesis, against which is tested, H1, which
includes the sought-after signal as well as the background, called background + signal
hypothesis. When setting a limit, this is reversed. The model with signal plus background
hypothesis plays the role of H0, which is tested against the background-only hypothesis H1.

The agreement of the observed data with a given hypothesis H is usually quantified by
computing a p-value. The p-value corresponds to the probability of finding data of equal
or greater compatibility with the predictions of H, assuming H is true. A hypothesis is
regarded as excluded if its p-value is observed below a specific threshold. This p-value
is usually converted into an equivalent significance Z in particle physics. Z is defined
such that a Gaussian distributed variable’s upper tail probability equals p at Z standard
deviations above its mean. The typical threshold in the particle physics community to
claim a discovery is Z = 5, p = 2.87× 10−7. Meanwhile, a signal hypothesis is treated as
excluded at a threshold of Z = 1.64, p = 0.05. In terms of CL, this corresponds to 95%.

The result itself is still blind in the case of this analysis; therefore, only the sensitivity for
an expected significance, Z, will be reported in this thesis. The expectation value of Z is
calculated by testing the background-only hypothesis H0 under the assumption of the
signal plus background hypothesis, H1. Because of the nonlinear behaviour between Z and
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p, instead of the mean, the median of Z will be used to express the ”expected significance”5.

The confidence interval is calculated with the help of a test statistic. A commonly used
test statistic, tµ, is the Profile Likelihood Ratio

tµ = −2 ln

(
L(µ| ˆ̂θ)
L(µ̂|θ̂)

)
(4.5.1)

where the likelihood of the data, for a hypothetical value µ, the branching ratio here, is
divided by the likelihood obtained from the best fit to data. The quantity θ = (θ1, θ2, ...)

denotes the nuisance parameter of the probability density functions (PDF) from which
the likelihood is constructed. The parameters maximising the likelihood for a specified µ

are given by ˆ̂θ and for best fit to data value µ̂ are given by θ̂. The data itself might be
distributed to a different true value µ′. The PDF f(tµ|µ′) of the test statistic, assuming a
large sample and parameters far from boundary conditions [97,98], can then be derived
to be:

f(tµ|µ′) =
1

2
√
tµ

1√
2π

[
exp−1

2

(√
tµ +

µ− µ′

σ

)
+ exp−1

2

(√
tµ −

µ− µ′

σ

)]
, (4.5.2)

σ denotes the standard deviation of µ̂. Under null hypothesis, µ = µ′, the distribution
simplifies to a χ2-distribution. The p-value for an observed value µobs is

pµ =

∫ ∞

tµ,obs

f(tµ|µ)dtµ. (4.5.3)

If pµ lies below the threshold 1− CL, the hypothesis is rejected.

4.5.2 CLs method

The CLs method was introduced by physicists at the LEP experiment at CERN [99] when
providing exclusion limits from the Higgs search. The CLs method is a modification of the
p-value method to account for the fact that the data may not be sensitive to the potential
signal, for example, because of background. The introduced tests allow setting a limit
on the observed data with the signal plus background hypothesis. From a physical point
of view, one wants to set a limit only on the signal rate; for this, the CLs method was
developed. In the CLs method, the p-value of the signal plus background hypothesis is
normalised to the one for the background-only hypothesis:

CLs =
CLs+b

CLb

(4.5.4)

5The relation between Z and p can be expressed as Z = φ−1(1 − p) with φ−1 being the quantile
(inverse of the distribution) of the standard Gaussian. The equation is satisfied by the median of Z and p
but not by the mean.

41



By design, the value CLs+b has coverage in the parameter of interest, resulting in an
over-coverage for CLs, as 0 ≤ CLb ≤ 1. In the limit of a clear separation between signal
plus background and background-only hypotheses, CLb will be equal to unity, yielding
CLs ≈ CLs+b.

4.5.3 Treatment of systematic uncertainties

The branching fraction calculation and limit setting do not depend only on the signal fit.
Instead, external nuisance parameters, such as the efficiency ratio or the branching ratio for
the normalisation mode, with their respective uncertainties, need to be considered. Each
parameter θ, usually with its own uncertainty and described by a Gaussian PDF, adds an
additional degree of freedom described by an additional dimension of confidence region.
However, no perfect method exists to project this multidimensional confidence region,
under consideration of all correlations, onto the parameter of interest. The approach used
in this thesis, provided and implemented in the GammaCombo framework [96], is to profile
the likelihood. This means that all nuisance parameters are refitted at a given parameter
of interest, and the likelihood is evaluated. In general, the test statistic can no longer
be derived analytically for this approach and has, therefore, been determined by pseudo
experiments. In the next step, when determining the test statistics distribution at a given
value of the observable via the generation of pseudo experiments, the nuisance parameters
are set to the values obtained from the profiled fit in the generation. The approach is
commonly called the Plugin method. It can be shown that this method has approximately
coverage [100, 101].

4.6 Analysis strategy

The analysis follows the following steps:

1. Data selection. A selection optimised for D0 → h(
′)−h+µ±e∓ decays is applied.

Two main sources of background are focused in the selection background from
randomly combined particle tracks and wrongly identified decays with the same
decay topology as D0 → h(

′)−h+µ±e∓ decays. The selection is optimised for the
best signal sensitivity using the Punzi figure of merit.

2. Efficiency estimation. Following the data selection steps, the efficiency ratio is
estimated by simulations and, if needed, corrected by data-driven methods. This is
done individually for each selection step.
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3. Signal significance estimation. Leftover background candidates are determined by a
maximum likelihood fit. Simultaneously, the significance of the signal yield, together
with its observed value, is estimated. For this, a sophisticated model to describe
the data distributions is evaluated. At this step also, the statistical sensitivity of
the recorded data samples and branching fractions for D0 → h−h+µ−µ+ decays is
calculated.

4. Evaluation of systematic uncertainties. Uncertainties introduced in the efficiency
correction process are studied and evaluated. In addition, uncertainties due to the
size of the simulation data sample are calculated with the help of a bootstrapping
algorithm, and uncertainties regarding wrongly identified particles are evaluated
using pseudo-experiments.

5. Limit setting or branching ratio estimation. The limit-setting procedure is set up
for the blind data, and using the statistical sensitivity and the nuisance parameters
with their respective uncertainties, an expected limit is calculated using the CLs

method.

The measurement itself and the procedure development are performed blind, without
looking at the data. To be able to validate all steps of the branching ratio calculation,
D0 → h−h+µ−µ+ decays are studied. All of the above steps, apart from the system-
atic uncertainties and the limit calculation, are performed for the reference decay
D0 → h−h+µ−µ+. The resulting branching ratio can then be compared with a previous
measurement [44].
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Chapter 5

Reconstructing and selecting charm
decays at LHCb

This chapter discusses the data reconstruction and selection. The discussion of trigger
and stripping requirements are merged in the following to avoid redundancies and
provide a better overview of the underlying selection requirements. After the trigger and
stripping, further selection requirements are enforced to reduce the remaining background
as efficiently as possible. Following these selection steps, a gradient-boosted decision tree
is trained to remove remaining background events. The decision tree is then tuned for
the best signal sensitivity in combination with PID requirements using a Punzi figure of
merit [86].

All selected D0 → h(′)−h+l(′)−l+ decay candidates are required to arise from the decay
chain D∗+ → D0(→ h(′)−h+l(′)−l+)π+, where the D∗+ meson is produced in the primary
pp interaction. The D∗+ decays instantaneously in the primary interaction point via
the strong interaction into a D0 and a charged pion. Selecting D0 mesons produced
from D∗+ helps to greatly reduce background contamination compared to selecting D0

produced in the primary interaction. An additional advantage of this is that the pion
identifies (tags) the flavour of the D0 meson at the time of its production. The flavour
of the D0 allows separating unambiguously D∗+ → D0(→ h(′)−h+µ−e+)π+ decays from
D∗− → D̄0(→ h(′)−h+µ−e+)π− decays, with the help of the charge of the accompanying
pion. By knowing the flavour of the D0 it is possible to test different couplings λql.
This separation is done in the last step during the calculation of the branching ratio or
its limit. The pion produced by the D∗+ has, on average, a much smaller momentum
(∼ 5GeV/c) compared to the D0 momentum (∼ 100GeV/c). This is because of the small
mass difference of the D∗+ and its decay products. To avoid confusion, the pion is in the
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following referred to as slow (or soft) pion π+
s to not be mixed up with pions originating

from the D0 meson.

The D0 → h−h+µ−µ+ decay candidates and the normalisation mode D0 → K−π+µ+µ−

decay candidates are selected and reconstructed the same as D0 → h(
′)−h+µ±e∓ decays,

apart from the requirements on the electron. The muon requirements are instead applied
to both lepton candidates. Additionally, the normalisation mode is limited to muons
originating from a ρ0/ω resonance, notated D0 → K−π+[µ+µ−]ρ0/ω. This is done by a cut
in the reconstructed invariant dilepton mass limiting the range to the region dominated
by the ρ0/ω resonance, given by 675MeV/c2 < q < 875MeV/c2, where q is the square-root
of the squared four-momentum of the dimuon system.

One of the main background sources studied throughout this thesis are misidentified
hadronic decays of the form D0 → h(

′)−h+π−π+. This background persists due to its large
production rate and similar decay topology to the searched LFV decays. The branching
fraction for D0 → K−π+π+π− decays is around O(10−2) and the branching fractions
for D0 → K−K+π−π+ and D0 → π−π+π−π+ decays are both around O(10−3) [102].
Separate simulation samples are produced to study these decays. Due to the high
inefficiency of the selection for these decays, a slightly altered set of particle identification
requirements is applied to these decays, detailed in section 5.4. Apart from this, the
hadronic modes are processed in the same way as the D0 → h(

′)−h+µ±e∓ decays. This
background is suppressed with the help of PID requirements.

The second main background source are decay candidates made of randomly combined
tracks. These tracks are most often random pion tracks, as pions are the most abundant
particle species produced in pp collisions. Another source of these tracks are so-called
ghost tracks. These ghost tracks are produced when unrelated hits in the different tracking
stations are combined and used to reconstruct a fake (ghost) particle. This background is
suppressed by constraining the decay topology and its kinematic. Specifically for ghost
tracks also, the ProbNN variable TRACKGhostProb to identify ghost candidates exists,
which allows to reduce the background from ghost candidates to a negligible level.

For simplicity reasons the following nomenclature is used throughout this thesis for the
different decay channels:

• LFV signal channel: D0 → K−K+µ±e∓, D0 → K−π+µ±e∓ and D0 → π−π+µ±e∓

decays
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• Reference or dimuon decay channel: D0 → K−K+µ−µ+ and D0 → π−π+µ−µ+

decays

• Normalisation channel: D0 → K−π+[µ+µ−]ρ0/ω decay

For the two main background sources, the following nomenclature is used:

• (Fully) hadronic or misID background: D0 → K−K+π−π+, D0 → K−π+π+π− and
D0 → π−π+π−π+ decays, where two oppositely charged pions are misidentified as
leptons, either as µ−µ+ or µ±e∓.

• Combinatorial background: background from randomly combined tracks.

A discussion of other, at this step neglected background sources can be found in section 8.1.
For completeness, the selection requirements reported combined in this chapter can be
found separated for stripping, HLT2 lines and additional applied cuts in appendix A.

5.1 Trigger requirements

This measurement uses two L0 trigger requirements: L0Muon and L0Electron. L0Muon

requires a straight muon track with a minimum transverse momentum, pT , with respect
to the beam pipe1. L0Electron requires a minimum of deposited transverse energy in
a reconstructed calorimeter cluster2. A cluster consists of 2 × 2 calorimeter cells. In
addition, a ”global event cut” is applied which requires fewer than 450 hits in the SPD,
rejecting very busy events in favour for more simple and faster-to-reconstruct events. This
does not result in a significant loss of absolute signal efficiency compared to not applying
the multiplicity requirement [77]. The signal candidates selected by the stripping selection
are required to fulfil at least one of the following hardware-trigger requirements:

• The muon candidate triggers L0Muon or

• independently of the signal signature, L0Muon or L0Electron is triggered by the
rest of the event.

1If not otherwise defined the transverse momentum is always relative to the beam pipe. The minimum
transverse momentum is 2.8GeV/c in 2015, 1.8GeV/c in 2016 and 1.35GeV/c in 2017 and 2018

2The minimum transverse momentum is 2.7GeV in 2015, 2.4GeV in 2016 and 2.11GeV in 2017 and
2018.
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At HLT1 the D0 or at least one of its daughter tracks needs to be reconstructed3. Due
to the large number of charm decays produced, dedicated HLT2 lines are designed for
each decay mode. The D∗+ (for 2017 and 2018) or the D0 (for 2015 and 2016) needs
to trigger their dedicated exclusive line. The HLT2 trigger line used in this analysis
combines two leptons into a dilepton and two hadrons into a dihadron object, which is
further combined into a D0. With the start of 2017, the HLT2 line has been modified
such that a D∗+ candidate is formed at the trigger level, while only a D0 was formed before.

The selection steps between signal and normalisation modes are aligned whenever possible.
In this way, most systematic uncertainties or possible biases will be largely cancelled
when calculating the ratio of efficiencies. The same L0 and HLT1 requirements are chosen
for the normalisation channel. Since the normalisation mode contains two final-state
muons, a randomly selected one is considered in the L0 selection. The other muon is not
considered in the trigger selection, similar to the electron in the signal modes.

5.2 Decay reconstruction and first selection steps

The aim of the reconstruction and selection is to build events with the desired topology and
particle composition. During this process, obvious background and poorly reconstructed
candidates are also removed. Candidates are reconstructed in a standardised bottom-up
approach. The five final-state particles are combined to build the complete decay chain,
D∗+ → D0(→ h(

′)−h+µ±e∓)π+
s . Subsequently, the entire decay chain is refitted using a

DecayTreeFitter (DTF). The DTF simultaneously fits the full decay chain under the
constraint that the D0 and π+

s originate from the same point (D∗+), called primary vertex
(PV), using a Kalman filter [103]. Energies are calculated from the measured momentum
of the particle under a given mass hypothesis, i.e. E =

√
m2 + p2. The mass m is the

known PDG mass of the assumed particle [104]. Unlike other large particle detectors,
for example ATLAS, the energy deposits measured in the calorimeter system are not
taken into account4. Due to the better resolution than that of the energy deposited in the
calorimeter system, the momentum components px, py and pz measured in the tracking
stations are used. This does not hold true in the case of bremsstrahlung photons, for
which the measured energy deposit in the calorimeter is added to the electron’s energy.
Consequently, the masses of the combined objects are computed from the sum of the four

3The D0 or one of the daughters has to trigger Hlt1TrackMuon or Hlt1TrackMVA or Hlt1TwoTrackMVA.
4This information is mainly used for L0 trigger decisions.
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momenta p = (E, px, py, pz) of the final-state particles.

A minimum transverse momentum condition is imposed on the final-state tracks and
combined objects. This is done to remove large amounts of combinatorial background,
dominant in these regions, and due to bandwidth limitations of the reconstruction
algorithm.

Starting with the four final state particles, all four tracks should provide a minimum track
quality (Track χ2/dof < 3) and originate from a secondary vertex. This is done with
the impact parameter (IP) ∆χ2

IP variable, which provides a measure of the compatibility
of a particle coming from the primary vertex. A sketch of the decay topology can be
found in figure 5.1. ∆χ2

IP is the difference in χ2 obtained when fitting the PV with and
without the considered particle, therefore taking into account the uncertainties on the
track parameters and the position of the primary vertex. A value of ∆χ2

IP > 3 is required.

One final state particle needs to have the isMuon tag, meaning that a reconstructed track
in the tracking station was matched to hits in the muon station [105].

Another final state particle needs to pass a loose electron PID requirement, DLLe > −2.
Stronger PID requirements for both leptons are chosen in a later stage in the selection.

The kaon candidate is selected by requiring a loose kaon PID requirement, DLLK > −5.
Both pion and kaon candidates are then required to pass a loose PID selection,
ProbNNpi > 0.5 and ProbNNK > 0.5, respectively.

The artificial ghost tracks created by the reconstruction software are reduced by selecting
tracks that satisfy the ghost probability criteria (ProbNNghost < 0.3). The L0 trigger
decision relies strongly on the muon. Later, when the trigger efficiency correction is
performed, the efficiency is described as a single-particle efficiency. Therefore, only muons
that do not share hits in the muon chambers with other muons are selected.

To reduce the bandwidth used by the HLT2 line, first the secondary vertex is located,
and then the four particles are combined. Given a large number of particles, mainly
pions, produced in the primary collision, combining four particles immediately and then
identifying if the vertex is displaced is extremely resource-demanding and, therefore,
not done. To identify the secondary vertex, first two lepton candidates are combined
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Figure 5.1: Schematic view of the decay topology of D0 → h(
′)−h+µ±e∓ decays arising from

D∗+ → D0π+ decays. The relative scale, including the angles, is arbitrary and not realistic. The
flight distance for the D0 and the impact parameter of the h+ are indicated.

into a simpler dilepton object whose decay vertex then needs to be displaced from the
primary vertex. To combine both leptons into a dilepton object, both candidates must be
consistent with coming from a common vertex set by a cut on the distance of the closest
approach (DOCA) between the two particles. In addition, an upper limit is set on the
combined invariant mass of the two leptons, and the sum of transverse momenta must be
positive. Both cuts are chosen such that all (correctly reconstructed) signal events pass
them and only obvious background candidates are removed. The idea at this stage is to
define simple and quickly executable selection steps to keep the complexity low. The two
leptons are then combined into a dilepton object, with a physical, not negative, flight
distance, the distance between the primary and secondary vertex. Due to resolution
effects, a negative flight distance is possible, but this also means that the secondary and
primary vertex are not distinguishable. The displacement of the secondary vertex is then
enforced by the flight distance ∆χ2

FD (∆χ2
FD > 20) similar to ∆χ2

IP, the variable combines
the information of the flight distance, FD, and the uncertainties on the fit variables.

If all four tracks are consistent in coming from the same secondary vertex and fulfil
loose pT requirements to remove fake events, they are combined into a D0 candidate.
By requiring that at least one of the daughter particles is incompatible with the
primary vertex, it is ensured that the daughters originate from a secondary vertex. A
D0 decay vertex is fitted to tracks that meet all the requirements mentioned above
and the additional requirement on the quality of the vertex χ2/dof < 15. Here again,
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the secondary D0 vertex needs to be significantly displaced from the primary vertex,
∆χ2

FP > 49. This time, ∆χ2
FP is calculated using the vertex constraint by all four daughter

particle tracks, which, in principle, supersedes the previous ∆χ2
FP cut. However, this is

only partially true because of technical reasons5. The cosine of the angle between the
reconstructed momentum vector of the D0 and the vector connecting the primary, D∗+

→D0π+, and secondary, D0 → h(
′)−h+µ±e∓, vertex is required to be larger than 0.9999.

This ensures that the flight direction and reconstructed momentum match within their
resolution, i.e. the cosine of their enclosed angle is close to unity. This is not necessarily
true for combinatorial background. The D0 originates from the primary vertex (D∗+). A
requirement on the impact parameter ∆χ2

IP(< 25) suppresses the background originating
from secondary decay vertices. The sum over the square root of the different daughter
∆χ2

IP values, given by
∑√

∆χ2
IP, has to be larger than 12, ensuring again a displaced

secondary vertex. The reconstructed D0 mass is limited to the range 1800− 1940MeV/c2.

Lastly, a low-momentum pion with p > 120MeV/c is added to form the D∗+ decay vertex.
A minimum vertex quality is required (Vertex χ2/dof < 25). A window in the mass
difference ∆m := m(D∗+ −D0), is defined such that 3σ = 99.73% of signal events pass
the selection requirement. The number is evaluated from simulation by calculating
the standard deviation σ of the mass resolution with the help of a Gaussian fit to the
simulation dataset. This cut removes around 90% of the background candidates. The
cut is best illustrated in D0 → K−π+[µ+µ−]ρ0/ω decays, see figure 5.2. The signal decays
and misID background decays both peak in the ∆m distribution. In the left figure, the
∆m mass window requirement is shown. In the right figure, the reconstructed D0 mass
m(D0) distribution under signal hypothesis6 before and after the ∆m cut is reported.
In the m(D0) distribution, two peaks close to each other can be observed. The smaller
peak at the D0 mass corresponds to the signal, the larger peak left of the D0 mass is
due to misidentified D0 → K−π+π+π− decays. The same is also observed for the two
reference decays, D0 → π−π+µ−µ+ and D0 → K−K+µ−µ+, shown in figure 5.3. Note
here that in the two pion case, D0 → π−π+µ−µ+ decays, significantly more combinatorial
background can be observed. This is because most of the combinatorial background is
from random pions, which are vetoed in the reconstruction for D0 → K−K+µ−µ+ and

5From a technical point of view, as the dilepton object is only constructed for the trigger decision and
then discarded, it is impossible to recover the dilepton object easily. However, it is possible to access all
other variables by exclusion. The χ2

FD > 49 requirement of the dilepton object does not supersede the
requirements on the positive flight distance and ∆χ2

FD > 20.
6If not specifically mentioned, the mass distributions are always reconstructed under the respective

signal hypothesis.
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D0 → K−π+[µ+µ−]ρ0/ω decays by the DLL requirement on the kaon(s).

Figure 5.2: The under D0 → K−π+[µ+µ−]ρ0/ω hypothesis reconstructed ∆m := m(D∗+ −D0)

(left) and D0 (right) mass distribution for data recorded in 2017 and 2018 passing the
D0 → K−π+[µ+µ−]ρ0/ω selection requirements. Left: The selected ∆m mass window is marked
by the red lines. Right: In blue and green is the data distribution before and after the ∆m cut
shown, respectively. The D0 mass [35] is marked by a red line. Signal events are expected to
be distributed around the D0 mass while the large observed peak left of the D0 mass is due to
misidentified background events.

All the selection requirements mentioned above are summarised in table 5.1.
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Figure 5.3: The under D0 → π−π+µ−µ+ (up) and D0 → K−K+µ−µ+ (down) hypothesis re-
constructed ∆m := m(D∗+ −D0) (left) and D0 (right) mass distribution for data recorded in
2017 and 2018 passing the D0 → π−π+µ−µ+ and D0 → K−K+µ−µ+ selection requirements,
respectively. Left: The selected ∆m mass window is marked by the red lines. Right: In blue
and green is the data distribution before and after the ∆m cut shown, respectively. The D0

mass [35] is marked by a red line. Signal candidates are expected to be distributed around the
D0 mass, while the large observed peak left of the D0 mass is due to misidentified background
events. The second peak, the furthest left peak in the D0 → π−π+µ−µ+ distribution, is due to
wrongly identified D0 → K−π+π+π− events.
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Particle Variable signal modes (normalisation)
2015-2016 2017-2018

h, µ, e p > 3GeV/c 3GeV/c

pT > 300MeV/c 300MeV/c

Track χ2/dof < 3 3

TRACKGhostProb < 0.3 0.3

µ ∆χ2
IP > 3 3

isMuon true true
NShared = 0 0

e ∆χ2
IP > 3 3

DLLe > −2 −2

K DLLK > −5 −5

ProbNNK > 0.5 0.5

π ProbNNpi > 0.5 0.5

(``) m(``) < 2100MeV/c2 2100MeV/c2∑
pT > 0.MeV/c 0.MeV/c

distance of closest approach < 0.1mm 0.1mm

Dilepton object ∆χ2
FD > 20(9) 20(9)

flight distance > 0mm 0mm

(hh``) max pT > 0.MeV/c 0.MeV/c∑
pT > 3000MeV/c 3000MeV/c

minimal distance of closest approach < 0.1mm 0.2mm

maximal distance of closest approach < 0.2mm 0.3mm

∆χ2
IP of at least one daughter particle > 9 9

D0 m(D0) > 1800MeV/c2 1700MeV/c2

< 1950MeV/c2 2050MeV/c2

Vertex χ2/dof < 15 15

∆χ2
FD > 49 49

cosine angle of direction of flight > 0.9999 0.9999

∆χ2
IP < 25 25∑√
∆χ2

IP > 12 8

πs pT > – 120MeV/c

D∗+ ∆m > 144.5MeV/c2 144.5MeV/c2

< 146.5MeV/c2 146.5MeV/c2

Vertex χ2/dof < – 25

Table 5.1: Summary of all selection requirements for all signal and normalisation candidates
in the trigger and the following selection. Due to the added D∗+ reconstruction in the trigger
selection between 2015-2016 and 2017-2018, the selection requirements are separately listed for
the two data-taking periods.
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5.3 TMVA and PID selection

After the basic selection covering the decay topology, kinematics, and vertex quality, two
types of background remain. These are the background from misidentified particles and
combinatorial background. The background due to misidentified particles consists mainly
of wrongly identified D0 → h(

′)−h+π−π+ decays. This background is also observed when
studying the reconstructed D0 mass distribution for D0 → h−h+µ−µ+ decays and the
normalisation decay D0 → K−π+[µ+µ−]ρ0/ω in figure 5.4. The large visible peak left to the
expected D0 mass [35], which is marked by the red line, are expected to arise from wrongly
reconstructed D0 → h(

′)−h+π−π+ decays7. This is because of the missing energy in the
reconstructed mass, as the muon mass is wrongly assumed for the pion in the calculation,
shifting the distribution to the left (lower mass direction) of the D0 mass. Wrongly
identified hadronic decays are suppressed by stronger particle identification requirements.
Both selection decisions are optimised simultaneously to increase the significance of the
signal. The second observed source of background is flatly distributed in the reconstructed
invariant D0 mass distribution. This background is labelled as combinatorial background.
The combinational background is suppressed with the help of a trained multivariate
classifier (TMVA).

5.3.1 TMVA

The combinatorial background is reduced with the help of a TMVA using the TMVA frame-
work [88]. For this purpose, a boosted decision tree, BDT, is trained. The BDT is trained
against a signal and background data sample. As background proxy, events in with no re-
covered bremsstrahlung in the upper D0 sideband, 1900MeV/c2 < m(D0) < 2050MeV/c2,
are used. This upper sideband is chosen to avoid any signal contamination due to the
ECAL resolution or wrongly added bremsstrahlung. This is illustrated in figure 5.5,
where the D0 mass resolution for simulated D0 → π−π+µ±e∓ decays is shown for decay
candidates with and without recovered bremsstrahlung. The distribution showing events
with no reconstructed bremsstrahlung is distorted to lower masses, featuring a long
tail, because of lost bremsstrahlung photons, which leads to an underestimation of the
momentum and, therefore, the reconstructed invariant D0 mass. The relatively sharp drop

7The second large peak in the D0 distribution for D0 → π−π+µ−µ+ decays outside of the studied
mass window is due to wrongly identified D0 → K−π+π+π− decays, where additionally the kaon is
misidentified as pion. The slope visible over the complete reconstructed mass spectrum in the D0

distribution for D0 → K−K+µ−µ+ decays is also expected to arise from misidentified D0 → K−π+π+π−

decays, with the third pion being additionally misidentified as kaon.
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Figure 5.4: Reconstructed invariant D0 mass distribution for recorded events in the years 2017 and
2018 passing the selection requirements for the normalisation decay D0 → K−π+[µ+µ−]ρ0/ω (up-
per row) and the reference channel, D0 → K−K+µ−µ+ decays (lower left) and D0 → π−π+µ−µ+

decays (lower right). The red line marks the D0 mass [35]. The dotted lines mark the selection
cuts on the D0 mass.

for events above the D0 mass is due to the momentum resolution of the tracking stations.
The distribution for events with reconstructed bremsstrahlung is more symmetric but
also wider, which is due to the ECAL resolution. In addition, sometimes too much energy
is added either because the wrong calorimeter cluster is added or multiple particles
deposited energy in the same calorimeter cluster, leading to an overestimation of the recon-
structed mass. Simulated signal candidates as shown in figure 5.5 are used as a signal proxy.

Signal and background proxies are separated randomly into two disjoint equally sized
subsamples. One subsample is used to train the BDT, and one to test. The following
variables are used to train the BDT:

• Maximum distance of closest approach between all D0 meson daughter particles,
notated ”D0 MAXDOCA”
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• Pseudorapitity η of the D0 track, also notated ”D0 ETA”

• Asymmetry of pT from tracks in a cone around the D0 track with an opening angle
of 1.1 rad, defined by:

CONEPTASYM =
pT (D

0)− pT (cone)

pT (D0) + pT (cone)
,

where pT (D0) is the transverse momentum of the D0 and pT (cone) the transverse
momentum of all non-signal parameters in a cone around the D0 track, notated ”D0

CONEPTASYM”

• χ2
IP of the interaction points for both hadrons, h0 and h1, also notated ”h0 IPCHI2”

and ”h1 IPCHI2”

• D0 vertex reconstruction quality χ2/ndof, also notated ”D0 VERTEX_CHI2NDOF”

• Cosine of the direction angle of the D0 meson track, also notated ”D0 DIRA”

• Transverse momentum pT of the D∗+, also notated ”Dstarplus PT”

• pT and p of the slow tag pion originating from D∗+, also notated ”Slow Pion PT”
and ”Slow Pion P”

Figure 5.5: D0 mass resolution for simulated D0 → π−π+µ±e∓ decays for decay candidates with
and without recovered bremsstrahlung. The green line marks the D0 mass. [35].
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The variables are selected by their discrimination power in an iterative process. For this,
the BDT is trained with a larger set of variables containing the same variables as are used
in the trigger and stripping selection apart from PID variables and the reconstructed D0

mass. Training the BDT directly on the reconstructed D0 mass would make a statistical
separation by a fit between the leftover background difficult, if not impossible, as the BDT
could sculpt the reconstructed D0 mass distribution. The variables that have no or minimal
impact on the BDT classifier are then removed iteratively by retraining the BDT at each
step with a smaller set of variables. A minimal set of discriminating variables, while provid-
ing the same BDT performance as the full variable set, was selected to prevent overtraining.

The CONEPTASYM variable has a special role. This variable sums up the pT of all particle
candidates in a cone around the D0 track. A larger value of this so-called isolation
variable hints to a more isolated track, which is favoured by signal decays. Typically, the
hadronic background given mainly by pions is less isolated than signal candidates. An
isolated track is also easier to reconstruct correctly, avoiding backgrounds from wrongly
reconstructed decays, or ghost tracks. The CONEPTASYM variable requires information
not related directly to the decay, which was only made available in a processable way
after the data-taking period of Run 2 was concluded. It is, therefore, not included in
the trigger or stripping selection. It is nevertheless added to the BDT as it provides
additional information to the signal background separation.

A separate BDT is trained for each LFV decay channel (D0 → K−K+µ±e∓,
D0 → K−π+µ±e∓ and D0 → π−π+µ±e∓). Note that only the χ2

IP variable de-
pends directly on the daughter particles of the D0 meson. However, the DLL selection
of the kaon may affect the combinatorial background distributions. This effect is also
partially observed when comparing the individual BDT input variable distributions for
the background proxy. Therefore, three BDTs are trained. For the two reference decays,
D0 → K−K+µ−µ+ and D0 → π−π+µ−µ+, no separate BDT is trained BDT. Instead, the
same BDT as for D0 → K−K+µ±e∓ and D0 → π−π+µ±e∓ decays, respectively, is used.

In figure 5.6, as an example for D0 → π−π+µ±e∓ decays, the normalised input variable
distributions for the signal and the background proxy are shown. The distributions
for D0 → K−K+µ±e∓ and D0 → K−π+µ±e∓ decays are reported in appendix B. The
variables with the highest separation power, as expected by comparing the distributions,
are D0 MAXDOCA, D0 VERTEX_CHI2NDOF, D0 CONEPTASYM and D0 DIRA.
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Figure 5.6: Normalised BDT input variable distributions for signal, D0 → π−π+µ±e∓ decays,
(blue) and background proxy (red) overlaid.
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Figure 5.7: Distribution of the BDT output, the BDT response. Both test and training samples
normalised and overlaid by each other are shown. Both distributions match, indicating no
overtraining, which is also confirmed by the reported Kolmogorov-Smirnov test result [106],
which gives a measure of the compatibility of the two distributions.

Due to different trigger requirements for the 2015/16 data samples, only a smaller
sideband window is available. The BDT is trained using only 2017 and 2018 data, as
these are the data samples with the highest statistics.

An example distribution of the resulting BDT response can be found in figure 5.7. To
verify that the BDT is not overtrained, the BDT response for test and training sample
are compared, and a Kolmogorov-Smirnov test [106] is performed, also shown in figure 5.7.
No overtraining, which would be seen in the difference between the distribution of test
and training samples, is observed for the three different decay channels. The choice of the
BDT response value to cut on is discussed in section 5.3.3.

5.3.2 Particle identification

The second main source of background are misidentified D → h−h+π−π+ decays
(h = π∓, K∓) which have a branching fraction of O(10−2 − 10−3). With a typical misiden-
tification rate of 1% for pions to be misidentified as leptons, a measurable component is
expected after the final selection. This fraction can be reduced using the discriminating
PID variable ProbNN. In addition, a fit will be performed to determine the number of
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leftover misID and the number of signal candidates, which is detailed in chapter 7.

5.3.3 Optimisation

To avoid removing too many signal candidates, both selection steps are simultaneously
optimised for the signal sensitivity. For this, the Punzi figure of merit [86] is used, which
is introduced in section 4.4. The three optimised discriminators are the two lepton PID
variables, ProbNN for both leptons, and BDT response. The Punzi figure of merit, which
value is maximised, is calculated as follows:

FOM =
εsig

3
2
+
√
Nbkg

(5.3.1)

where εsig is the signal efficiency and Nbkg is the number of expected background
candidates. The number of expected background candidates is evaluated for the region
where most signal candidates are expected, m(D0) ∈ [1800MeV/c2, 1900MeV/c2]8. Nbkg

is the sum of combinatorial background candidates, Ncomb, and peaking misidentified
background candidates, NmisID.

Signal efficiency

The signal efficiency for PID and BDT selection is estimated from simulations by counting
the events before and after the BDT and lepton PID selection cuts. The PID variables are
corrected using the PIDGen software package [92, 93]. Details of the resampling procedure
are explained in section 4.3. Exemplary, the efficiencies for PID and BDT selection for
D0 → K−K+µ±e∓ are shown figure 5.8. As expected, the efficiency is lower for stricter
selection requirements and drops faster for stricter PID cuts on the electron compared to
cuts applied to the muon. All signal efficiencies as a function of BDT and PID selection
are reported in appendix C.

Expected combinatorial background yield

To avoid unblinding the signal region, the expected combinatorial background is extrapo-
lated from the upper D0 mass sideband (m(D0) > 1900MeV/c2). Furthermore, to avoid
any signal contribution, the ∆m selection is inverted. Only candidates outside the ∆m

8Signal candidates above 1900MeV/c2 are possible due to ECAL resolution effects. These are,
therefore, excluded from the background proxy for the training of the BDT. However, realistically, no
signal candidates are expected above 1900MeV/c2 considering current limits.
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Figure 5.8: PID and BDT signal efficiency (in %) for D0 → K−K+µ±e∓ decays evaluated from
simulations in bins of ProbNNmu, ProbNNe and the BDT response. Only two BDT response bins,
BDT response > 0.5 (left) and BDT response > 0.6 (right), are shown for simplicity reasons.
Marked in red is the efficiency value for the optimal selection values, which maximises the Punzi
figure of merit.

window are selected ( ]144.5MeV/c2, 146.5MeV/c2[ ), removing 99.7% of signal candidates.
As an illustration, the selected combinatorial background candidates correspond to the in
the upper sideband (m(D0) > 1900MeV/c2) in figure 5.2, page 52, and figure 5.3, page 53,
removed background candidates. Due to this choice, two scaling factors are needed:

1. A factor that scales the number of background candidates in the upper m(D0)

sideband to the number of background candidates in the signal window.

2. A factor which scales the background candidates in the signal window outside the
∆m window to background candidates within the ∆m window.

The first scaling factor is calculated with the help of a linear fit to the D0 mass
window. For this, an inverted PID selection is applied to remove all signal events. The
inverted PID selection requires ProbNNmu < 0.1 for the muon and ProbNNe < 0.1 for the
electron candidate such that everything except the desired leptons is selected. The mass
distribution with the overlaid fit for the different decay channels is shown in figure 5.9. The
factor is defined by the fraction of the integral in the upper sideband and the signal window.

The second scaling factor is defined by the ratio of background events in the signal
window outside the ∆m window and within the ∆m window. The factor is calculated
with the help of a fit to the ∆m distribution with the same inverted PID selection applied.
The fit, shown in figure 5.10, contains two components: a polynomial function to describe
the combinatorial background (green) and a Gaussian distribution (red) to describe other
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Figure 5.9: The lower left distributions show data reconstructed as D0 → K−K+µ±e∓ decays,
the upper as D0 → K−π+µ±e∓ decays and the lower right as D0 → π−π+µ±e∓ decays with
inverted PID selection.

possible D0 decays, for example, decays of the form D0 → h(
′)−h+π−π+. The ratio is

then extracted by integrating the polynomial function within the in the selection applied
∆m region marked in grey and the complete available ∆m region. The ratio of the two
integrations can then be used to correct the yield of combinatorial background candidates
outside the grey-marked area to the number of combinatorial background candidates
within. It is visible that the fit, figure 5.10, does not describe the mass distribution
perfectly; nevertheless, for the purpose of this extrapolation, the agreement is sufficient.
The calculated number of background candidates matches the in data observed number
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of background candidates within their uncertainties. This is shown in section 5.3.4.
Exemplary, the expected number of combinatorial background candidates in dependence
of the PID and BDT selection for D0 → K−K+µ±e∓ are shown figure 5.11.

The scaling factors, which depend on the shape of the distribution of the combinatorial
background, are assumed to be at least approximately independent of PID and BDT
selection. The results from section 5.3.4 support this assumption. The same scaling
factors are used for each PID and BDT requirement throughout the optimisation, while
the to-be scaled background yield is measured in each ProbNNmu/ProbNNe/BDT response

bin. The results of this calculation can be found in appendix C.

Expected misidentified background yield

The observed misID background in D0 → K−K+µ−µ+, D0 → K−π+µ+µ− and
D0 → π−π+µ−µ+ decays is scaled to match the number of misID background candidates
in the signal mode. For this, it is necessary to account for the different selections between
dimuon and LFV decay modes, which are given by a different set of PID, kinematic
and topological requirements. A special role here has the more complex ProbNN PID
classifier, as the description of this classifier is difficult in simulations. The selection
difference, therefore, is evaluated with data. In the following, the ProbNN PID selection is
therefore treated separately. A second effect that needs to be accounted for is that only
the number of misID background candidates within the previously defined signal window,
m(D0) ∈ [1800, 1900] under D0 → h(

′)−h+µ±e∓ mass hypothesis, are of interest.

In the following, three scaling factors are defined: A scaling factor for the tested ProbNN

PID selection, given by the ratio rmisID. A scaling factor to account for different kinematic
cuts during the trigger stage9, given by the ratio rsele and a third scaling factor rshape,
which accounts for the different mass hypotheses in the reconstruction. The then observed
yield of misID background candidates in D0 → K−K+µ−µ+, D0 → K−π+µ+µ− and
D0 → π−π+µ−µ+ decays can be scaled by the ratio r, given by

r = rmisID × rsele × rshape, (5.3.2)

to the number of misID background events for the LFV decay modes.

9This factor is needed mainly due to the not recoverable dilepton object introduced for computational
reasons during the HLT2 step.
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Figure 5.10: The reconstructed ∆m distribution from data recorded in 2017 and 2018 re-
constructed under D0 → K−K+µ±e∓ decay hypotheses (lower left), D0 → K−π+µ±e∓ decay
hypothesis (up) and D0 → π−π+µ±e∓ decay hypotheses (lower right). The signal is blinded by
applying an inverted PID selection. The reconstructed ∆m distribution is overlaid with a fit
projection (blue) of a polynomial function (green) and a Gaussian distribution (red). The Gaus-
sian distribution is used to describe possible misID candidates, while the polynomial background
is used to describe the combinatorial background.

The ratio rmisID is defined by:

rmisID =
p(π|e)
p(π|µ)

, (5.3.3)

where p(π|e)(p(π|µ)) is the misidentification rate of a pion into an electron (muon).
The misidentification rate is evaluated using the PIDCalib software package [92], a
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Figure 5.11: Expected number of combinatorial background candidates for D0 → K−K+µ±e∓

decay candidates evaluated from simulations in bins of ProbNNmu, ProbNNe and the BDT response.
Only two BDT response bins, BDT response > 0.5 (left) and BDT response > 0.6 (right), are
shown for simplicity reasons. Marked in red is the expected number of combinatorial background
candidates for the optimal selection values, which maximises the Punzi figure of merit.

tool widely employed within the LHCb Collaboration. The misidentification rate is
calculated by measuring the efficiency of the tested ProbNN requirement on a statistically
large calibration sample, D0 → K−π+ decays. The large number of events and high
purity of the sample allow for a precise efficiency estimate. Secondly, it is assumed
that the PID variables can be fully parameterised by a set of known variables, here
the momenta p, the pseudorapidity η, and the number of tracks in the event, nTracks.
The sample is then partitioned into subsamples in which the PID variable distribution
does not vary significantly. In each bin, the number of pions passing the tested ProbNN

requirement is evaluated and compared to the original number of pions in the respective
bin, allowing the evaluation of the misidentification rate. The misidentification rate, in
bins of η, p, and nTracks, is then matched to the pions in D0 → h(

′)−h+π−π+ decays.
This ratio is calculated in each BDT response bin for a fixed ProbNN selection on the
to-be scaled dimuon mode. For this, the central bin requiring ProbNNmu > 0.5 for both
muon candidates was chosen. The advantage of this choice is that with a single evaluation
via a fit of the misID background in this PID bin, the misID background in all other PID
bins for the same BDT response bin can be evaluated.

The ratio rsele is calculated by processing the same simulation sample with the different
stripping and trigger lines for signal and normalisation channels, leading to:

rsele =
N(D0 → h(

′)−h+π−π+|D0 → h(
′)−h+µ±e∓)

N(D0 → h(
′)−h+π−π+|D0 → h(′)−h+µ−µ+)

(5.3.4)
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N(X|Y ) stands for the number of events of decay X passing the selection for decay Y .
By multiplying the observed number of misID candidates in D0 → h(′)−h+µ−µ+ decays
with rsele and rmisID, the expected number of misID candidates is calculated.

The ratio rshape is the ratio of the integral of the two PDFs describing the misID
backgrounds obtained by fitting the D0 mass shape using simulation data under
D0 → h(

′)−h+µ±e∓ and D0 → h−h+µ−µ+ mass hypotheses within the signal window.
Both PDFs are normalised over the complete reconstructed mass range.

After calculating the correction factors for each Punzi figure of merit bin relative to
the central, the number of misID background candidates in the central bin is evaluated
via a fit to data. The number of misID background candidates is then scaled by r

to the number of expected misID background candidates for the LFV decay modes.
The fitted distribution for the optimal BDT response in the central PID bin, which
has a ProbNN selection of larger than 0.5 for both leptons, is shown in figure 5.12. It
is also visible that the applied BDT selection already suppresses the combinatorial
background significantly compared to the distributions shown in figure 5.4. Here, it
is observed that D0 → π−π+µ−µ+ candidates contain a larger contribution of misID
background candidates than D0 → K−π+µ+µ− or D0 → K−K+µ−µ+ candidates do.
The same is true for the expected misID background candidates in D0 → π−π+µ±e∓

candidates compared to D0 → K−π+µ±e∓ or D0 → K−K+µ±e∓ candidates. This
kind of hierarchy is also observed for the optimal selection cut values of the ProbNN

variable, with D0 → K−K+µ−µ+ candidates having relatively loose PID requirements,
D0 → K−π+µ±e∓ candidates having more strict PID requirements, and D0 → π−π+µ±e∓

candidates having the strictest PID requirements. Details of the applied fit model can be
found in chapter 7. Exemplary, the expected number of misID background candiadates in
dependence of the PID and BDT selection for D0 → K−K+µ±e∓ are shown figure 5.13.

Punzi figure of merit

Combining the expected signal sensitivity and expected background under the signal
window by using equation 5.3.1 yields the final figure of merit, which is maximised. The
Punzi figure of merit for D0 → K−K+µ±e∓, D0 → π−π+µ±e∓ and D0 → K−π+µ±e∓

decay candidates are also reported in figure 5.14. The corresponding selection to achieve
the maximum value in the Punzi figure of merit can be found in table 5.2. If multiple
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Figure 5.12: The invariant reconstructed D0 mass distribution for D0 → K−K+µ−µ+ (lower
left), D0 → K−π+[µ+µ−]ρ0/ω (up) and D0 → π−π+µ−µ+ (lower right) decays. The distribution
is overlaid by the fit projection (blue) used to calculate the number of misID background
candidates (cyan). Below the reconstructed mass, the pull distribution, showing the difference
between data and fitted distribution normalised by its error for each bin, is reported.

bins have the same maximum value, the bin with the most background candidates is
chosen10. This is done for technical reasons, as the fit has a higher chance to converge with
more events. Especially for D0 → K−K+µ±e∓ candidates, stricter cuts would potentially
remove all combinatorial background events, leading to an overparameterisation of the fit.

10Technically, the bin with the highest signal plus background statistic is chosen, but the expected
number of LFV signal candidates is always zero.
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Figure 5.13: Expected number of misID background events for D0 → K−K+µ±e∓ decay candi-
dates evaluated from simulations in bins of ProbNNmu, ProbNNe and the BDT response. Only
two BDT response bins, BDT response > 0.5 (left) and BDT response > 0.6 (right), are shown
for simplicity reasons. Marked in red is the expected number of misID background events for
the optimal selection values, which maximises the Punzi figure of merit.

This would require a different statistical treatment of this decay channel. However, given
the similar values for the Punzi figure of merit, representing the signal sensitivity, this
would just complicate the measurement without improving the result.

Variable K−K+µ±e∓ K−π+µ±e∓ π−π+µ±e∓

ProbNNmu 0.60 0.90 0.90
ProbNNe 0.30 0.90 0.60
BDT response 0.60 0.60 0.80

Table 5.2: Optimal cut values for the three different LFV signal decays found by maximising the
Punzi figure of merit.

Similar to the in figure 5.4, page 56, reported distributions, many combinatorial
background events are expected in the data sample processed by the D0 → π−π+µ±e∓

selection. In the data samples passing the selection for D0 → K−π+µ±e∓ and
D0 → K−K+µ±e∓ decays, combinatorial background events are expected to be
suppressed because of the DLL requirement on the kaon candidate. Data processed by
the D0 → π−π+µ±e∓ and D0 → K−π+µ±e∓ selection still contain many misidentified
decay candidates compared to candidates passing the D0 → K−K+µ±e∓ selection. The
same is expected for the LFV decay modes with the respectively matching hadron
composition. This observation also matches the optimal found cut values. The loosest
cut values are found for the D0 → K−K+µ±e∓ selection. While stricter values for the
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Figure 5.14: Punzi figure of merit for D0 → K−π+µ±e∓ (up), D0 → K−K+µ±e∓ (down left) and
D0 → π−π+µ±e∓ (down right) in bins of ProbNNmu and ProbNNe in the optimal BDT response

bin. Left shows the Punzi figure of merit for D0 → K−K+µ±e∓, middle D0 → K−π+µ±e∓ and
right D0 → π−π+µ±e∓.

D0 → π−π+µ±e∓ selection are found, including a stricter value for the BDT response,
which is used to suppress combinatorial background. For the by misidentified background
candidates dominated D0 → K−π+µ±e∓ selected data set, strict PID cut values are found.

For completeness, all plots showing signal efficiency, expected combinatorial background,
and expected misidentified background in each BDT response bin for the three different
LFV signal channels are reported in appendix C.

5.3.4 Crosscheck: Optimisation

The optimisation procedure is cross-checked and validated by comparing the extrapolated
background yields for misID and combinatorial background obtained during the
optimisation with the misID and combinatorial background observed in recorded data
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D0 → K−K+µ±e∓ D0 → K−π+µ±e∓ D0 → π−π+µ±e∓

NComb;data 195± 18 638± 33 813± 35

NComb;exp 214± 5 671± 11 835± 12

NmisID;data 30± 11 254± 22 269± 22

NmisID;exp 17± 3 247± 4 286± 9

Table 5.3: Comparison between expected, notated by exp, and measured, notated by data,
background yields for the LFV signal modes.

for the LFV decay channels. For this, a fit similar to the one in figure 5.12 has to be
performed. However, as the signal window is the reconstructed D0 mass is blind, a
blinded fit has to be performed, which is detailed in chapter 711.

The observed and calculated expected events for combinatorial and misID backgrounds
are summarised in table 5.3. The quoted errors for the observed backgrounds are of a
statistical nature and are directly extracted during the maximum likelihood fit. The
uncertainties associated with the expected yields consist of statistical errors derived from
the fits and are subsequently scaled by the scaling factors. It is important to note that
these uncertainties do not account for uncertainties introduced by the scaling factors.
Consequently, the resulting uncertainties on the extrapolated values are underestimated.
Nevertheless, the observed and calculated expected events match within their uncertainties,
validating the previously introduced calculation procedure.

5.4 Concluding remarks

The LFV signal samples are further split into candidates with reconstructed bremsstrahlung
and no reconstructed bremsstrahlung. In addition, the data is divided into two data-taking
periods, 2015/2016 and 2017/2018. Different efficiencies are expected for the two
data-taking periods because of changes in the electron reconstruction and the added
D∗+ meson at HLT2 in 2017/2018. In addition, this separation allows to check the
internal consistency of this measurement. The same TMVA classifier and BDT response

11Technically, the reconstructed D0 mass range studied in chapter 7 and the for the optimisation
defined signal region do not match. The fit region, given by m(D0) ∈

[
1800MeV/c2, 1920MeV/c2

]
, also

includes events from the upper sideband m(D0) > 1900MeV/c2. This was done so that the background
is better described by the fit. Therefore, are all values recalculated for this comparison in the larger fit
region of the reconstructed D0 mass.
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requirement for signal and normalisation decay are enforced to reduce the impact of
possible systematic effects introduced in the optimisation. Consequently, the same
selection to its normalisation is applied for each signal decay. This is also true for the
ProbNNmu threshold value, which is randomly assigned to one of the muon candidates.
For simplicity reasons, the other muon candidate has the ProbNNe threshold value applied
to its ProbNNmu classifier. The recorded normalisation samples are then indexed by the
signal channel associated with its selection. To keep track, six data categories for each
measured branching ratio are introduced. Four data categories for the LFV decay modes,
denoted (2015/2016 noBrem, 2015/2016 Brem, 2017/2018 noBrem and 2017/2018 Brem),
and two for the normalisation mode, D0 → K−π+[µ+µ−]ρ0/ω, denoted (norm 2015/2016,
norm 2017/2018), are defined.

The same selection as applied to D0 → K−K+µ±e∓ and D0 → π−π+µ±e∓ decays is
applied to the reference decays D0 → K−K+µ−µ+ and D0 → π−π+µ−µ+, respectively.
The electron PID requirements are replaced by muon PID requirements. At the stripping
level, DLLe > −2 is replaced by isMuon for the second lepton. The ProbNNe PID
variable is adjusted to the muon case, ProbNNmu. The main purpose for measuring the
reference channels is to validate the data pipeline. Therefore, the same ProbNN values
as for D0 → π−π+µ±e∓ and D0 → K−K+µ±e∓ decays are enforced instead of adjusting
the optimisation procedure. Also, the same BDT as for the D0 → K−K+µ±e∓ and
D0 → π−π+µ±e∓ decay modes is used for the reference modes, D0 → K−K+µ−µ+ and
D0 → π−π+µ−µ+. Due to the blinding of the LFV decay modes the reference modes
provide an important possibility to crosscheck the measurement procedure. However, to
properly optimise the selection, the expected background sources need to be independent
of the to-be-studied data sample. Using directly the data sample for D0 → K−K+µ−µ+

and D0 → π−π+µ−µ+ decays to optimise the selection of the same data sample would
introduce a sensitivity to statistical fluctuations of the sample, which is not desired.
Instead of six categories, the data samples associated with the individual branching ratio
measurements are categorised into four categories. Therefore, using the same approach
to calculate the number of misID background events would not be possible. To be able
to validate and crosscheck the data pipeline, no separate optimisation is performed12.

12The BDT selection should, in principle, be equally good for the reference modes. The largest difference
is introduced by the DLL decision of the electron candidate. The PID selection cuts, especially the one
evaluated for the electron candidate in the LFV decay modes, are probably too strong given that the muon
ProbNN variable performs better in general. This can also be observed when comparing signal efficiency
and the expected number of misID background events simultaneously. Just to give an example, picking the
bin [mu_ProbNNmu > 0.8, e_ProbNNe > 0.0, BDT response > 0.5], e_ProbNNe > 0.0 corresponds to no
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This is also the reason why it is not advisable to optimise the selection using directly
the in data observed background yield. Also, here, a different selection for the two
different reference decay modes, D0 → K−K+µ±e∓ and D0 → π−π+µ±e∓, is applied
to the normalisation mode, D0 → K−π+[µ+µ−]ρ0/ω. No bremsstrahlung separation is
needed. Here four data categories are defined, two for the dimuon signal decay modes,
D0 → K−K+µ−µ+ and D0 → π−π+µ−µ+, denoted (2015/2016 ref and 2017/2018 ref),
and two for the normalisation mode, D0 → K−π+[µ+µ−]ρ0/ω, denoted (norm 2015/2016,
norm 2017/2018).

The hadronic simulation samples are processed the same way as the signal lines, apart
from the lepton PID requirements. The DLL requirement is removed altogether, while
ProbNNmu > 0.5 and isMuon is enforced for one misidentified lepton candidate randomly.

e_ProbNNe selection, has a signal efficiency of 62% with 516 expected events while the same mu_ProbNNmu

value, this time bin [mu_ProbNNmu > 0.0, e_ProbNNe > 0.8, BDT response > 0.5] has a signal efficiency
of 51% and 84 expected background events. Though the signal efficiency is lower, significantly fewer
background events are expected.
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Chapter 6

Efficiency ratio estimation

This chapter details the calculation of the efficiency ratio. The structure of this chapter
follows the event reconstruction procedure apart from the trigger efficiency calculation,
which is performed last. The LFV signal and dimuon reference mode efficiency ratios are
summarised in figure 6.6, page 90.

The efficiency ratio for the five different signal decays, which are the dimuon decays,
D0 → π−π+µ−µ+ and D0 → K−K+µ−µ+, and the LFV decays, D0 → π−π+µ±e∓,
D0 → K−π+µ±e∓ and D0 → K−K+µ±e∓, is next to the yield ratio and normalisation
mode branching ratio needed to calculate the corresponding signal branching ratio. All
efficiencies for the dimuon reference mode are calculated and corrected using the same
procedure as the LFV signal decays. The normalisation mode is selected according
to the associated signal mode. Therefore, in the following chapter, for each selection
step, if the efficiencies deviate, three efficiency values according to the applied selection
are reported for the normalisation mode. The normalisation mode selection for the
dimoun decays D0 → π−π+µ−µ+ and D0 → K−K+µ−µ+ is the same as for the two
LFV decays D0 → π−π+µ±e∓ and D0 → K−K+µ±e∓, respectively. In a perfect case,
the simulated data would mirror all detector and physics effects, which would allow a
precise efficiency estimate from the simulated samples. However, this is not necessar-
ily true. Therefore, the efficiency estimate is crosschecked and, if needed, corrected by data.

The efficiency for the signal can be split into five different parts:

ε = εacc · εrec · εPID · εBDT · εtrig, (6.0.1)

where the individual partial efficiencies correct for the detector acceptance, decay re-
construction, PID efficiency, BDT efficiency and trigger efficiency and are defined as
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follows:

εacc = Nin acceptance/Nproduced,

εrec = Nreconstructed, stripped and selected/Nin acceptance,

εPID = Npassing PID selection/Nreconstructed, stripped and selected,

εBDT = Npassing BDT selection/Npassing PID selection,

εtrig = Npassing trigger requirements/Npassing BDT selection.

Nx/y is the number of events before and after the selection step, indicated by the subscripts
x and y, respectively. For the calculation of the branching ratio, only the ratio between
the signal efficiency and normalisation efficiency

rc,y =
εc,y

εnorm,y (6.0.2)

is needed, with y donating the data taking periods and c the signal category, c ∈
{noBrem, Brem} for the LFV decays modes, D0 → K−K+µ±e∓, D0 → K−π+µ±e∓ and
D0 → π−π+µ±e∓, and c = ref for the dimuon reference modes, D0 → π−π+µ−µ+ and
D0 → K−K+µ−µ+. Therefore, the ratios are quoted alongside the efficiencies in this
chapter. Apart from a different trigger reconstruction between the two different data-taking
periods, leading to a different expected efficiency estimate, studying these efficiencies
separately is an important cross-check for the consistency of this measurement. In addition
to the efficiencies reported in the following sections, the same efficiencies for each selection
step and data category are tabulated and can be found in appendix D.

6.1 Acceptance

The LHCb detector covers only a limited region of the solid angle in the forward direction.
The acceptance efficiency is defined by the geometrical region of the detector, which is
1.8 < η < 4.9, where η is the pseudorapidity. The acceptance efficiencies are estimated
during the production of the simulation data set by GEANT4 [81]. The tables are
produced centrally and are made available to the complete collaboration [107]. The
acceptance efficiency covers the geometrical region of the detector and is independent of
the polarity or data-taking period. One combined value for all data-taking periods and
data categories is used for the acceptance efficiency and ratio.

The centrally produced tables only provide the phase-space integrated efficiencies. An
additional simulation sample is produced to calculate the acceptance efficiency for the
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normalisation mode, where the measurement is limited to a narrow dimuon mass range.
The acceptance efficiency for the normalisation mode is εnorm

acc = 19.79% ± 0.30%. The
uncertainty quoted is due to the simulation sample size. The signal mode efficiencies and
associated ratios for the LFV and dimuon decay modes are reported in table 6.1.

D0 → K−K+µ±e∓ D0 → K−π+µ±e∓ D0 → π−π+µ±e∓

εacc [%] 19.93%± 0.04% 18.87%± 0.04% 18.00%± 0.04%

racc 1.007± 0.015 0.954± 0.015 0.909± 0.014

D0 → K−K+µ−µ+ D0 → π−π+µ−µ+

εacc [%] 20.69%± 0.09% 18.31%± 0.08%

racc 1.045± 0.017 0.925± 0.015

Table 6.1: The efficiency ratio racc = εacc/ε
norm
acc for the detector acceptance efficiency εacc. The

uncertainties quoted are due to the limited simulation sample size.

The kinematics of the daughter particles, especially the opening angle between the
individual daughter particles, depend on the available phase space, leading to a ratio that
deviates significantly from one. The same effect is observed when comparing dimuon,
D0 → K−K+µ−µ+ and D0 → π−π+µ−µ+, and LFV decay modes, D0 → K−K+µ±e∓

and D0 → π−π+µ±e∓, respectively. Due to the heavier muon, compared to the electron, a
larger opening angle between the daughter particles is expected, resulting in fewer particles
close to the beam pipe and outside the acceptance (η > 4.9). The same argumentation
chain also applies to the different hadron compositions of the final state particles.

6.2 Decay reconstruction

The efficiencies of the kinematic and vertex quality requirements in the reconstruction
and selection are calculated using simulated data. To correct discrepancies between data
and simulations introduced during the tracking by the tracking algorithm, dedicated
tracking correction factors exist.

These correction factors are calculated using a so-called tag and probe method. For
the tag and probe probe method a tag particle is selected to remove background
contaminations and an associated probe particle is used to determine the efficiency in bins
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Figure 6.1: Muon (left) and electron(right) tracking data-simulation correction map, exemplary
for 2018, in kinematic variables of the muon and electron, respectively. The values for the electron
correction map are taken from the RX analysis [13, 14]. The values for the muon correction map
are provided centrally to the LHCb collaboration.

of the pseudorapitity η and the momentum p of the probe particle1. A high purity is
advantageous for this calculation. Therefore, a high statistics sample of J/ψ → µ+µ−

decays, with a tight selection on the probe particle, is used. In this case, one muon
is used as tag particle, the other as probe particle. With this method, the tracking
efficiency can be calculated from data. The resulting efficiency is then compared to
the from simulations obtained efficiency. Comparing both efficiencies then allows the
calculation of data-simulation correction maps in bins of η and p. An example of such a
map for the muon can be found in figure 6.1. A value of one corresponds to a matching
efficiency between data and simulation in the corresponding bin. The same procedure is
repeated for the electron by using J/ψ → e+e− decays from B+ → J/ψK+ decays. Here
in addition to η and pT the correction factors are also binned in φ, which is the rotation
angle around the beam pipe. The muon maps are centrally provided to the LHCb
collaboration, while the electron correction maps are taken from the RX analysis [13, 14].
The maps are then applied to the muon and electron candidates. Exemplary in figure 6.1
one such data-correction map for the muon and electron is reported. The complete set of
data-simulation correction values can be found in appendix E. The irregular binning for
the electron is done to ensure a minimum number of events in each bin. Most values are
close to unity, showing a general good agreement between data and simulations.

For the hadrons, no such data-simulation correction maps exist. Hadrons, in addition,
1Alternatively to p (or η) also the transverse momentum pT defined relative to the beam pipe can be

used. This will also be the case in the following for the electron.
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also react with the detector material. Those hadrons are partially lost for the tracking
algorithm, which affects the tracking efficiency. Therefore, two effects need to be
considered: the track reconstruction and material interactions. The first effect, the
track reconstruction, is addressed by applying the muons maps to the hadrons, as
both muon and hadron tracks are charged tracks2. The second effect, lost tracks due
to matrial interactions, are already included in simulations. However due to the un-
certainties of the material budget of the detector, a systematic uncertainty will be assigned.

The ratios and efficiency ratio in the data categories are reported in table 6.2. The
separation into the different bremsstrahlung categories is factored into the efficiency.
The main difference between normalisation and LFV signal modes arises due to the
lower electron reconstruction efficiency [75]. This is also observed when comparing the
efficiencies for D0 → K−K+µ−µ+ and D0 → π−π+µ−µ+ decays with the efficiency of
D0 → K−K+µ±e∓ and D0 → π−π+µ±e∓ decays respectively. The second expected and
observed difference in the efficiency is due to the smaller available phase space when
comparing decays with heavier and lighter particles in the final state, as observed when,
for example, comparing D0 → K−K+µ−µ+ and D0 → π−π+µ−µ+ decays.

6.3 Particle Identification and BDT selection

The more complicated simulated ProbNN PID variables are transformed using data. For
the technical details, see section 4.3. For this, three different high-statistic calibration
samples are used:

• J/ψ → µ+µ− decays for the determination of the PID efficiency for muons

• J/ψ → e−e+ decays from B+ → J/ψK+ decays for the PID efficiency for electrons

• D0 → K−π+decays from D∗0 → D0π+ decays for the PID efficiency for pions and
kaons

The corrected efficiencies and ratios are reported in table 6.3. The impact of the
transformation of the muon PID variable is negligible. The efficiency is affected at a
sub-percent level, leading to only a sub-percent effect on the efficiency ratio. However,
the electron efficiency is corrected by ∼ 2%, the pion efficiencies by up to ∼ 7% and the
kaon efficiency by about ∼ 1%. Due to the different final state particles in the efficiency
ratio, this leads to a non-neglectable correction.

2Without produced bremsstrahlung, which would additionally effect the tracking algorithm.
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D0 → K−K+µ±e∓ D0 → K−π+µ±e∓ D0 → π−π+µ±e∓

εnorm,1516
rec [10−4] 113.58± 0.73

εnorm,1718
rec [10−4] 168.3± 0.29

εnoBrem,1516
rec [10−4] 41.64± 0.57 46.74± 0.43 55.72± 0.47

εnoBrem,1718
rec [10−4] 55.95± 0.48 62.86± 0.36 78.14± 0.4

εBrem,1516
rec [10−4] 19.05± 0.39 26.48± 0.32 34.49± 0.38

εBrem,1718
rec [10−4] 25.05± 0.32 35.13± 0.27 47.52± 0.31

rnoBrem,1516
rec 0.367± 0.006 0.412± 0.005 0.491± 0.005

rnoBrem,1718
rec 0.332± 0.003 0.374± 0.003 0.464± 0.003

rBrem,1516
rec 0.168± 0.004 0.233± 0.003 0.304± 0.004

rBrem,1718
rec 0.149± 0.002 0.209± 0.002 0.282± 0.002

D0 → K−K+µ−µ+ D0 → π−π+µ−µ+

εref,1516
rec [10−4] 107.70± 0.79 116.46± 0.76

εref,1718
rec [10−4] 157.71± 0.69 173.51± 0.71

rref,1516
rec 0.708± 0.010 1.176± 0.013

rref,1718
rec 0.703± 0.005 1.189± 0.007

Table 6.2: Decay reconstruction efficiency and efficiency ratio for the different signal modes split
by the different data categories and years. The efficiencies for the normalisation mode is the
same for all five signal decays.

It is possible, with the help of the previously applied PID selection, to compare the BDT

response between data and simulations. This is done by applying a fit to the reconstructed
D0 mass (mD0) distribution and calculating for each event i so-called sWeights using the

sPlot formalism [108]. The weights are defined by:

Pn(mD0(i)) =

∑NS

j=1 V njfj(mD0(i))∑NS

k=1Nkfk(mD0(i))
, (6.3.1)

where V ij is the covariance matrix, mD0(i) gives the mD0 for event i, NS is the number
of event categories, signal (sig) and background (bkg), and n ∈ {sig, bkg} denotes the
category for which the weight is calculated. The sWeights effectively allow the subtraction
of background candidates from the studied data distributions. For this, the studied
variable distribution has to be independent of the distribution used to calculate the
sWeights. The normalised BDT response for s-weighted data and simulations for the
dimuon modes are reported in figure 6.2. Additionally, the residual distribution normalised
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D0 → K−K+µ±e∓ D0 → K−π+µ±e∓ D0 → π−π+µ±e∓

εnorm,1516
PID [%] 71.38± 0.19 35.21± 0.20 47.78± 0.20

εnorm,1718
PID [%] 72.65± 0.16 37.06± 0.18 49.69± 0.18

εnoBrem,1516
PID [%] 62.27± 0.63 35.65± 0.41 46.41± 0.40

εnoBrem,1718
PID [%] 59.66± 0.42 33.25± 0.26 45.29± 0.26

εBrem,1516
PID [%] 64.09± 0.95 38.93± 0.56 48.89± 0.52

εBrem,1718
PID [%] 60.61± 0.64 35.28± 0.36 47.48± 0.34

rnoBrem,1516
PID 0.872± 0.009 1.012± 0.013 0.971± 0.009

rnoBrem,1718
PID 0.821± 0.006 0.897± 0.008 0.911± 0.006

rBrem,1516
PID 0.898± 0.014 1.105± 0.017 1.023± 0.012

rBrem,1718
PID 0.834± 0.009 0.952± 0.011 0.956± 0.008

D0 → K−K+µ−µ+ D0 → π−π+µ−µ+

εref,1516
PID [%] 67.77± 0.31 51.14± 0.24

εref,1718
PID [%] 68.64± 0.19 54.59± 0.16

rref,1516
PID 0.951± 0.005 1.072± 0.007

rref,1718
PID 0.946± 0.003 1.100± 0.005

Table 6.3: PID efficiency and efficiency ratio for the different signal modes split by the dif-
ferent data categories and years. The efficiencies for the normalisation mode selection used
for D0 → K−K+µ−µ+ (D0 → π−π+µ−µ+) decays and D0 → K−K+µ±e∓ (D0 → π−π+µ±e∓)
decays is the same, due to the same selection applied to the normalisation mode.

by its uncertainty, the so-called pull, is reported for each bin. Because of the agreement
between simulation and data no further corrections must be applied to the simulated events.

The signal is blind. Therefore, the data-simulation comparison is only done for the
normalisation and reference channels. In figure 6.3, the normalised BDT response

trained for the different signal channels for s-weighted normalisation mode data
and simulations is shown. Given the good agreement in the normalisation and ref-
erence mode, reported in ??, no further corrections must be applied to the simulated events.

The efficiency ratio and single efficiencies per category are reported in table 6.4. The
efficiencies are consistent for all decay modes.
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Figure 6.2: Comparison of the BDT response between recorded s-weighted [108] data and
simulations. The BDT is trained for D0 → π−π+µ±e∓ and D0 → K−K+µ±e∓ decays and
applied to D0 → K−K+µ−µ+ (left) and D0 → π−π+µ−µ+ (right) decays, respectively. Below
each distribution, the pull, the difference between the two distributions normalised by its
uncertainty, is reported.

6.4 Trigger

The trigger efficiency is separately estimated for the high-level trigger, εHLT and the
low-level hardware trigger, εL0. The software trigger efficiencies are directly calculated
from the simulated samples. The hardware trigger, which is more difficult to describe
in simulations precisely, is evaluated separately in the two disjoint trigger categories,
εTIS\TOS and εTOS:

• εTOS: Trigger efficiency of events passing L0Muon TOS

• εTIS\TOS: Trigger efficiency of events passing L0Muon and L0Electron TIS but not
L0Muon TOS

The naive approach would be to compute trigger efficiency by the ratio of signal events
accepted by the trigger and all events within the acceptance of the detector. However,
this is impossible, as the number of signal events in the acceptance is unknown for the
recorded data samples. One might use, in this case, the simulated samples to estimate
trigger efficiency for data, but especially for the hardware trigger, potential disparities
between simulation and real data remain unaccounted for. To correct possible disparities,
similarly as was done for the tracking efficiency, data-simulation weights are calculated
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Figure 6.3: Comparison of the BDT response for the three trained BDTs, for D0 → K−π+µ±e∓

(up), D0 → π−π+µ±e∓ (lower left) and D0 → K−K+µ±e∓ (lower right) decays, applied to the
normalisation decay mode, D0 → K−π+[µ+µ−]ρ0/ω, between s-weighted [108] recorded data
and simulations. Below each distribution, the pull, the difference between the two distributions
normalised by its uncertainty, is reported.

with the help of a calibration sample, here B0 → K∗0(→ K+π−)J/ψ(→ µ+µ−) decays.
For this the trigger efficiency for the default trigger selection needs to be evaluated in
data and simulations for the calibration sample. The same method with a different trigger
selection, but the same calibration sample was originally developed for the measurement
of RX [13, 14].
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D0 → K−K+µ±e∓ D0 → K−π+µ±e∓ D0 → π−π+µ±e∓

εnorm,1516
BDT [%] 48.25± 0.24 67.22± 0.32 54.46± 0.30

εnorm,1718
BDT [%] 45.49± 0.22 64.81± 0.29 51.07± 0.26

εnoBrem,1516
BDT [%] 50.74± 0.83 62.4± 0.69 47.55± 0.59

εnoBrem,1718
BDT [%] 50.77± 0.56 61.84± 0.47 49.05± 0.39

εBrem,1516
BDT [%] 55.96± 1.23 68.02± 0.86 54.84± 0.74

εBrem,1718
BDT [%] 56.65± 0.84 68.38± 0.6 56.19± 0.49

rnoBrem,1516
BDT 1.052± 0.018 0.928± 0.011 0.873± 0.012

rnoBrem,1718
BDT 1.116± 0.013 0.954± 0.008 0.960± 0.009

rBrem,1516
BDT 1.160± 0.026 1.012± 0.014 1.007± 0.015

rBrem,1718
BDT 1.245± 0.019 1.055± 0.01 1.100± 0.011

D0 → K−K+µ−µ+ D0 → π−π+µ−µ+

εref,1516
BDT [%] 52.37± 0.40 50.48± 0.33

εref,1718
BDT [%] 49.08± 0.25 48.01± 0.21

rref,1516
BDT 1.085± 0.010 0.927± 0.008

rref,1718
BDT 1.079± 0.007 0.94± 0.006

Table 6.4: BDT efficiency and efficiency ratio for the different signal modes split by the
different data categories and years. The efficiencies for the normalisation mode selection used
for D0 → K−K+µ−µ+ (D0 → π−π+µ−µ+) decays and D0 → K−K+µ±e∓ (D0 → π−π+µ±e∓)
decays is the same, due to the same selection applied to the normalisation mode.

To evaluate the efficiencies in the calibration sample the so-called TISTOS method is
used [109]. The principal idea of the TISTOS method is to calculate the efficiency on an
independent, triggered subsample. If the subsample is independent of the trigger decisions,
i.e. decays are drawn randomly, the subsample trigger efficiency corresponds, within its
uncertainty, to the efficiency of the complete sample. In the case of the L0Muon trigger
decision, the efficiency is calculated in the following way:

εTOS =
NTIS&TOS

NTIS

, (6.4.1)

where NTIS corresponds to the number of TIS events by the ECAL, L0Electron TIS,
and Muon stations L0Muon TIS and NTIS&TOS is the number of events which trigger
L0Muon TOS in the TIS selected sample.

84



Analogously to this, εTIS\TOS is calculated by:

εTIS\TOS =
NTIS&TOS

NTOS

, (6.4.2)

where NTOS corresponds to the number of events after selecting L0Muon and L0Hadron

TOS on any of the daughter particles and NTIS&TOS is the number of events triggered
by L0Muon and L0Electron TIS in this subsample. The high occupancy linked with
relatively large cluster sizes does not allow the assumption that L0Electron TOS and
L0Electron TIS are independent of each other. The problem here is that due to the
ECAL resolution, it is not possible to ensure that the TIS and TOS tags are properly
assigned. Thus, trigger information from the ECAL is omitted.

To evaluate the efficiency of data with the TISTOS method, a high-purity sample is
required to identify the desired decay events independent of their decay trigger selections3.
The samples are corrected for simulation data differences in the TISTOS method to ensure
an unbiased trigger efficiency measurement. These trigger efficiency correction weights are
estimated using B0 → K∗0(→ K+π−)J/ψ(→ µ+µ−) decays. An independent selection
leading to a high purity is applied to these decays, the same as for the RX analysis, by
selecting a narrow J/ψ mass window [13, 14].

The data-simulation correction weight wL0 is then defined by:

wL0 =
εdataL0

εMC
L0

(6.4.3)

where both efficiencies εdataL0 and εMC
L0 are determined using the TISTOS method. The

weights are calculated and applied individually for both L0 trigger categories. The L0Muon

TOS weights depend on the (transverse) momentum of the muon track and are applied to
the simulation sample in bins of pT and p with the following bin edges:

• p: [0, 15000, 10000000]MeV/c

• pT : [0, 550, 750, 1000, 1250, 1600, 2000, 2800, 20000]MeV/c

The weights in their corresponding bins are reported in figure 6.4.

The efficiency in the εTIS\TOS category depends mainly on the detector occupancy and
potentially on the position of the particle tracks within the detector. For this purpose the
weights are applied in bins of nTracks, which is the number of reconstructed tracks, and

3This is the reason why the trigger efficiency is calculated last.
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Figure 6.4: Muon data-simulation trigger correction weights in bins of pT and p, split by the
different years.

pT of the mother particle, the B0 candidate for the calibration sample or for signal the
D∗+ candidate. The bin edges are defined as follows:

• nTracks: [0, 80, 120, 170, 700]

• pT : [0, 4000, 6000, 8000, 10000, 12000, 13000, 15000, 17000, 19000, 50000]MeV/c

The weights in their corresponding bins are reported in figure 6.5.

The individual correction weights are mostly consistent over the different years. However,
some deviations between the muon correction weights can be observed. It is important to
note that for all years, the correction weights have relatively large uncertainties. These
uncertainties are studied in detail in section 8.7, and a systematic uncertainty has to be
assigned. The final corrected trigger efficiencies are reported in table 6.5. The L0Muon
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trigger decision strongly depends on the momentum of the muon it was triggered by.
This can also partially be observed for the LFV decay modes. The momentum of the
muon scales with the available phase-space for the dilepton object. However, a direct
interpretation of the trigger efficiencies at this step is difficult due to the pre-existing
selection applied to the data samples, such as the different PID requirements on the lepton
candidates.
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Figure 6.5: Electron data-simulation trigger correction weights in bins of pT and p, split by the
different years.
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D0 → K−K+µ±e∓ D0 → K−π+µ±e∓ D0 → π−π+µ±e∓

εnorm,1516
trig [%] 11.04± 0.01 14.99± 0.01 15.41± 0.01

εnorm,17168
trig [%] 28.90± 0.0 36.18± 0.01 36.94± 0.01

εnoBrem,1516
trig [%] 5.30± 0.02 10.16± 0.01 13.59± 0.01

εnoBrem,1718
trig [%] 15.60± 0.01 27.28± 0.01 33.44± 0.01

εBrem,1516
trig [%] 2.10± 0.02 5.03± 0.02 3.94± 0.02

εBrem,1718
trig [%] 12.43± 0.01 24.94± 0.01 31.83± 0.01

rnoBrem,1516
trig 0.480± 0.046 0.678± 0.036 0.882± 0.042

rnoBrem,1718
trig 0.540± 0.012 0.754± 0.011 0.905± 0.010

rBrem,1516
trig 0.190± 0.030 0.336± 0.033 0.256± 0.025

rBrem,1718
trig 0.430± 0.014 0.689± 0.012 0.862± 0.011

D0 → K−K+µ−µ+ D0 → π−π+µ−µ+

εref,1516
trig [%] 6.87± 0.37 16.33± 0.31

εref,1718
trig [%] 21.43± 0.15 40.81± 0.15

rref,1516
trig 0.629± 0.037 1.060± 0.031

rref,1718
trig 0.741± 0.007 1.106± 0.007

Table 6.5: The efficiency ratio for the trigger efficiency for the different signal modes split by the
different data categories used in the simultaneous fit.
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6.5 Concluding remarks

All efficiency ratios, as well as the final efficiency ratio

r = racc × rrec × rPID × rBDT × rtrig, (6.5.1)

for the dimuon and LFV decays are summarised in figure 6.6. The efficiency ratio
is larger for dimuon decays than for decays including electrons. This is mainly
due to a worse tracking efficiency for electrons compared to muons. This can be
seen when directly comparing rrec between reference and signal decay modes in
figure 6.6. Note that the normalisation mode efficiencies for D0 → π−π+µ−µ+ and
D0 → π−π+µ±e∓ decays and D0 → K−K+µ−µ+ and D0 → K−K+µ±e∓ decays are the
same, allowing a direct comparison4. The second source leading to a lower efficiency is
the inefficient trigger in the case of bremsstrahlung during the first two years of data taking.

Comparing the different decay modes it can be observed that the ratio for decays with
lighter hadrons in the final state is larger. This is expected because of an increased
or reduced available phase space for all daughter particles due to the kaon mass. The
increased phase space leads to higher momenta of the daughter particles, thus increasing
the efficiency and vice versa.

In general, it can be observed that the trigger and reconstruction efficiency are the
limiting factors when studying electron decays, at least compared to muon decays, at
the LHCb detector. No unexpected behaviour is observed in the efficiency ratio. With
the obtained efficiency ratio, only the signal to normalisation yield ratio is missing to
calculate the branching fraction for the signal decays.

4The separation in bremsstrahlung categories is factored into the reconstruction efficiency. To compare
the values directly, the bremsstrahlung categories need to be added for rrec.
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Figure 6.6: Summary of the efficiency ratios for the two reference decay modes,
D0 → K−K+µ−µ+ and D0 → π−π+µ−µ+ (upper row) and the LFV decay modes,
D0 → K−K+µ±e∓, D0 → π−π+µ±e∓ (both middle row) and D0 → K−π+µ±e∓ (lower row).
The efficiency ratios are reported separately for each data category, time period and selection
step. Additionally also the overall efficiency ratio r = racc×rrec×rPID×rBDT ×rtrig is reported.
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Chapter 7

Determination of signal yield

In this chapter, the estimation of the yield ratio is detailed. The number of left-over
background and signal events after the selection process is calculated by a fit to the
data sample. First, distributions to describe signal and background are defined, which
are combined into a simultaneous fit. Using the efficiency and normalisation ratio as
external input, the fit is used to evaluate the branching fraction directly. In the next step,
pseudo-experiments are generated and measured to validate the fit. Lastly, the resulting
statistical sensitivity for the LFV decays and the branching fraction for D0 → h−h+µ−µ+

decays is reported.

After optimising the signal for its significance in observing LFV decays, the data sample
is not background-free. To describe the data sample composition, three categories are
defined:

• Signal: possible candidates of the decay of interest, D0 → h(
′)−h+µ±e∓ decays,

D0 → h−h+µ−µ+ decays and the normalisation decay D0 → K−π+[µ+µ−]ρ0/ω.
These are expected to peak in the reconstructed invariant mass at the D0 mass.

• Peaking background: candidates of the form D0 → h(
′)−h+π−π+ where two pions

are misidentified as muon and electron.

• Non-peaking background: a collection of all candidates who passed the selection,
detailed in chapter 5, not associated with a particular decay. This includes single
candidates from partially or wrongly reconstructed decays, or random combinations
of tracks or particles that meet all selection criteria.

Other in the fit model neglected background sources are studied in section 8.1. To
separate and count the number of potential signal candidates or evaluate the significance
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in case of no observed signal, the invariant D0 mass under the signal mass hypothesis is
studied.

All three data components behave differently in the reconstructed invariant D0 mass
distribution. The signal is expected to be distributed around the D0 mass. In contrast,
the fully hadronic decays are expected to be majorly distributed in the lower mass
spectrum due to the wrong mass hypothesis applied in the calculation of the D0 mass.
The combinatorial background should be smoothly distributed in the studied mass
window around the D0 mass.

The distributions themselves are extracted either from data or are fixed by simulation.
This is done to avoid any ambiguity in the fit and properly separate signal and background
candidates. The individual components are combined into one fit model, allowing direct
access to the signal component’s yield. A simultaneous fit to all decay categories is
performed to simplify the calculation and directly estimate the significance of the model
compared to the background-only hypothesis. This allows the direct calculation of the
branching fraction. As mentioned before, the data samples used to study the LFV decays
are divided into three categories, noBrem LFV decay candidates where no bremsstrahlung
is reconstructed, Brem LFV decay candidates where bremsstrahlung is reconstructed and
norm which consists of candidates passing the selection for the normalisation mode which
matches the signal mode1. For the dimoun mode two data categories are considered
ref, which contains the signal, and norm, which contains the normalisation mode. These
categories are then further split into two data taking periods, one for 2015 and 2016 and
another for 2017 and 2018.

LFV decays

For the signal decays, the shape of the signal distribution and possible background sources
depend strongly on the recovery of the bremsstrahlung photon. If a photon is added
to the decay chain, due to the limited ECAL resolution2 a wider but mostly symmetric
mass distribution around the D0 is expected, provided the correct photon is added during
recovery. In contrast, if no photon is added to the decay chain, it often means that the
photon was lost during the reconstruction and not necessarily that no photon was emitted.

1The main difference here is that three independent BDTs were trained for the three LFV decay modes.
To avoid biases introduced by the BDT, three different selections were applied to the normalisation mode.
For simplicity reasons also the PID selection steps are kept as similar as possible to the signal modes.

2In comparison to the momentum resolution of the tracking system.

92



An asymmetric distribution with a lower tail and a relatively sharp edge at the D0 mass is
expected for decays without added photons. Due to energy and momentum conservation,
no signal candidates with a reconstructed D0 mass larger than the real D0 mass are
expected within their resolution. The edge is defined by the momentum resolution of the
tracking system. The second big difference concerning possible background contamination
is that pions do not emit bremsstrahlung, allowing the use of the photon as a powerful
tag to separate decays containing electrons and fully hadronic decays.

D0 → h−h+µ−µ+ and D0 → K−π+[µ+µ−]ρ0/ω decays

The same distributions as for the signal mode are used for the fit to the reference and
normalisation mode. The reference mode candidates are expected to be more symmetrically
distributed around the D0 mass. Due to the smaller mass difference, misID candidates
are expected to be distributed closer to the D0 mass. Signal, misID and combinatorial
background event distributions use the same parameterisation as used for the signal mode.

7.1 Signal

The signal distribution is described by a Johnson’s SU distribution [110]. The Johnson’s SU

distribution is a four-parametric function resulting from a variable transformation of a
normal distribution to allow for asymmetric tails. It has the following form:

f(m;µ, λ, γ, δ) =
δ

λ
√
2π

1√
1 +

(
m−µ
λ

)2 exp

[
−1

2

(
γ + δ sinh−1

(
m− µ

λ

))2
]

(7.1.1)

µ is the location parameter of the Gaussian component, λ the width parameter of the
Gaussian component, γ the shape parameter that distorts distribution to the left or right
and δ the shape parameter that determines the strength of the Gaussian-like component.

The asymmetric Johnson’s SU distribution is chosen to parameterise the upper or lower
mass distribution tail while keeping the free parameters at a minimum, compared, for
example, to a double-sided Crystal-Ball distribution [111]. In section 8.2, alternative
signal parameterisations and their systematic influence are studied. Exemplary in
figure 7.1 a fit of the Johnson’s SU distribution to the normalisation channel3 and to
D0 → π−π+µ±e∓ decays in the two data categories Brem and noBrem is shown.

3Applying the selection normalisation channel selection for the D0 → π−π+µ±e∓ normalisation.
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The signal shape in the Brem category has, as expected, a more pronounced tail for higher
masses, contrary to the distribution in the noBrem category with a more pronounced
tail for lower masses. Because of the momentum dependence of the efficiency, a slight
asymmetry for D0 → K−π+[µ+µ−]ρ0/ω decays, under D0 → K−π+[µ+µ−]ρ0/ω mass
hypothesis, is expected, which is also observed in figure 7.1. The same is true for the
reference modes. All parameters describing the signal distributions, as well as the number
of simulated events used to obtain the shape parameters, are reported in table 7.1 for
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Figure 7.1: Example shape of the signal distribution used to estimate the number of normalisation
candidates (up) and D0 → π−π+µ±e∓ candidates in the data categories noBrem (lower left) and
Brem (lower right). The signal shapes are projected on the simulation samples for the data
taking period between 2017 and 2018, which were used to extract the shape.
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data taken in 2015 and 2016 and in table 7.2 for data taken in 2017 and 2018. Generally,
the shape parameters are compatible within their uncertainties between the two data
taking periods. All signal shape distributions for the LFV decays modes are reported in
appendix F.

Parameter D0 → K−K+µ±e∓ D0 → K−π+µ±e∓ D0 → π−π+µ±e∓

N1516,norm
sig 3493± 59 3116± 56 3351± 58

δ1516,norm
sig 1.79± 0.096 1.92± 0.12 1.85± 0.11

γ1516,norm
sig 0.05± 0.068 0.011± 0.08 0.052± 0.073

µ1516,norm
sig 1866.13± 0.49 1865.89± 0.57 1866.21± 0.54

λ1516,norm
sig 11.69± 0.76 12.59± 0.94 12.34± 0.86

N1516,Brem
sig 73± 9 197± 14 225± 15

δ1516,Brem
sig 0.9± 0.27 0.76± 0.16 1.09± 0.19

γ1516,Brem
sig −0.79± 0.32 −0.41± 0.14 −0.41± 0.17

µ1516,Brem
sig 1858.1± 4.5 1861.9± 2.0 1862.1± 2.4

λ1516,Brem
sig 10.9± 4.1 10.4± 2.9 14.2± 3.3

N1516,noBrem
sig 288± 17 610± 25 949± 31

δ1516,noBrem
sig 1.42± 0.25 1.25± 0.14 1.4± 0.13

γ1516,noBrem
sig 1.43± 0.43 1.51± 0.23 1.24± 0.15

µ1516,noBrem
sig 1870.5± 3.4 1872.4± 2.0 1870.7± 1.7

λ1516,noBrem
sig 10.6± 1.9 10.2± 1.4 15.5± 1.9

Parameter D0 → K−K+µ−µ+ D0 → π−π+µ−µ+

N1516
sig 8136± 90 16360± 130

δ1516sig 2.29± 0.32 2.12± 0.18

γ1516sig −0.42± 0.22 0.08± 0.1

µ1516
sig 1863.5± 1.2 1866.73± 0.9

λ1516sig 11.8± 1.9 17.2± 1.7

Table 7.1: Summary of the signal fit parameters for the LFV signal decays and correspondingly
selected normalisation modes obtained by a fit to the simulation data samples for 2015 and 2016.
The number of simulated events passing the selection procedure, as well as the shape parameters
of the Johnson SU distribution, are reported.
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Parameter D0 → K−K+µ±e∓ D0 → K−π+µ±e∓ D0 → π−π+µ±e∓

N1718,norm
sig 12240± 110 10600± 100 11060± 110

δ1718,norm
sig 1.813± 0.052 1.815± 0.056 1.815± 0.054

γ1718,norm
sig 0.012± 0.037 0.007± 0.04 0.009± 0.039

µ1718,norm
sig 1865.99± 0.26 1865.9± 0.27 1865.92± 0.27

λ1718,norm
sig 11.51± 0.4 11.39± 0.43 11.47± 0.42

N1718,Brem
sig 911± 30 2229± 47 4167± 65

δ1718,Brem
sig 0.664± 0.06 0.8± 0.049 0.803± 0.037

γ1718,Brem
sig −0.428± 0.065 −0.179± 0.044 −0.135± 0.033

µ1718,Brem
sig 1861.36± 0.88 1862.5± 0.76 1863.13± 0.6

λ1718,Brem
sig 9.3± 1.1 13.4± 1.1 14.23± 0.84

N1718,noBrem
sig 2074± 46 3968± 63 6537± 81

δ1718,noBrem
sig 0.919± 0.044 0.995± 0.038 1.045± 0.034

γ1718,noBrem
sig 1.21± 0.075 1.297± 0.062 1.231± 0.05

µ1718,noBrem
sig 1868.03± 0.59 1869.42± 0.58 1870.36± 0.57

λ1718,noBrem
sig 6.5± 0.43 8.51± 0.43 10.93± 0.45

Parameter D0 → K−K+µ−µ+ D0 → π−π+µ−µ+

N1718
sig 8136± 90 16360± 130

δ1718sig 1.906± 0.078 2.062± 0.065

γ1718sig −0.035± 0.048 −0.015± 0.039

µ1718
sig 1865.52± 0.26 1865.9± 0.33

λ1718sig 9.62± 0.47 16.41± 0.6

Table 7.2: Summary of the signal fit parameters for the LFV signal decays and correspondingly
selected normalisation modes obtained by a fit to the simulation data samples for 2017 and 2018.
The number of simulated events passing the selection procedure, as well as the shape parameters
of the Johnson SU distribution, are reported.
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7.2 Peaking background

Misidentified D0 → h(
′)−h+π−π+ decays, where the pions are misidentified as muon and

electron, are separated from the signal by fitting the four-body invariant mass spectrum.
While passing the same selection steps as for the signal candidates, the candidates are
expected to peak to the left of the D0 mass because of the wrong mass hypothesis. The
two pions are reconstructed as muon-electron (muon-muon) candidates with a too-low
mass. The same procedure was used in previous studies of D0 → h−h+µ−µ+ decays.
In this analysis, the mass difference between the misidentified particle mass and the
reconstructed mass assumption is even greater, leading to better signal-background
separation. This advantage is reduced by the tail in the distribution introduced by missing
bremsstrahlung. Bremsstrahlung recovery provides an additional opportunity, as heavier
particles produce no bremsstrahlung, allowing for good signal-background separation4.

A Johnson’s SU distribution is chosen to describe this component, defined in equation 7.1.
Simulated samples are used to determine the shape of the distribution and the fraction of
misID candidates between candidates with and without reconstructed bremsstrahlung.
Due to the high inefficiency for background candidates, a looser selection is applied
to the simulation samples. Also, the shapes for both data-taking periods are fixed
using the larger simulation samples produced for 2017 and 2018. For the background
of the LFV signal modes, the default selection without explicitly reapplying the HLT2
line and without PID requirements, except ProbNNmu > 0.5 on the muon candidate,
is applied. For the bremsstrahlung recovery, the pion must be reconstructed as an
electron, therefore also DLLe > −2 is applied. The shape and bremsstrahlung candidate
fraction are fixed to values obtained from simulations. All misID background shape
parameters obtained for the LFV decay modes, including the normalisation mode with the
corresponding selection, are reported in table 7.3. As an example, the misID distributions
obtained from simulations for the D0 → π−π+µ±e∓ decay mode and the correspondingly
selected normalisation mode are reported in figure 7.2. Note that even though the
misID contribution is suppressed strongly if bremsstrahlung is reconstructed, the dis-
tribution is moved under the signal distribution because of wrongly added bremsstrahlung5.

The same procedure as for the LFV signal mode without PID requirements except
ProbNNmu > 0.5 on one randomly assigned muon is applied for the normalisation,
D0 → K−π+[µ+µ−]ρ0/ω, and reference, D0 → K−K+µ−µ+ and D0 → π−π+µ−µ+, decay

4At the end, both bremsstrahlung categories contribute to equal amounts to the limit.
5Pions do not emit bremsstrahlung.
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channels.

The shape of the mass distribution depends on the PID distribution. Therefore, a
systematic uncertainty will be assigned, which is detailed in section 8.4. All fit results,
including the values for the shape parameters, are reported in table 7.3. All peaking
background shape distributions for the LFV decays modes are reported in appendix F.
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Figure 7.2: Example misID shape fit to simulated D0 → K−π+π+π− (up) and D0 → π−π+π−π+

(down) decays. The distribution in the upper plot shows the reconstructed mass under
D0 → K−π+[µ+µ−]ρ0/ω mass hypothesis. The lower distributions, D0 → π−π+π−π+ decays,
are reconstructed under D0 → π−π+µ±e∓ mass hypothesis and applied bremsstrahlung recovery.
Events where no bremsstrahlung (lower left) is added and events with added bremsstrahlung
(lower right) are shown. All three plots are for the data-taking period 2017/2018.
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Parameter D0 → K−K+µ±e∓ D0 → K−π+µ±e∓ D0 → π−π+µ±e∓

N1718,norm
misID 412± 20 310± 18 249± 16

δ1718,norm
misID 1.28± 0.22 1.24± 0.23 1.0± 0.16

γ1718,norm
misID 2.06± 0.48 1.62± 0.33 1.29± 0.2

µ1718,norm
misID 1859.8± 3.9 1857.5± 3.2 1854.2± 2.0

λ1718,norm
misID 10.4± 1.9 11.2± 2.7 9.7± 2.4

N1718,Brem
misID 122± 11 166± 13 376± 19

δ1718,Brem
misID 0.34± 0.24 0.35± 0.29 1.35± 0.4

γ1718,Brem
misID 0.27± 0.41 −0.86± 0.65 −0.44± 0.25

µ1718,Brem
misID 1824.7± 4.6 1859.0± 5.1 1866.0± 7.1

λ1718,Brem
misID 10.4± 4.3 15.8± 6.7 40.0± 13.0

N1718,noBrem
misID 142± 12 572± 24 1910± 44

δ1718,noBrem
misID 1.4± 0.46 1.07± 0.12 1.223± 0.084

γ1718,noBrem
misID 2.08± 0.87 1.12± 0.15 1.19± 0.11

µ1718,noBrem
misID 1846.6± 8.0 1843.4± 1.7 1848.3± 1.3

λ1718,noBrem
misID 13.0± 4.4 11.0± 1.7 13.8± 1.1

Parameter D0 → K−K+µ−µ+ D0 → π−π+µ−µ+

N1718
misID 113± 11 367± 19

δ1718misID 1.49± 0.22 1.05± 0.12

γ1718misID 6.5± 4.0 1.45± 0.22

µ1718
misID 1860.4± 2.6 1854.4± 2.4

λ1718misID 0.7± 1.9 10.9± 1.8

Table 7.3: Summary of misID background fit parameters for LFV and dimuon decays ob-
tained by a fit to the simulation data samples. The corresponding normalisation mode
parameters are also reported. The column labels mark the applied selection. The nor-
malisation misID background shapes are calculated from simulated D0 → K−π+π+π− de-
cays under D0 → K−π+[µ+µ−]ρ0/ω mass hypotheses. The mass distribution of the misID
backgrounds, D0 → π−π+π−π+, D0 → K−π+π+π− and D0 → K−K+π−π+ decays, are recon-
structed under the corresponding signal mass hypothesis, D0 → π−π+µ±e∓ (D0 → π−π+µ−µ+),
D0 → K−π+µ±e∓ and D0 → K−K+µ±e∓ (D0 → π−π+µ−µ+), respectively. The misID back-
ground parameters for the normalisation modes are the same for the dimuon signal modes,
D0 → π−π+µ−µ+ and D0 → K−K+µ−µ+, and D0 → π−π+µ±e∓ and D0 → K−K+µ±e∓ de-
cays, respectively. The number of simulated events passing the selection procedure, as well as
the shape parameters of the Johnson SU distribution, are reported.
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7.3 Non-peaking background

A third fit component is introduced to describe the leftover background events grouped
together as combinatorial background. As no significant peaking background sources are
suspected under the signal, the linear background is approximated by a linear function.
For this purpose, a Chebyshev polynomial, 1st order, defined by:

T (m|c1) =
1

NL

(1 + c1m), (7.3.1)

where NL is the normalisation and c1 the slope of the function. The slope parameter
is fixed by the same fit from the upper mass sideband m(D0) > 1900MeV/c2. The fit
distribution and fit projection can be found in figure 5.10 and is the same as used during
the optimisation of the selection in section 5.3.3. The same selection as for the data
sample is applied, but without a cut on the BDT response and an inverted PID selection.
The inverted PID selection requires that the PID variable ProbNN for the leptons is smaller
than 0.1. This ensures that no signal candidates are contaminating the upper sideband.
The impact of the chosen parameterisation and the choice of the fit function is studied in
section 8.3.

Parameter D0 → K−K+µ±e∓ D0 → K−π+µ±e∓ D0 → π−π+µ±e∓

c1516,noBrem
1 −0.009± 0.014 −0.127± 0.068 −0.116± 0.049

c1718,noBrem
1 −0.141± 0.048 −0.101± 0.023 −0.021± 0.015

c1516,Brem
1 0.0∗ 0.0∗ −0.031± 0.129

c1718,Brem
1 0.046± 0.139 −0.683± 0.026 −0.178± 0.033

Parameter D0 → K−K+µ−µ+ D0 → K−π+[µ+µ−]ρ0/ω D0 → π−π+µ−µ+

c15161 0.0∗ −0.11± 0.20 0.15± 0.21

c17181 −0.30± 0.21 −0.11± 0.20 −0.11± 0.06

Table 7.4: Slope of the Chebychev polynomial used in the data fit obtained from the upper mass
sideband m(D0) > 1900MeV/c2. The upper table shows the resulting slope for the LFV decay
modes in the different data categories. The lower table shows the slope for the dimuon reference
decays and the normalisation mode. The slope is assumed to be the same for the differently
selected normalisation modes. ∗No events pass the selection, and the slope is set to 0.0.
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7.4 Simultaneous Fit

The three fit components, signal, peaking background (misID) and combinatorial back-
ground, are combined into one fit function. With the shape parameters fixed from
the simulation, there are only three free parameters left, the three yields. By solving
equation 2.4.5 for the signal branching fraction,

B(D0 → h(′)−h+l(′)−l+) =
Nsig

Nnorm

· εnorm
εsig

· B(D0 → K−π+[µ+µ−]ρ0/ω), (7.4.1)

a simultaneous fit between normalisation and signal mode is set up. B(D0 → h(′)−h+l(′)−l+)

is the signal branching fraction and Nsig and Nnorm the measured yields in signal and
normalisation sample. B(D0 → K−π+[µ+µ−]ρ0/ω) is the branching fraction for the
normalisation decay. For B(D0 → K−π+[µ+µ−]ρ0/ω) the PDG value is taken [102].
εsig/εnorm is the efficiency ratio. The efficiency ratio and the normalisation mode’s
branching fraction are provided as external input.

The signal yield is parameterised as a function of the branching fraction. This parame-
terisation allows to directly estimate the branching ratio without performing a second
calculation, for example by an additional fit, to estimate the branching ratio. The statisti-
cal uncertainty can be accessed by the likelihood function. Following equation 7.4.1, the
four signal yields are parameterised in the following way:

N
y (,c)
sig =

B(D0 → h(′)−h+l(′)−l+) + b

B(D0 → K−π+µ−µ+)
· Ny

norm ·
ε
y (,c)
sig

εynorm
(7.4.2)

The upper index y donates the year of the data taking period, 2015 and 2016 (1516) and
2017 and 2018 (1718), and c the bremsstrahlung categories, noBrem and Brem. The blind
b is zero for the dimuon modes and a random unknown number for the LFV decay modes.
A separation in bremsstrahlung categories is not needed for the reference modes. A shift
parameter νsig for the signal component is introduced for the reference modes. The shift
accounts for possible differences in the peak position between simulations and data. The
normalisation yield is free, with no dependencies between the two categories. Additionally,
a shift parameter νnorm is introduced to account for possible data-simulation differences.
To increase the stability of the fit, the ratio between the misID background in the two
categories is fixed to simulations. The uncertainty on the ratio is added as systematic
uncertainty during the limit setting.

To summarise for the LFV signal (dimuon reference) mode, all shape and peak positions
are fixed to simulations, apart from the two (four) shift parameters ν. The twelve

101



Parameter D0 → K−K+µ±e∓ D0 → K−π+µ±e∓ D0 → π−π+µ±e∓

B(D0 → h(
′)−h+µ±e∓)[10−8] x.x ± 2.6 x.x ± 5.0 x.x ± 3.4

N1516,Brem
Comb 5.7± 2.5 33.5± 6.1 18.8± 4.8

N1516,noBrem
Comb 11.4± 4.7 59.1± 10.0 67.0± 11.0

N1516,norm
Comb 10.7± 7.0 3.8± 3.9 10.2± 6.5

N1718,Brem
Comb 70.4± 9.1 324.0± 20.0 455.0± 24.0

N1718,noBrem
Comb 125.0± 15.0 315.0± 26.0 357.0± 26.0

N1718,norm
Comb 82.0± 19.0 42.0± 13.0 32.0± 13.0

N1516
norm 1004.0± 30.0 763.0± 26.0 866.0± 28.0

N1718
norm 4745.0± 66.0 3685.0± 57.0 4215.0± 61.0

N1516,norm
misID 583.0± 26.0 152.0± 14.0 232.0± 17.0

N1718,norm
misID 2914.0± 57.0 777.0± 32.0 1325.0± 40.0

N1516
misID 10.1± 3.9 41.4± 8.3 63.3± 9.9

N1718
misID 30.0± 11.0 254.0± 22.0 269.0± 22.0

ν1516norm −0.18± 0.24 −0.86± 0.26 −0.73± 0.25

ν1718norm −0.45± 0.1 −0.78± 0.11 −0.61± 0.11

Table 7.5: Summary of fit parameters, the yields and position parameters ν, for the signal decays
obtained by the simultaneous fit. The position parameters ν for the normalisation mode are
defined relative to the position, which is given by the peak position µ of the signal contribution
of the normalisation mode obtained from simulations. The quoted branching fraction is blind.

(eight) background yields, two per category, and the branching fraction are free to
float. The signal mode background parameters are reduced by two degrees of freedom
by fixing the ratio between the bremsstrahlung categories, resulting in 13 degrees of
freedom for the signal mode and 12 for the reference mode. The parameters obtained
by the fit are reported in table 7.5 for the signal modes and table 7.6 for the reference modes.

The goodness of the fit can be partially judged by the pull distribution, defined as the
difference between the fit value and data per bin normalised to the error of the data point
in the respective bin. In section 7.5, it is checked that the fit procedure itself does not
bias the measured branching ratio. The reference mode fit results and pull distributions
are shown in figure 7.3 for D0 → K−K+µ−µ+ and figure 7.4 for D0 → π−π+µ−µ+. The
signal mode results can be found in figure 7.5 for D0 → K−K+µ±e∓, figure 7.6 for
D0 → K−π+µ±e∓ and figure 7.7 for D0 → π−π+µ±e∓. The signal modes are blind.
Therefore, only the pull distribution is reported in the blind area. In general, a good
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Parameter D0 → K−K+µ−µ+ D0 → π−π+µ−µ+

B(D0 → h−h+µ−µ+)[10−8] 20.9± 1.6 83.5± 2.7

N1516
Comb 6.8± 3.8 30.0± 9.1

N1516,norm
Comb 9.2± 6.0 8.7± 5.6

N1718
Comb 52.0± 11.0 137.0± 18.0

N1718,norm
Comb 52.0± 13.0 20.7± 8.7

N1516
norm 947.0± 28.0 826.0± 25.0

N1718
norm 4469.0± 62.0 3942.0± 57.0

N1516
misID 15.3± 4.5 121.0± 16.0

N1516,norm
misID 540.0± 28.0 226.0± 19.0

N1718
misID 57.2± 9.4 631.0± 36.0

N1718,norm
misID 2616.0± 60.0 1229.0± 43.0

ν1516sig −1.3± 1.0 −1.73± 0.69

ν1516norm −0.2± 0.24 −0.71± 0.25

ν1718sig 0.02± 0.49 −1.52± 0.31

ν1718norm −0.49± 0.1 −0.62± 0.11

Table 7.6: Summary of fit parameters, the yields and position parameters ν, for the reference
decays obtained by the simultaneous fit. The position parameters ν are defined relative to
the position, which is given by the peak position µ of the signal distribution obtained from
simulations.

agreement between the fit model and data is observed.

The background yields observed in the LFV data samples are compatible with the
predicted background yields during the optimisation; for details, see section 5.3.4. For the
normalisation mode and D0 → π−π+µ−µ+ decays a mismatch between the in simulations
and data obtained signal position can be observed. Due to the complex selection process,
it is difficult to estimate the reason for this. However, a clear separation between signal
and misID background is nevertheless possible.
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Figure 7.3: Simultaneous fit to the reconstructed invariant D0 mass for D0 → K−π+[µ+µ−]ρ0/ω

(up) and D0 → K−K+µ−µ+ (down) for data recorded in 2015/2016 (left) and 2017/2018 (right).
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Figure 7.4: Simultaneous fit to the reconstructed invariant D0 mass for D0 → K−π+[µ+µ−]ρ0/ω

(up) and D0 → π−π+µ−µ+ (down) for data recorded in 2015/2016 (left) and 2017/2018 (right).
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Figure 7.5: Blinded simultaneous fit to the reconstructed invariant D0 mass for
D0 → K−π+[µ+µ−]ρ0/ω (up) and D0 → K−K+µ±e∓ in noBrem (middle) and Brem (down)
for data recorded in 2015/2016 (left) and 2017/2018 (right).
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Figure 7.6: Blinded simultaneous fit to the reconstructed invariant D0 mass for
D0 → K−π+[µ+µ−]ρ0/ω (up) and D0 → K−π+µ±e∓ in noBrem (middle) and Brem (down) for
data recorded in 2015/2016 (left) and 2017/2018 (right).
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Figure 7.7: Blinded simultaneous fit to the reconstructed invariant D0 mass for
D0 → K−π+[µ+µ−]ρ0/ω (up) and D0 → π−π+µ±e∓ in noBrem (middle) and Brem (down) for
data recorded in 2015/2016 (left) and 2017/2018 (right).
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7.5 Validation of the fit procedure

Large samples of pseudo-experiments (1000) are generated for various branching fractions
to test that the fit procedure returns an unbiased result of the true branching fraction
and a correct uncertainty estimate on the measured value. The pseudo-experiments are
created using the model used in the simultaneous fit and fixing all non-fixed parameters
apart from the yield to the ones observed area in data. The signal channel, background
and normalisation yields are taken from the simultaneous fit. The signal yield is calculated
from the generated branching fraction using equation 7.4.1. All other parameters are
fixed. During the generation process, the total number of events in the normalisation and
signal channel, k, is drawn from a Poisson distribution:

f(k;Ntot) =
Nk

tote
−Ntot

k!
, (7.5.1)

where Ntot is the sum of the calculated signal yield and the background yields observed in
data. The simultaneous fit is then applied to the pseudo datasets. To check whether the
fit works, the pull distribution for the branching fraction, defined as

pull =
B(D0 → h(′)−h+l(′)−l+)fit − B(D0 → h(′)−h+l(′)−l+)Gen

σfit
, (7.5.2)

is used. A mean of zero is expected for an unbiased estimate of the branching fraction. A
width of one of the pull distribution is expected for the correct error estimation. The
pull mean and width of the 1000 pseudo-experiments are estimated by a fit of a normal
distribution to the distribution of obtained branching ratios. In figure 7.8, the pull
distributions for the reference mode corresponding to the measured branching ratios,
B(D0 → π−π+µ−µ+)Gen = 8.35 × 10−7 and B(D0 → K−K+µ−µ+)Gen = 2.09 × 10−7,
overlaid with a normal distribution’s fit projection are shown.

The widths and means are compatible with one and zero, respectively, for the two reference
modes D0 → K−K+µ−µ+ and D0 → π−π+µ−µ+, confirming that the fit procedure itself
does not bias the measurement and the errors represent the statistical fluctuation of the
sample. For the signal modes, a scan for various branching fractions is performed. The
range of the studied branching fractions is chosen from no observation up to the order of
magnitude not yet excluded by BaBar. In figure 7.9, the means and widths from the pull
distributions for the signal mods for different generated branching fractions are compared.
The widths and means are compatible with one and zero, respectively, validating that the
fitting procedure works, is unbiased, and yields the expected error estimate.
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Figure 7.8: Pull distribution of the branching fraction (blue) for the two reference modes,
D0 → K−K+µ−µ+ (up) and D0 → π−π+µ−µ+ (down), generated with the observed branching
ratio. The pull distribution is overlaid with the fit projection of a normal distribution (red).
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Figure 7.9: Mean of the pull distribution for different branching fractions overlaid with a linear
fit in orange (left column). The standard deviation of the Gaussian fit to the pull distribution
overlaid with a linear fit in orange (right column). The scan results for D0 → K−K+µ±e∓ (up),
D0 → K−π+µ±e∓ (middle) and D0 → K−K+µ±e∓ (down) are shown.
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7.6 Conclusion

The following branching ratios are measured for the reference decays:

B(D0 → K−K+µ−µ+) = (2.09± 0.16)× 10−7 (7.6.1)

B(D0 → π−π+µ−µ+) = (8.35± 0.27)× 10−7 (7.6.2)

The quoted uncertainty is only related to the fit accounting for the statistics of the data
sample. The results for the same branching ratios measured with the Run 1 dataset [44]
are:

B(D0 → K−K+µ−µ+) = (1.54± 0.27± 0.09± 0.16)× 10−7 (7.6.3)

B(D0 → π−π+µ−µ+) = (9.64± 0.48± 0.51± 0.97)× 10−7 (7.6.4)

The first quoted uncertainty corresponds to the statistical uncertainty on the signal
dataset. The second covers all systematic uncertainty apart from the uncertainty of the
normalisation branching fraction, which is quoted as the third uncertainty. The statistical
uncertainty on the branching ratio introduced by the dataset size of the normalisation
mode of 0.25×10−7(0.04×10−7) [44] for D0 → π−π+µ−µ+ (D0 → K−K+µ−µ+) decays is
reported as part of the systematic uncertainty. To compare the statistical uncertainties for
both measurements introduced by the size of the data sample, the statistical uncertainty
of the signal and normalisation dataset are combined. Both uncertainties are added in
quadrature. The following branching ratio with their statistical uncertainties can be
quoted for Run 1:

B(D0 → K−K+µ−µ+) = (1.54± 0.27)× 10−7 (7.6.5)

B(D0 → π−π+µ−µ+) = (9.64± 0.54)× 10−7 (7.6.6)

Comparing these values with the Run 2 results shows that the statistical uncertainties
could be reduced by approximately a factor of 2.0 for D0 → π−π+µ−µ+ decays
and a factor of 1.7 for D0 → K−K+µ−µ+ decays. By scaling the luminosity, which
does not account for changes in the performance of the detector, a factor of 1.7 is expected.

For the LFV signal decays only the statistical uncertainties of the branching ratio can be
given, due to blinding:

B(D0 → K−K+µ±e∓) = (x.xx± 2.5)× 10−8 (7.6.7)

B(D0 → K−π+µ±e∓) = (x.xx± 4.9)× 10−8 (7.6.8)

B(D0 → π−π+µ±e∓) = (x.xx± 3.3)× 10−8 (7.6.9)
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The central value itself would require unblinding the measurement6. Compared to
the result by BaBar, this corresponds to an improvement by two orders of magnitude.
However, uncertainties introduced by the measurement procedure are not covered at
the moment and will be detailed in chapter 8. Noticeable is also that the statistical
uncertainties, mainly because of the electron, are only slightly worse, even though the
selection is less efficient for the LFV signal decays. Given that the selection was tuned
with a main focus on the LFV decay modes, this is not necessarily unexpected.

To be able to test a wider range of new physics scenarios, the data is split into two samples.
The samples are split by the charge constellation between the muon and slow pion. This
way, the charge of the muon and electron are correlated to the charge of the pion and
consequent flavour of the D0. Given that the charge conjugated decay products are also
taken into account, the efficiency is assumed to be the same. The fits and yield parameters
are given in appendix F for completeness. Apart from splitting the data sample in two
within their uncertainties similar sized subsamples, no differences to the original fits are
observed. The statistical uncertainties of the branching fractions for the sample where
the muon and slow pion have the same charge7 are given by:

B(D0 → K−K+µ+e−) = (x.xx± 2.2)× 10−8 (7.6.10)

B(D0 → K−π+µ+e−) = (x.xx± 4.2)× 10−8 (7.6.11)

B(D0 → π−π+µ+e−) = (x.xx± 2.3)× 10−8 (7.6.12)

The statistical uncertainties of the branching fractions for the sample where the muon
and slow pion have the opposite charge are given by:

B(D0 → K−K+µ−e+) = (x.xx± 1.3)× 10−8 (7.6.13)

B(D0 → K−π+µ−e+) = (x.xx± 2.5)× 10−8 (7.6.14)

B(D0 → π−π+µ−e+) = (x.xx± 2.3)× 10−8 (7.6.15)

Due to the decrease of events in the subsamples the absolute uncertainty decreases. How-
ever, the relative uncertainty increases, assuming that the signal branching fraction should
be halved in the subsamples. When the statistical uncertainties from both subsamples are
combined in quadrature, disregarding the effects of rounding, the same uncertainties that
were derived from the fit to the combined data sample are obtained.

6For this, prior approval by the collaboration is needed.
7The D0 meson and the muon have opposite flavour.
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Chapter 8

Systematic uncertainties

This chapter covers the study of systematic effects possibly affecting the branching fraction
measurement. The systematic uncertainties are separated into two categories: those
associated with determining the yield and those associated with estimating the efficiency.
Each systematic uncertainty is covered in a dedicated section in this chapter. The leading
order systematic uncertainties are summarised in table 8.9, page 139, for the LFV decay
modes and table 8.10, page 140, for the dimuon decay modes.

The following sources of systematic uncertainties are studied in the context of the yield
determination:

• Parameterisation of the signal component

• Assumptions of the combinatorial background shape

• Parameterisation of the misID background

All three systematic uncertainties are associated with different components of the
signal fit and are treated individually. These systematic uncertainties are estimated
by the generation of toy experiments to test the impact of underlying assumptions in
the parameterisation of the individual fit component. Possible neglected additional
background sources are discussed in section 8.1.

The following systematic uncertainties are the dominant uncertainties connected to the
efficiency estimation:

• Tracking efficiency

• Particle Identification
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• Trigger efficiency

• Model assumptions for simulated samples

• Limited statistics of the simulation samples

All uncertainties connected to the sample size of the simulation or data sample are
evaluated using a bootstrapping approach. Bootstrapping refers to any test or metric using
random sampling with replacement. This means, that in the resampling process random
candidates from the original sample are drawn while allowing multiple occurrences of the
same elements. The measurement is then repeated multiple times with the resampled
datasets, allowing the estimation of the observable’s statistical distribution [112]. This is
equivalent to an analytic approach apart from the fact that it is easier to account for the
various binning schemes used in this analysis.

All leading systematic uncertainties considered for the limit setting are summarised in
table 8.9. Efficiency uncertainties are considered separately for each data category, similar
to the individual efficiency ratios in the branching ratio calculation. In the summary table,
only the uncertainty of the integrated data sample is quoted. The individual values, if
calculated, are reported in their corresponding subsection.

8.1 Discussion of neglected background sources

The strong electron and muon PID selection suppresses other possible, in the SM allowed,
peaking background sources in the mass signal window. In the upper row of figure 8.1,
the normalised mass shapes for the listed background events reconstructed under the
D0 → h(

′)−h+µ±e∓ mass hypothesis are shown as obtained from simplified simulations
with RapidSim [113]. The mass hypothesis is always applied in the same pattern as the
LFV decay given in the legend. For completeness, the double misidentified decays included
in the fit, π+π− → µ+e− misidentification, are included. In the lower row of figure 8.1,
decays are shown with a single muon (electron) being misidentified as an electron
(muon). Exemplary, the distribution for D0 → K−K+µ±e∓ and D0 → π−π+µ±e∓ decays
are shown. The distributions for D0 → K−K+µ−µ+ and D0 → π−π+µ−µ+ decays are
expected to be similar, while the distribution for D0 → K−π+µ±e∓ decays is a mixture
between the two distribution with misidentified decays distributed in the lower and upper
reconstructed mass in the figure relative to the signal peak. Important to note in the
figures is the closeness and overlap between the double misidentified hadronic decays,
π∓π± → µ∓e± misidentification, with the LFV signal distribution. The same is expected
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and during the yield determination observed for the dimuon signal modes. Secondly,
the distribution for the single misidentified dielectron and dimuon decays, e∓ → µ∓ or
e∓ → µ∓ misidentification, is directly below the reconstructed mass distribution of the
LFV decay with the matching hadron species composition. Also, here the same is true for
the dimuon reference decays, with the difference that dielectron decays would need to
be double misidentified, and the single misidentified LFV decay modes are not allowed
within the SM. These background decays could lead to a fake signal during the yield
determination and are, therefore, specifically targeted in this study.

For this study, a conservative misidentification rate of 5% is assumed for pions to be
misidentified as kaons and vice versa, and a rate of 3% for pions to be misidentified as
leptons. The electron muon misidentification rate is assumed to be less than 1%. In the
following, possible decays expected to peak in the studied reconstructed D0 mass window
are listed with their expected yields:

• D0 → h(
′)−h+π−π+: (included in the fit)

B(D0 → h(
′)−h+π−π+) ∼ O(10−3 − 10−2) [35]→ Nexp ∼ O(100− 1000)

• D0 → h−h+µ−µ+:
B(D0 → h−h+µ−µ+) ∼ O(10−8 − 10−7) [35]→ Nexp ∼ O(0.1− 1)

• D0 → h(
′)−h+e−e+:

B(D0 → h(
′)−h+e−e+) ∼ O(10−8 − 10−7) [35, 52]→ Nexp ∼ O(0.1− 1)

The triple misidentified D0 → h(
′)−h+π−π+ decays, with an additional pion-kaon misiden-

tification, are expected to be further suppressed by at least two orders of magnitude,
compared to the double misidentified D0 → h(

′)−h+π−π+ decays, and peak outside the
signal window. Contributions from both D0 → h(

′)−h+e−e+ and D0 → h−h+µ−µ+ decays
are at least one order of magnitude below the expected sensitivity of this measurement,
O(10−8 − 10−7). BaBar did the first observation of D0 → K−π+[e+e−]ρ0/ω decays, while
D0 → π+π−e+e− and D0 → K+K−e+e− are not observed yet. Therefore, the expected
values are quoted [52]1.

For the reference decay channel, D0 → K−K+µ−µ+ and D0 → π−π+µ−µ+, the above list
is reduced to the misidentified hadronic decays of the form D0 → h(

′)−h+π−π+. The LFV
decay modes are forbidden within the SM, and decays of the form D0 → h(

′)−h+e−e+

1Under the SM assumption of lepton flavour universality, the branching fractions for D0 → h(
′)−h+e−e+

and D0 → h−h+µ−µ+ are expected to be similar in magnitude.
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would require that both electrons be misidentified as muons, reducing the expected
background yield by an additional order of magnitude.

The number of expected background candidates for D0 → h(
′)−h+π−π+ decays is also
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Figure 8.1: Normalised potential peaking background mass shapes estimated with RapidSim [113]
for D0 → K+K−µ±e∓ (left) and D0 → π+π−µ±e∓ candidates (right). In addition, the LFV
signal is shown. The upper row shows decays where hadrons are misidentified as leptons. The
lower row shows decays where a muon is misidentified as an electron and vice versa from
D0 → h(

′)−h+e−e+ and D0 → h−h+µ−µ+. All candidates are reconstructed using the signal
mass hypothesis. The masses are assigned to the background decay daughters according to the
order of the signal decay daughters. The black lines mark the signal window applied during the
trigger stage. The signal window studied in the fit is defined between 1.8GeV/c2 and 1.95GeV/c2.
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observed in data. For details on the yield determination, see chapter 7. All other possible
background sources are expected to either not peak within the studied reconstructed D0

mass window and are therefore described by the linear combinatorial background function
in the fit, or if they peak within the reconstructed D0 mass window, the expected yield is
too small to influence the yield determination. If an candidate would pass the selection,
this candidate would be absorbed into the description of the combinatorial background.
The uncertainty on the signal yield in the fit is approximately ±10 signal candidates,
making the fit insensitive to single candidates. The applied fit is, therefore, sufficient to
describe all background sources. No systematic uncertainty needs to be assigned.

8.2 Parameterisation of the signal

The true shape of the LFV signal and its parameterisation are unknown. Therefore,
multiple pseudo-experiments with differently parameterised signal shapes are created.
The largest uncertainty is expected to originate from the signal distribution overlapping
with the misID background distribution. This makes it difficult to separate misID
background and signal candidates in this region. The effect is studied in detail
in section 8.4. Similar to the study in section 8.4 where the misID background
description is varied, also here mistakenly signal candidates are absorbed by the misID
distribution (or vice versa) and are consequently miscounted. This effect is also later ob-
served in this section, in figure 8.6, seen by the data points significantly deviating from zero.

The parameterisation of the signal shape is studied by creating pseudo-experiments with a
double-sided crystal ball [111] and a Bukin [114] distribution. In the case of no observation,
the parameterisation itself is not expected to contribute to the systematic uncertainty.
This may change in the case of an observation due to the overlap and consequent possible
miscounting. The double-sided crystal ball function consists of a Gauss distribution with
individual widths for the left and right side of the peak position, which goes over into a
power law, individually for both sides, in the tails of the distribution. The distribution is
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defined as follows:

f(m;m0, σ, αL, nL, αR, nR) =



AL · (BL − m−m0

σL
)−nL , for m−m0

σL
< −αL

exp

(
−1

2
·
[
m−m0

σL

]2)
, for m−m0

σL
≤ 0

exp

(
−1

2
·
[
m−m0

σR

]2)
, for m−m0

σR
≤ αR

AR · (BR + m−m0

σR
)−nR , for m−m0

σR
> αR

(8.2.1)

where m0 defines the location and σL,R the width of the Gaussian component. αL,R defines
the location of transition to a power law in units of the standard deviation and nL,R is the
exponent of the power-law tail. The shape is individually defined for the left and right
side of the Gaussian peak position m0 notated by the indices L and R. The normalisation
factors, also introduced to ensure a continuous distribution, are noted as AL,R and BL,R

and are given by:

AL,R =

(
nL,R

|αL,R|

)nL,R

· exp

(
−|αL,R|2

2

)
,

BL,R =
nL,R

|αL,R|
− |αL,R| .

The second function used is a Bukin distribution, which is derived by the convolution of a
Gauss distribution with an exponential function. By this convolution, an ambiguity arises
as a compact distribution (Gauss distribution) is convoluted with a diverging function
(exponential function). This problem is avoided by the use of an asymptotic expansion
leading to a slightly more lengthy expression of the then distribution function [114]. The
Bukin distribution is defined as follows, omitting normalisation terms for better readability:

f(m;m0, σ, ξ, ρL, ρR) =



exp
[
ρL

(x−x1)2

(m0−x1)2
− c1 +

ξγ(ξ)(x−x1)c0
2σ(γ(ξ)−ξ)2 ln(γ(ξ)+ξ)

]
, for x < x1

exp

[
−

c1 ln
(
1+

4ξγ(ξ)(x−m0)
(c0σ)

)2

ln(1+2ξ (ξ−γ(ξ)))2

]
, for x < x2

exp
[
ρR

(x−x2)2

(m0−x2)2
− c1 +

ξγ(ξ)(x−x2)c0
2σ(γ(ξ)+ξ)2 ln(γ(ξ)+ξ)

]
otherwise

(8.2.2)

where m0 is the peak position, σ the peak width as FWHM divided by c0 = 2
√
2 ln 2 ≈ 2.35,

ξ a value describing the peak asymmetry, usually smaller than one, and ρL,R the left and
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right tail parameters.

c1 = ln 2

x1,2 = m0 +
1

2
σc1

(
ξ√
ξ + 1

∓ 1

)
γ(ξ) =

√
ξ2 + 1

The parameters of both distributions are fitted and fixed to the distributions in the
simulation samples. An example of both distributions, obtained from D0 → K−K+µ±e∓

decay simulation data with corresponding error bands can be found in figure 8.2.
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Figure 8.2: Exemplary the different signal distribution, given by a Bukin distribution (red)
and a double-sided crystal ball function (DSCB; blue) shapes used in the generation of the
pseudo-experiments compared to the default fit function, given by a Johnson SU distribution
(green), for D0 → K−K+µ±e∓ signal candidates. All distributions are obtained from simulation.
The left (right) plot shows signal candidates without (with) added bremstrahlung during the
reconstruction.

The crystal ball function has a more pronounced peak, while the Bukin distribution
emphasises the tails of the distribution, especially the ECAL resolution component in the
Brem category. The pseudo-data is created by drawing random candidates with a given
signal branching ratio assumption. The resulting distribution is then fitted by the default
fit with the signal described by a Johnson SU . From this fit, the branching ratio is then
estimated. Repeating this a thousand times allows the calculation of the pull distribution,
introduced in section 7.5. The pull is defined by

pull =
Bmeas.(D

0 → h(′)−h+l(′)−l+)− Bgen.(D
0 → h(′)−h+l(′)−l+)

σmeas.

. (8.2.3)

The pull distributions under the assumption of lepton flavour conservation, B(D0 →
h(′)−h+µ±e∓)gen. = 0, are reported in figure 8.3, separately for the Bukin distribution and
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crystal ball function. The mean is compatible with zero. No shift or bias is observed
in the distribution. Therefore, no systematic uncertainty will be assigned in the case of
no observed signal. This was also expected, as the statistical error obtained from the
branching ratio fit should sufficiently describe all statistical fluctuations.

Figure 8.3: Pull distribution for the three different LFV decay modes, D0 → K−K+µ±e∓

(upper row), D0 → K−π+µ±e∓ (middle row) and D0 → π−π+µ±e∓ (lower row), evaluated by
the default fit procedure, using a Johnson SU , for different generated signal shapes, a Bukin
distribution (left) and a crystal ball function (right). The distributions are overlaid by a Gaussian
fit projection in red. For the signal, a branching ratio of zero is assumed for all three decay
modes.
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The same procedure is repeated for the dimuon signal decays. Instead of two asymmetric
distributions, a symmetric and an asymmetric distribution are used. For the symmetric
distribution, a Gaussian distribution is used. For the asymmetric distribution, a
Double-sided crystal ball function is used. Both distributions, as well as the default
Johnson SU distribution used in the fit, exemplary for D0 → K−K+µ−µ+ decays, are
shown in figure 8.4. Important to note here is the narrowness of the distribution compared
to the signal distribution of the LFV decay mode shown in figure 8.2. As the default
distribution is already nearly symmetric the variations to the default signal distributions
are relatively small. In figure 8.5, the pull distributions for the two parameterisations
are shown. The same signal yield as in data is assumed during the generation. No bias,
seen by a mean which is compatible with zero, is observed. Therefore, no systematic
uncertainty is assigned to the dimuon modes.
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Figure 8.4: Exemplary the different signal distribution, given by a Gaussian distribution (red)
and a double-sided crystal ball function (DSCB, blue), shapes used in the generation of the
pseudo-experiments compared to the default fit function, given by a Johnson SU distribution
(green), for D0 → K−K+µ−µ+ signal candidates. All distributions are obtained from simulation.

This procedure is repeated for different branching ratio assumptions. The resulting
means of the different pull distributions in dependence on the branching ratio used in
the generation are reported in figure 8.6. The observed shift originates from a wrong
description of the tail, leading to an overestimation of the branching ratio. For the
D0 → K−K+µ±e∓ decay, nearly no misID background is expected and observed, meaning
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Figure 8.5: Pull distribution for the two different dimuon decay chains, D0 → K−K+µ−µ+ (up)
and D0 → π−π+µ−µ+ (down), evaluated by the default fit procedure, using a Johnson SU , for
different generated signal shapes, a Gaussian distribution (left) and a crystal ball function (right).
The distributions are overlaid by a Gaussian fit projection in red. For the signal yield, a branching
ratio of 2.09×10−7 for D0 → K−K+µ−µ+ decays and 8.35×10−7 for D0 → π−π+µ−µ+ decays
is assumed.

no prominent misID peak is generated. Here, the slightly more flat Bukin distribution
leads to an underestimated branching ratio as signal decays are absorbed into the
combinatorial background2.

Noticeable is also that for the dimuon decay modes, no systematic uncertainty is assigned,
as a clean separation between signal and misID background is possible. However, due to
the lower momentum resolution, which leads to a wider reconstructed mass distribution,
this is not possible for the LFV decay channel. Even though the reconstructed mass
distribution of the misID background is expected to peak further away from the D0 mass,
this is negated by a long tail for the signal distribution for reconstructed masses below
the D0 mass due to missing bremsstrahlung. A separation between misID background

2This is also true for the measured number of misID candidates if generated.
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and signal candidates for decays with reconstructed bremsstrahlung is only possible
as the relative misID yield between decay candidates with and without reconstructed
bremsstrahlung is fixed from simulations.
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Figure 8.6: The deviation between measured and generated signal branching fraction ∆B :=

Bmeas.−Bgen. relative to the measured branching fraction in dependence of the assumed generated
signal branching ratio for the three different LFV decay chains, D0 → K−K+µ±e∓ (upper row),
D0 → K−π+µ±e∓ (middle row) and D0 → π−π+µ±e∓ (lower row), evaluated by the default fit
procedure, using a Johnson SU , for different generated signal shapes, a gaussian distribution
(left) and a crystal ball function (right).
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8.3 Combinatorial background assumptions

In section 7.3, the fit used to parameterise the combinatorial background is described. The
impact of the parameterisation is estimated by generating toy samples with a varied slope.
For this purpose, the slope is varied by a standard deviation. Exemplary in figure 8.7, the
pull distribution for mass distributions with an added (subtracted) standard deviation
to the slope for the LFV decay modes is shown. The pull is defined as the difference
between the generated and measured branching ratios normalised by its uncertainty. As
the branching ratio is unknown, signal assuming various different branching ratios was
generated. The pull is shown in dependence of the generated signal branching fraction.
No significant deviations that are not covered by the statistical uncertainties between
generated and measured branching ratios are observed. No systematic uncertainty is
assigned for the dimuon and LFV decay modes.

8.4 Parameterisation of the misID background

The strong PID selection applied on possible signal candidates directly affects the shape
of the misID background. As the misID peak lies below the expected signal distribution,
it is one of the main limiting factors in this search. In figure 8.8, multiple shapes
extracted, exemplary, from simulated D0 → π−π+π−π+ decays, under D0 → π−π+µ±e∓

mass hypothesis, selected with different PID requirements are drawn. The shapes can
be loosely categorised into three scenarios. The red shape, the furthest curve to the
left, corresponds to isMuon on the muon candidate being the loosest PID requirement.
As soon as any ProbNN requirements are set, the shape is shifted to higher masses
under the observed signal. The blue, green, cyan and orange curves are extracted by
requiring ProbNN requirements on both muons. However, the three shapes with stricter
PID requirements on both muons, green, cyan, and orange, are unreliable due to the
low number of leftover candidates for the shape evaluation. For D0 → K−K+π−π+ and
D0 → K−π+π+π− decays, no candidates pass these selection steps at all and producing a
sufficiently high number of simulated background candidates which exactly mimic the
selection is not possible, as it would be computationally too expensive. However, to
still study the impact of the misID parameterisation, different shapes are produced, by
requiring different single muon PID requirements. This effectively moves the distribution
closer to the D0 mass for stricter PID requirements. The misID background is expected
to behave similarly in the dimuon modes. Mainly, the mass hypothesis during the
reconstruction is changed for one of the pions from an electron to a muon, moving the
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Figure 8.7: The mean of the pull distribution for the three different LFV decay chains,
D0 → K−K+µ±e∓ (upper row), D0 → K−π+µ±e∓ (middle row) and D0 → π−π+µ±e∓ (lower
row), under different linear background hypotheses.

distribution closer to the D0 mass. ProbNNmu has, for the same cut value, a higher
background redemption rate, making it with the current simulation samples impossible
to show the curves with ProbNNmu on both muons. Given the low number of misID
background candidates, in the case of added bremsstrahlung photons, no different shapes
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are tested for candidates with added bremsstrahlung photons.

For each shape and decay mode, a thousand pseudo experiments are performed. For
this, data distributions using the background yields observed in data are produced. The
combinatorial background is described by the same linear distribution as was used for the
data fit. For the misID background, the different shapes obtained from simulations, by
scanning in 0.1 steps over the ProbNNmu value are used.

For the dimuon signal, the number of signal candidates is calculated by the efficiency and
the branching ratio observed in data3. All yields are varied by a Poisson distribution.
The difference between the generated and measured mean value of the branching ratio
for the dimuon decay modes, D0 → K−K+µ−µ+ and D0 → π−π+µ−µ+ are reported in
figure 8.9 in dependence of the ProbNNmu value. The maximum absolute deviation of the
mean value of the branching ratio, max(|∆B|), is assigned as a systematic uncertainty.

3This is equal to the signal yield observed in data.
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Figure 8.8: Example misID shapes obtained by different PID requirements, on the pions
which have the lepton hypothesis assigned, from simulated D0 → π−π+π−π+ decays under
D0 → π−π+µ±e∓ mass hypothesis. Only candidates without wrongly added bremsstrahlung are
shown.
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Figure 8.9: From left to right the mean of the pull distributions for D0 → K−K+µ±e∓,
D0 → K−π+µ±e∓ and D0 → π−π+µ±e∓ pseudo-experiments measurements. Right column:
the mean in dependence of the PID cut on the generated shape, assuming a branching ratio
of zero. Left column: maximal deviation of the mean from zero for different branching ratio
assumptions.

For the blinded LFV decay modes, D0 → π−π+µ±e∓, D0 → K−π+µ±e∓ and
D0 → K−K+µ±e∓ decays, it is not possible to generate data with the branching
ratio observed in data, as this value is blinded. Therefore, for the case of no observation,
the same scan as for the dimuon decay modes is repeated for the LFV decay modes. For
the signal yield, zero candidates are assumed, which is done by setting the branching
ratio to zero during the generation. The maximum absolute deviation of the mean value
of the branching ratio, max(|∆B|), is assigned as a systematic uncertainty in case no
signal is observed. To estimate the uncertainty for the case of an observation of LFV
decays, the same scan is repeated for different signal branching fractions. The range of
this scan is chosen such that the region not yet experimentally excluded is covered. In
figure 8.10 the scan results for the different shape assumption are reported, noted by
the corresponding ProbNN value. Also in figure 8.10, the maximum absolute deviation
of the mean value of the branching ratio, max(|∆B|), normalised by the generated
branching ratio in dependence of the generated branching fraction are reported. Studying
max(|∆B|)/Bmeas. shows, that the relative deviation decreases for larger branching ratios.
This is also expected as the size of the uncertainty is expected to depend on the number of
misidentified background candidates, which is constant apart from statistical fluctuations
by the Poisson distribution, as the difference in the generated and measured branching
fractions arises due to miscounting signal candidates as misID background candidates or
vice versa. Because of the blinding, only a range for the systematic uncertainty due to the
misID parameterisation can be given. In case that signal would be observed, it is possible
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to repeat the scan for the observed signal branching ratio or alternatively evaluate the
value from the distributions in the right column.

Figure 8.10: From the top row to the bottom row, the mean of the pull distributions for
D0 → K−K+µ±e∓, D0 → K−π+µ±e∓ and D0 → π−π+µ±e∓. Left column: the mean in de-
pendence of the PID cut on the generated shape, assuming a branching ratio of zero. Right
column: maximal deviation of the mean from zero for different branching ratio assumptions.
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All uncertainties quoted in this section, including the uncertainties given by the range
for the LFV decay modes, are smaller, though similar in magnitude, than the statistical
uncertainties obtained in the previous chapter, chapter 7, which are of order O(0.3×10−7).

8.5 Tracking efficiency

The tracking efficiency is corrected with the help of data-simulation correction maps, as
detailed in section 6.2. The associated map values are only known to a certain precision,
which needs to be considered. Additionally, until now, uncertainties introduced during
the detector simulation due to hadronic interactions with the detector material have not
been covered.

An advantage when studying systematic uncertainties is the similar kinematic distribution.
Applying the same data-simulation correction map to a track in the denominator and
nominator of the efficiency ratio leads to a strong correlation that cancels in the final
ratio. Due to the different tracking map used for the electron, the relative systematic
uncertainty from the tracking maps does not cancel between the electron and muon.
Because of the high statistics in the simulation and data samples, statistical uncertainties
due to sample size can be neglected. Nevertheless, an uncertainty is assigned because
of possible data and simulation discrepancies. Therefore, the simulation samples are
re-weighted in different parameters, such as the number of primary vertices or the number
of hits and tracks in different subdetectors. The largest difference introduced by this
procedure in the tracking maps is taken as systematic uncertainty [115]. A relative
uncertainty of 0.8% is assigned for both the muon and the electron. The square root of
the squared sum of the individual systematic uncertainties gives the uncertainty on the
efficiency ratio.

A second uncertainty is assigned to the efficiency ratio due to limited knowledge of
hadronic interactions within the LHCb detector. From simulations of B0 → J/ψK∗0, it is
estimatd that around 11% of the kaons and 14% of the pions cannot be reconstructed
due to hadronic interactions with the detector before the last tracking station. The
uncertainty on the material budget used to simulate hadronic interactions within the
detector is 10%. Therefore, a relative systematic uncertainty of 11%× 10% = 1.1% for
the kaon and 14%× 10% = 1.4% for the pion is assigned. More details can be found in
Ref. [115].
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For equal particle species in the nominator and denominator, the relative uncertainties in
the efficiency ratio are assumed to cancel. Otherwise, the uncertainties between the two
particles are treated as uncorrelated. This allows a conservative estimate for an upper
limit on the uncertainty. The results for the LFV decay channels are summarised in
table 8.1. For the dimuon reference channel, only the difference in the hadron species
composition needs to be considered, leading to an assigned systematic uncertainty of
1.8% for both decay channels respectively.

ε(D0→K−K+µ±e∓)
ε(D0→K−π+µ−µ+)

ε(D0→K−π+µ±e∓)
ε(D0→K−π+µ−µ+)

ε(D0→π−π+µ±e∓)
ε(D0→K−π+µ−µ+)

h0 - - 1.8%

h1 1.8% - -
µ - - -
e 1.1% 1.1% 1.1%

total 2.1% 1.1% 2.1%

Table 8.1: Relative systematic uncertainties assigned to the efficiency ratio because of the
tracking procedure. Candidates marked with - coincide between the signal and normalisation
channel and are assumed to be 100% correlated, therefore cancelling systematic uncertainties in
the ratio.

8.6 Particle identification

The efficiency of the PID selection is estimated by correcting the PID variables with data
as described in section 4.3. Two sources of uncertainties are considered:

• Uncertainties due to limited statistics in the calibration samples. Alternative PID
templates with different seeds of the random generator are used to test and assign a
systematic uncertainty.

• Uncertainties due to the parameterised kernel width4 of the PID control sample.
For this purpose, different kernel widths are tested.

Given the large sample size of the calibration modes used in the resampling process,
D0 → K−π+ for the hadrons and Jψ → µ+µ−(e+e−) for the leptons, no significant

4The kernel used is a Gaussian distribution, and the kernel width corresponds to the standard deviation
of said distribution.
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ε(D0→K−K+µ±e∓)
ε(D0→K−π+µ−µ+)

ε(D0→K−π+µ±e∓)
ε(D0→K−π+µ−µ+)

ε(D0→π−π+µ±e∓)
ε(D0→K−π+µ−µ+)

Category Year

noBrem 2015/2016 1.5% 1.5% 0.8%

2017/2018 1.8% 2.3% 2.4%

Brem 2015/2016 1.6% 0.8% 0.9%

2017/2018 0.1% 1.2% 0.8%

Table 8.2: Uncertainties on the PID efficiency ratio due to the kernel size.

ε(D0→K−K+µ−µ+)
ε(D0→K−π+µ−µ+)

ε(D0→π−π+µ−µ+)
ε(D0→K−π+µ−µ+)

2015/2016 0.4 0.1
2017/2018 1.0 0.3

Table 8.3: Relative error due to different kernel sizes in the efficiency estimation for the different
branching ratios, in %.

impact is expected. This is checked by resampling the PID variables with five different
random seeds. The fluctuation due to random seeds is negligible.

The calibration sample is binned with 100 bins each in the variables pT , η, nTracks and
the desired PID response. Then, these variables are smeared in four dimensions with a
particular kernel width size. The systematic bias given by the finite binning is tested by
changing the kernel width size. For this purpose, the kernel widths are varied around
their nominal values. Each kernel size is generated with three different seeds. The largest
average variation for different kernel sizes is assigned as systematic uncertainty. The
uncertainties for the LFV decay modes are summarised in table 8.2 and for the dimuon
decay modes in table 8.3.

8.7 Trigger efficiency

When calculating the trigger correction maps, the limited data and simulation sample size
leads to relatively large uncertainties of the applied trigger weights. However, enforcing
the same trigger requirements for signal and normalisation mode and a similar expected
kinematic distribution for both decays leads to a strong correlation between the correction
weights applied on the normalisation mode and the signal mode. This leads to a strong
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cancellation of the uncertainties in the ratio. A bootstrapping approach is chosen to account
for possible effects due to the applied binning scheme and the correlation introduced
by applying the same weights to signal and normalisation. The calibration samples are
resampled by randomly drawing events from the original sample until the same number of
events fluctuated by a Poisson distribution is reached. These new samples are then used to
calculate new correction weights and apply those to the data. This is repeated a thousand
times. Finally, the standard deviation of the resulting trigger efficiency ratio distribution is
evaluated. The relative systematic uncertainties for the LFV decays related to the trigger
weights are reported in table 8.4 and for the dimuon reference mode in table 8.5. The
uncertainties on the trigger selection are usually one of the main systematic uncertainties
in branching ratio measurements at LHCb. However, due to the same applied trigger
selection and similar kinematic distribution between signal and normalisation mode, the
calculated trigger uncertainties are relatively small compared to the other systematic
uncertainties of this measurement. The uncertainties are treated as uncorrelated with
other uncertainties.

ε(D0→K−K+µ±e∓)
ε(D0→K−π+µ−µ+)

ε(D0→K−π+µ±e∓)
ε(D0→K−π+µ−µ+)

ε(D0→π−π+µ±e∓)
ε(D0→K−π+µ−µ+)

Category Year

noBrem 2015/2016 0.4% 0.4% 0.3%

2017/2018 0.4% 0.3% 0.3%

Brem 2015/2016 1.5% 0.4% 0.6%

2017/2018 0.5% 0.3% 0.2%

Table 8.4: Uncertainty on the efficiency ratio due to trigger weights for the LFV decay modes.

ε(D0→K−K+µ−µ+)
ε(D0→K−π+µ−µ+)

ε(D0→π−π+µ−µ+)
ε(D0→K−π+µ−µ+)

Year

2015/2016 0.4% 0.2%

2017/2018 0.5% 0.3%

Table 8.5: Uncertainty on the efficiency ratio due to trigger weights for the dimuon reference
mode.
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8.8 Model assumptions for simulated samples

The selection efficiency depends on the kinematic and geometric distributions of the
studied decay, which are derived from simulations. A wrong modelling of the dihadron
or dimuon spectrum can, therefore, bias the efficiency. As the precise decay model
for the reference dimuon and the normalisation mode is unknown, the potential bias
introduced by the decay model is evaluated by decreasing and increasing the relative
contributions of the dihadron and dimuon resonances by 50% relative to the default
model, reported in table 3.1 on page 33. Afterwards, the efficiency is recomputed for
the varied model, including all data-simulation correction weights for the trigger and
tracking efficiencies. The resulting efficiency is then compared to the result of the default
model. The RMS of the relative deviations is assigned as a systematic uncertainty. This
calculation is performed separately for the dimuon and dihadron assumptions, which
are then added in quadrature. The results for the two reference decay modes and the
normalisation channel under the three different applied selections can be found in table 8.6.

Norm. decays D0 → K−K+µ±e∓ D0 → K−π+µ±e∓ D0 → π−π+µ±e∓

dimuon 1.0% 1.1% 1.0%

dihadron 2.9% 3.1% 3.1%

Syst. unc. eff. 3.1% 3.3% 3.3%

Dimuon decays D0 → K−K+µ±µ∓ D0 → π−π+µ±µ∓

dimuon 1.4% 0.9%

dihadron 2.7% 3.1%

Syst. unc. eff. 3.0% 3.2%

Table 8.6: The upper table shows the uncertainties introduced by varying the dihadron and
dimuon spectrum as well as the combined uncertainty on the efficiency for the normalisation
mode selected for the decays specified in the header. The normalisation mode selection for
D0 → K−K+µ−µ+ and D0 → K−K+µ−µ+ decays is the same as for D0 → K−K+µ±e∓ and
D0 → K−K+µ±e∓ decays. The lower table shows the uncertainties for the dimuon signal decays.

The observed variation depends on the momentum of the daughter particles, as a higher
momentum results in a higher efficiency, while for a lower momentum the efficiency
decreases5. For the dimuon decays, the square root of the squared sum of the relative

5For the muon this is well illustrated in figure 3.8 on page 29, which shows the tracking efficiency
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uncertainties on the efficiency is assigned as systematic uncertainty to the efficiency ratio
and, consequently, the branching ratio. For the LFV decays, only the relative uncertainty
of the normalisation efficiency is assigned as systematic uncertainty. Overall, the sys-
tematic uncertainties are similar in size to the uncertainties in the previously published
measurement of the branching fractions for D0 → π−π+µ−µ+ and D0 → K−K+µ−µ+

of about 3.4% [44]. This measurement was performed in different dimuon bins of the
reconstructed mass in which, using a similar approach, the decay model was varied. As
the dimuon reconstructed and dihadron reconstructed mass are strongly correlated, a
direct comparison of the evaluated systematic uncertainties is difficult. The effect on the
decay model due to the normalisation mode was not considered. However, the systematic
uncertainties on the decay model for the normalisation mode can be compared to the
uncertainty of the decay model obtained for the first observation of the normalisation
decay of 2.9% [61]. The same model assumptions and procedure to evaluate the systematic
uncertainties are used in this measurement.

8.9 Limited simulation statistic

A bootstrapping algorithm is used to account for statistical fluctuations of the
simulation samples. The numerical approach given by the bootstrapping algorithm was
chosen to account for the trigger and tracking correction weights and their respective
signal-normalisation mode correlation in the efficiency ratio. For this, a combined
weight (wtrig × wtrack) is calculated with every candidate that passes the selection. All
other candidates get assigned a weight of zero. Then, a bootstrapping algorithm is
applied to the data set to evaluate the uncertainty. The relative uncertainty divided
by year and decay mode on the efficiency ratio can be found in table 8.7 for the LFV
decay modes. The uncertainties for the reference decay modes, D0 → K−K+µ−µ+ and
D0 → π−π+µ−µ+, are reported in table 8.8.

Most weights are close to unity. The influence of the weights in the uncertainty calculation
is, therefore, expected to be small. This can be confirmed by analytically calculating the
uncertainties, neglecting the weights altogether using the Bayesian binomial errors. The
resulting uncertainties are quoted in the brackets in table 8.7. No correlation between
signal and normalisation is assumed during the calculation. Only a small difference
between analytical and numerical values is observed as expected.

in dependence of the muon(electron) momentum. As a reminder, the typical momentum of muons for
decays studied in this thesis is below 5000MeV/c.
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ε(D0→K−K+µ±e∓)
ε(D0→K−π+µ−µ+)

ε(D0→K−π+µ±e∓)
ε(D0→K−π+µ−µ+)

ε(D0→π−π+µ±e∓)
ε(D0→K−π+µ−µ+)

Category Year

noBrem 2015/2016 8.0%(7.9%) 5.1%(5.1%) 4.2%(4.1%)

2017/2018 3.1%(3.1%) 2.2%(2.2%) 1.7%(1.7%)

Brem 2015/2016 15.0%(14.7%) 8.6%(8.6%) 7.6%(7.5%)

2017/2018 4.5%(4.5%) 2.9%(2.9%) 2.1%(2.1%)

Table 8.7: Relative uncertainties due to limited simulation sample size in the efficiency ratio
estimation for the LFV decay modes. The values in the brackets are analytically calculated
using the Bayesian binomial error, neglecting the weights altogether, to illustrate the impact of
the bootstrapping algorithm.

ε(D0→K−K+µ−µ+)
ε(D0→K−π+µ−µ+)

ε(D0→π−π+µ−µ+)
ε(D0→K−π+µ−µ+)

Year

2015/2016 4.1%(4.0%) 2.9%(3.0%)

2017/2018 1.6%(1.6%) 1.4%(1.4%)

Table 8.8: Relative uncertainties due to limited simulation sample size in the efficiency ratio
estimation for the dimuon decay modes. The values in the brackets are analytically calculated
using the Bayesian binomial error, neglecting the weights altogether, to illustrate the impact of
the bootstrapping algorithm.

The above calculation, using a bootstrapping algorithm, is repeated with all data categories
and years combined. The different years are scaled according to the recorded luminosity,
while the ratio between candidates with and without reconstructed bremsstrahlung is
evaluated from simulations. Note that the uncertainties in the data categories with most
of the expected candidates are the smallest. The resulting uncertainties for the LFV
decays are reported in table 8.9 and for the dimuon decay modes in table 8.10.

8.10 Summary & Concluding Remarks

All non-negligible systematic uncertainties on the branching ratio are combined and
summarised in table 8.9 for the LFV decays and in table 8.10 for the dimuon decays.
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Decay D0 → K−K+µ±e∓ D0 → K−π+µ±e∓ D0 → π−π+µ±e∓

Yield ratio
Par. of the signal 2.9%(−) 3.5%(−) 9.3%(−)

Par. of the peaking bkg 2.5%− 6.4%(0.21× 10−8) 3.1%− 10.0%(1.89× 10−8) 2.7%− 8.0%(1.39× 10−8)

Systematic unc. 3.8%− 7.0%(0.21× 10−8) 4.7%− 10.6%(1.89× 10−8) 9.7%− 12.3%(1.39× 10−8)

Efficiency ratio
Tracking maps 1.1% 1.1% 1.1%

Had. material interactions 2.1% 1.1% 2.1%

PID var. transformation 0.7% 0.8% 0.7%

Trigger correction 0.3% 0.2% 0.2%

Simulated decay models 2.9% 3.1% 3.1%

Limited simulation statistic 3.0% 1.9% 1.8%

Systematic unc. 4.9% 4.0% 4.4%

Total sys. unc. 5.4%− 8.0%(0.21× 10−8) 5.4%− 10.9%(1.89× 10−8) 10.2%− 12.7%(1.39× 10−8)

Table 8.9: Summary of all systematic uncertainties for the LFV decay modes. The systematic
uncertainties in the determination of the yield ratio are given relative to the measured branching
fraction. In brackets, the uncertainties for the case of no observation are quoted. The efficiency
ratio uncertainties are given relative to the measured branching fraction.

One of the largest systematic uncertainties of 10% arises from the limited knowledge of
the normalisation mode branching ratio, which will be quoted as additional uncertainty.

The main systematic uncertainty assigned to the yield ratio is due to the parameterisation
of the misID background. This systematic uncertainty is introduced because of the fixed
parametrisation obtained from simulations during the fit procedure. This uncertainty
is assigned to the LFV decay modes and the dimuon decay mode. Due to the wider
reconstructed mass distribution for LFV decays, both distributions have a large overlap,
resulting in a larger probability of wrongly identifying (and miscounting) signal and
background candidates. This is also observed during the study of the systematic
uncertainties, resulting in a larger uncertainty due to the peaking background for the
LFV decays than the dimuon decays.

The three largest systematic uncertainties affecting the efficiency ratio are intro-
duced because of the unknown decay model of the normalisation mode and the
consequent assumptions made during the generation of the simulation samples, the
size of the simulation samples, and the limited knowledge of the detector’s material budget.
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The easiest systematic uncertainty to reduce is the uncertainty due to the simulation
sample size. However, as the uncertainty scales by the square root of the sample size, a
significantly larger simulation sample and significantly more computing resources would
be required. Fast simulation techniques, for example implemented in the RapidSim
framework [116], will play an important role in the future, especially when studying
rare or forbidden decays. In this context also, a better decay model for the dimuon and
dihadron resonances would help to improve the quality of the simulation samples. For
B-meson decays, such a model already exists. For charm decays, due to larger theoretical
uncertainties, the formulation of such a model is more challenging and would require
improved theory predictions. From an experimental point of view, it is, therefore, also
important to measure or provide bounds for specific phase space regions to crosscheck
and improve the theoretical predictions, as was done with the measurement using Run 1
data. Already performing this analysis in different phase space bins of the dihadron and
dimuon mass would allow to increase the handle on this uncertainty.

Decay D0 → K−K+µ−µ+ D0 → π−π+µ−µ+

Yield ratio
Par. of the peaking bkg 1.8% 2.1%

Systematic unc. 1.8% 2.1%

Efficiency ratio
Tracking maps 1.1% 1.1%

Had. material interactions 1.8% 1.8%

PID var. transformation 0.7% 0.3%

Trigger correction 0.4% 0.2%

Simulated decay models 4.3% 4.6%

Limited simulation statistic 1.7% 1.3%

Systematic unc. 5.1% 5.2%

Total sys. unc. 5.4% 5.6%

Table 8.10: Summary of all systematic uncertainties for the dimuon decay modes. The systematic
uncertainties in the determination of the yield ratio are given relative to the measured branching
fraction. The efficiency ratio uncertainties are given relative to the measured branching fraction.
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In Run 2, the material budget per track has an uncertainty of 10% assigned [117].
Ideally, one would like to crosscheck if this estimate is correct and, if possible,
improve it. The improvement or validation of this estimate for Run 3 is currently
studied within the LHCb collaboration. This is done by directly measuring the im-
pact of the material interactions by comparing D0 → K−π+and D0 → K−π+π+π− decays.

Dimuon decays

The following branching fractions are measured for the reference mode:

B(D0 → K−K+µ−µ+) = (2.09± 0.16± 0.11± 0.21)× 10−7 (8.10.1)

B(D0 → π−π+µ−µ+) = (8.35± 0.27± 0.47± 0.84)× 10−7 (8.10.2)

The first quoted uncertainty corresponds to the statistical uncertainty. The second covers
all systematic uncertainties apart from the uncertainty of the normalisation branching
fraction, which is quoted as the third uncertainty.

The results for the same branching ratios measured with the Run 1 dataset [44] are:

B(D0 → K−K+µ−µ+) = (1.54± 0.27± 0.09± 0.16)× 10−7 (8.10.3)

B(D0 → π−π+µ−µ+) = (9.64± 0.48± 0.51± 0.97)× 10−7 (8.10.4)

The first quoted uncertainty corresponds to the statistical uncertainty on the signal
dataset6. The second uncertainty covers all systematic uncertainty apart from the uncer-
tainty of the normalisation branching fraction, which is quoted as the third uncertainty.
The following relative systematic uncertainties were considered for the Run 1 measure-
ment [23, 44]:

• Uncertainty due to the parameterisation of the peaking background: 1.4%

• Statistical uncertainty of the normalisation mode for D0 → π−π+µ−µ+

(D0 → K−K+µ−µ+): 2.6% (2.7%)

• Uncertainty due to the fit model used to estimate the simulation yields: 1.0%

• Uncertainty because of the unknown signal decay models in simulations: 3.4%

6The statistical uncertainty due to the normalisation mode dataset is included in the systematic
uncertainty.
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• Uncertainty evaluated by variations of the binning schemes during the PID efficiency
calculation: 0.8%

• Uncertainty because of the L0 trigger efficiency correction: 1.3%

• Uncertainty due to observed differences in the BDT efficiency between data and
simulations: 1.3%

Most uncertainties are similar in size for the Run 1 and Run 2 measurements. One
should note, that the shape of the peaking background in Run 1 was evaluated from
separately recorded D0 → h(

′)−h+π−π+ decays contrary to Run 2 where simulated
events were used. Usually, the approach using data is preferable. However, to
keep the analysis similar for the LFV and dimuon decay modes, simulated events
are used, as no bremsstrahlung recovery is available for the recorded hadronic decay modes.

Additionally, while the uncertainties are similar in size, different corrections were
applied for the Run 1 measurement than for the Run 2 measurement. For the
PID and Trigger correction, more advanced methods are available nowadays, for
example by using kernel density estimates instead of a fixed binning scheme. This
can also be seen in the smaller systematic uncertainties assigned to the respective methods.

The correction factors used for the tracking algorithm were not yet evaluated for the
Run 1 measurement and are left unaccounted for. The same applies to the uncertainty
due to hadronic interactions with the detector material.

No uncertainty was in the Run 1 measurement assigned to the decay model used to
produce the simulated events, which were used to calculate the normalisation mode
efficiencies. However, using the Run 2 created simulation samples, which use the same
underlying decay models, it is possible to reproduce the Run 1 results and apply the
same procedure to the simulated normalisation mode samples. This results in a larger
systematic uncertainty because of the unknown dihadron and dimuon spectrum for Run 2.

For Run 1, no direct uncertainty is quoted due to the simulated sample size.

For the Run 2 measurement, a similar relative systematic uncertainty is assigned to
the branching fraction of D0 → K−K+µ−µ+ decays. For the branching fraction of
D0 → π−π+µ−µ+ decays, a larger systematic uncertainty, 5.4% compared to 4.8%, is
assigned. While the individual systematic uncertainties related to the efficiency improved,
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some previously not considered uncertainties are now included.

To compare the Run 1 and Run 2 results, only uncorrelated uncertainties have to be
considered. Between Run 1 and Run 2, only minor changes occurred to the detector.
However, it is important to keep in mind that for the Run 2 measurements, more, often
small, corrections to the efficiency ratio are applied. In Run 1 the differences between data
and simulation introduced, for example, by the tracking algorithm were not corrected.
Also, no systematic uncertainty was assigned. To provide a conservative comparison, only
uncertainties of a statistical nature will be considered:

• Statistical uncertainty on the signal yield

• Statistical uncertainty on the normalisation yield

• The uncertainty related to the simulation sample size (Run 2)

• The uncertainty by the fit model to estimate the simulation yields (Run 1)

The measurement of B(D0 → K−K+µ−µ+) is compatible within 1.75 standard deviations
and the D0 → π−π+µ−µ+ measurement within 2.07 standard deviations with the result of
Run 1, taking just statistical uncertainties into account. The measured branching fraction
for Run 2, quoted only with uncertainties of statistical nature, are:

B(D0 → K−K+µ−µ+) = (2.09± 0.16)× 10−7 (8.10.5)

B(D0 → π−π+µ−µ+) = (8.35± 0.29)× 10−7 (8.10.6)

The measured branching fraction for Run 1, quoted only with uncertainties of statistical
nature, are:

B(D0 → K−K+µ−µ+) = (1.54± 0.27)× 10−7 (8.10.7)

B(D0 → π−π+µ−µ+) = (9.64± 0.55)× 10−7 (8.10.8)

The agreement of approximately two standard deviations between the two measurements
suggests that the measurement procedure provides a reasonable result of the branching
fractions.

LFV decays

For the LFV decay modes, two cases are considered: The case that no LFV is observed,
which will lead to a limit on the branching fraction, and the case that LFV is observed,
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in which case the branching fraction will be measured and reported. This is relevant,
as the systematic uncertainty of the peaking background depends non-linearly on the
measured branching fraction. As this dependence is not proportional to the measured
branching fraction (or yield ratio) like in the case of the efficiency ratio, it is also
not possible to quote a relative uncertainty. Because of this, only a range for the
systematic uncertainty in case of observation is given, while for the case of no observation,
B(D0 → h(

′)−h+µ±e∓) = 0, an absolute uncertainty will be quoted, which is provided in
the bracket in table 8.9. For the limit calculation, the efficiency ratio and the yield ratio
are treated as nuisance parameters with their own uncertainties.

In the simplified case that a branching fraction of zero is measured, the total uncertainty
reported in brackets in table 8.9 is taken as systematic uncertainty:

B(D0 → K−K+µ±e∓) = (0.00± 2.54± 0.21)× 10−8 (8.10.9)

B(D0 → K−π+µ±e∓) = (0.00± 4.90± 1.89)× 10−8 (8.10.10)

B(D0 → π−π+µ±e∓) = (0.00± 3.26± 1.39)× 10−8 (8.10.11)

where the first uncertainty corresponds to the statistical uncertainty of normalisation
and signal dataset, and the second is the systematic uncertainty. However, typically, in
searches like this, a branching fraction unequal to but compatible with zero is observed,
which would require a recalculation of the systematic uncertainty as the systematic
uncertainty depends on the observed central value of the branching fraction. For this
case, a relative total systematic uncertainty is quoted in table 8.9.

A special role has the uncertainty due to the peaking background. This uncertainty scales
approximately inversely by the observed branching fraction, as it is directly linked to
the misID background yield. This was kept constant, apart from statistical fluctuations
mimicked by varying the yield according to a Poisson distribution. One should add that
due to this behaviour of scaling inversely with the branching fraction, it is not expected
that this uncertainty exceeds the statistical uncertainty7. The uncertainty arises due
to the overlap of signal and misID background, as signal candidates are moved due to
lost bremsstrahlung photons under the misID component of the fit. This uncertainty
could be removed by neglecting candidates with no bremsstrahlung recovery, as hadronic
decays do not produce bremsstrahlung. However, this would remove half the statistical
power of this measurement, increasing the statistical uncertainty (and the expected limit)

7This can be seen in figure 8.10. The systematic uncertainty will reach for all three LFV decay modes
a maximum around 2.3× 10−8.
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approximately by a factor ∼
√
2 ≈ 1.41. This is also observed when performing the

measurement just within one bremsstrahlung data category.
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Chapter 9

Limit setting

In this chapter, the limit calculation and its results for the LFV decay modes are reported.
For the two observed reference decay modes, D0 → π−π+µ−µ+ and D0 → K−K+µ−µ+,
no limit is calculated.

Without unblinding the result, it is still possible to provide the expected experimental
limit under the hypothesis that no signal is observed. The observed limit is expected to
be compatible, lying within the error bands, with the expected limit in case no signal
is observed. The expected limits are calculated by the GammaCombo framework [96]. For
this, the likelihood of the branching ratio is profiled. The yield ratio, efficiency ratio and
normalisation branching ratio are treated as nuisance parameters with their respective
uncertainties. The normalisation branching ratio uncertainty is 10% [61]. The uncertainty
on the efficiency ratio is fully described by its systematic uncertainty, reported in table 8.9,
page 139. For the uncertainty on the yield ratio, the systematic uncertainty on the yield is
numerically combined during the generation of the pseudo-experiments with the likelihood
obtained by the fit. The profiling itself is done via pseudo-experiments. The for the LFV
signal modes at 95%(90%) CL evaluated limits are:

B(D0 → K−K+µ±e∓) ≤ 6.5(5.5)× 10−8 (9.0.1)

B(D0 → K−π+µ±e∓) ≤ 11.2(9.5)× 10−8 (9.0.2)

B(D0 → π−π+µ±e∓) ≤ 7.8(6.6)× 10−8 (9.0.3)

The corresponding confidence contour using the CLs p-value can be found in figure 9.1.
The red curve marks the expected limit at a certain CLs value. The blue and light blue
areas mark the error bands of the expected limit evaluated under the hypothesis that
no signal is observed. The same scan as for the expected limit, after unblinding, will be
repeated with the observed central value, which allows the calculation of the observed
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limits at 95%(90%) CL. The curve of the observed limit is expected to lie within the blue
error bands of the expected limit.

Figure 9.1: Confidence contour obtained by the CLs method and the expected limits for the
background-only hypothesis. The dotted lines marked the CL. In blue are the error bands of the ex-
pected limit shown. The upper figure shows the confidence contour for D0 → K−π+µ±e∓ decays,
the lower left figure for D0 → K−K+µ±e∓ decays and the lower right figure for D0 → π−π+µ±e∓

decays.

To be able to set more precise limits for new physics theories, e.g. leptoquark theories,
the limit is also quoted separately for signal candidates with the muon having the same
and opposite charge of the slow pion of the D∗+ decay, tagging the flavour of the D0

meson. For this the data samples are split by the relative charges in the final state particle
composition. By this the charge of the muon and electron are correlated to the charge of
the pion. As the charged conjugated decay products are considered too, the efficiency is
assumed to be the same. For example, in the two pion case, D∗+ → D0(→ π+π−µ−e+)π+

decays and D∗− → D̄0(→ π−π+µ+e−)π− decays are both considered together, the slow
pion and muon have the opposite charge, similar to D∗+ → D0(→ π+π−µ∓e±)π+ and
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D∗+ → D0(→ π+π−µ∓e±)π+ no charge is favoured for a specific final decay particle1.
Using the CLs method, the following limits at 95%(90%) CL are set for muons with the
same charge as the accompanying slow tag pion:

B(D0 → K+K−µ+e−) ≤ 5.5(4.8)× 10−8 (9.0.4)

B(D0 → K−π+µ+e−) ≤ 9.0(8.1)× 10−8 (9.0.5)

B(D0 → π+π−µ+e−) ≤ 5.7(4.9)× 10−8 (9.0.6)

and muons with the opposite charge as the accompanying slow tag pion:

B(D0 → K+K−µ−e+) ≤ 4.5(3.9)× 10−8 (9.0.7)

B(D0 → K−π+µ−e+) ≤ 6.7(6.0)× 10−8 (9.0.8)

B(D0 → π+π−µ−e+) ≤ 6.4(5.8)× 10−8 (9.0.9)

The corresponding contour plots can be found in figure 9.2.

The expected limits show that in the case of no observed signal, the observed limits for
the LFV decay channel are expected to improve the current best (observed) limits by the
BaBar collaboration by two orders of magnitude. The expected limits for the separately
charged final states are smaller than the expected limit for the flavour-combined LFV
signal decays. This is also expected as the efficiency is assumed to be the same, while
the data sample size is halved, reducing the absolute uncertainties on the yields2 and
branching ratio.

1This is contrary to CP violation measurements in D̄0 −D0 mixing where the charge of the slow pion
which tags the flavour is crucial. In those measurements, the slow pion efficiency is evaluated separately
for π− and π+ as both interact differently with the detector material.

2The relative uncertainties on the yields increase as expected by the smaller data sample size.
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Figure 9.2: Confidence contour obtained by the CLs method and the expected limits for the
background-only hypothesis. The dotted lines marked the CL. In blue are the error bands of the
expected limit shown. The left(right) column shows the confidence contours for decays with
oppositely(equally) charged muon and accompanying slow tag pion. The upper row shows the
results for D0 → K−K+µ±e∓ decays, the middle row for D0 → K−π+µ±e∓ decays and the
lower row for D0 → π−π+µ±e∓ decays.
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Chapter 10

Conclusion & Outlook

The first search for LFV in four-body D0 meson decays at LHCb is presented. This
search uses pp collision data collected with the LHCb detector between 2015 and 2018,
corresponding to an integrated luminosity of 6 fb−1. This measurement is still blinded;
therefore, the expected sensitivity and upper limits, using the CLs method, are reported.
Using the LHCb dataset, it is shown that it is possible to improve the current best limits,
set by BaBar, by two orders of magnitude.

The aim of this search of the three LFV decays, D0 → π−π+µ±e∓, D0 → K−π+µ±e∓

and D0 → K−K+µ±e∓, is, in case of no significant signal, to set an upper limit on the
branching ratio with the help of the CLs method, or, if a signal would be observed, to
perform a measurement of the branching fraction. The limits themselves help to constrain
possible theory extension to the SM by probing not yet experimentally excluded regions
in which new physics scenarios could manifest.

The complete selection sequence to extract possible D0 → h(
′)−h+µ±e∓ decay candidates

is presented. After enforcing topological and reconstruction quality requirements, the
selection is optimised for the signal significance to reduce the remaining background
sources. Particle identification requirements obtained from a neural network are
optimised for wrongly identified particles. Simultaneously, a multivariate classifier
is trained and optimised to suppress background originating from tracks wrongly
combined as signal candidates. As the last step in the selection process, a fit model is
constructed to separate the remaining background from the signal candidates statisti-
cally. To avoid biases in the optimisation and selection, the signal region in data is blinded.

The efficiency is evaluated on simulated events and, if needed, corrected using data.
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Efficiency and observed candidate yields are combined into a branching fraction
measurement with which the significance and the limit in case no signal is observed will
be evaluated.

To test and validate the measurement procedure, a reference measurement of the branching
fraction for D0 → K−K+µ−µ+ and D0 → π−π+µ−µ+ decays, using the same methods as
for the study of the LFV decay modes, is performed. A branching fraction compatible
with previous measurements is measured:

B(D0 → K−K+µ−µ+) = (2.09± 0.16± 0.11± 0.21)× 10−7

B(D0 → π−π+µ−µ+) = (8.35± 0.27± 0.47± 0.84)× 10−7

The first quoted uncertainty corresponds to the statistical uncertainty on the dataset. The
second evaluated uncertainty covers all systematic uncertainties apart from the uncertainty
of the normalisation branching ratio, which is quoted as the third uncertainty. The results
for the same branching ratios measured with the Run 1 dataset [44] are:

B(D0 → K−K+µ−µ+) = (1.54± 0.27± 0.09± 0.16)× 10−7

B(D0 → π−π+µ−µ+) = (9.64± 0.48± 0.51± 0.97)× 10−7

The measured statistical uncertainties are a factor 1.7 smaller with respect to the
published measurements. The systematic uncertainties are of similar size.

The measurement of B(D0 → K−K+µ−µ+)(B(D0 → π−π+µ−µ+)) is compatible within
−1.75(+2.07) standard deviations with the results of Run 1. For this comparison, only
uncertainties of statistical nature are taken into account. All other uncertainties are
assumed to be strongly correlated. The agreement by around two standard deviations
between the two measurements suggests that the measurement procedure provides an
unbiased measurement of the branching fractions. One would have hoped for a better
agreement of less than one standard deviation between the two measurements. In an
attempt to better understand the source of this deviation, the Run 2 measurement
selection was adjusted to match the data selection applied for the Run 1 measurement.
However, both the efficiency ratio and the yield ratio deviate from the Run 1 results
coherently, enhancing the effect of the deviation. This makes it difficult to narrow the
source of the deviation down. It is, therefore, not possible to identify an individual source
of this deviation. Contrarily, this supports the hypotheses that the deviation is caused
by statistical fluctuations. Possible next steps to confirm that the deviation is only of a
statistical nature would be to reanalyse the Run 1 data sample using the same procedure
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as was used for the Run 2 measurement.

While the branching fraction for D0 → K−K+µ−µ+ decays is still statistically limited,
the branching fraction for D0 → π−π+µ−µ+ decays is systematically limited. The largest
systematic is due to the unknown decay model used to generate simulated events for
the efficiency estimate. This uncertainty can be reduced by studying the decay in
individual phase space regions, dihadron and dilepton reconstructed mass bins, where
the contribution due to the different intermediate resonances is known. Fluctuating the
relative contribution of the different decay models by 50%, as was done for the Run 1
measurement, most likely over-evaluates the effect and only provides an upper limit on
the uncertainty. A more sophisticated study by scaling the resonant and non-resonant
contributions to the already measured branching ratios in the reconstructed dimuon mass
should allow to correct the decay model partially and reduce the uncertainty. The best
solution to this problem would be the implementation of a dedicated decay model of
this decay in simulations, like it is already done, for example for D0 → K−π+π+π− decays.

The systematic uncertainty assigned to the yield ratio is similar for this measurement
with respect to the Run 1 measurement. In general, it was possible to reduce the size
of most systematic uncertainties introduced by the efficiency ratio. New systematic
uncertainties which were not considered in the Run 1 measurement were added, the
overall systematic uncertainty did slightly increase (stayed the same) for D0 → π−π+µ−µ+

(D0 → K−K+µ−µ+) decays. One such uncertainty, for example, is the uncertainty due to
hadronic interactions with the detector material, which was not considered for the Run 1
measurement. The largest systematic uncertainty is due to the limited knowledge of the
normalisation mode branching ratio. To reduce this uncertainty, a new measurement of
the branching ratio would be required.

For the LFV decays the signal mass window and thus the measured central value of
the branching fraction is blinded. Most of the systematic uncertainties depend on the
measured central value. Assuming ”no observation”, i.e. a branching fraction of zero
allows to report the following uncertainties:

B(D0 → K−K+µ±e∓) = (0.00± 2.5± 0.2)× 10−8

B(D0 → K−π+µ±e∓) = (0.00± 4.9± 1.9)× 10−8

B(D0 → π−π+µ±e∓) = (0.00± 3.3± 1.4)× 10−8

The first quoted uncertainty corresponds to the statistical uncertainty on the dataset.
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The second uncertainty covers all systematic uncertainties. In case of an observation,
the systematic uncertainties would need to be reevaluated for the observed branching
ratio and would increase the uncertainty. In the following, uncertainties for the branching
fraction are reported:

B(D0 → K−K+µ±e∓) = (x± 2.5± (0.2 or (2.5− 6.4)%)± 5.7%± 10%)× 10−8

B(D0 → K−π+µ±e∓) = (x± 4.9± (1.9 or (3.1− 10.0)%)± 5.3%± 10%)× 10−8

B(D0 → π−π+µ±e∓) = (x± 3.3± (1.4 or (2.7− 8.0)%)± 10.3%± 10%)× 10−8

The first quoted uncertainty corresponds to the statistical uncertainty of the dataset.
For the second uncertainty, two values are provided: an absolute uncertainty, providing
a lower limit for the uncertainty, and a relative uncertainty in per cent. The absolute
value of the relative uncertainty is calculated by multiplying the relative uncertainty
with the measured branching fraction. The ”or” notates here that whichever absolute
value of the two uncertainties is larger will be assigned as uncertainty. This uncertainty
covers the systematic uncertainty due to the parameterisation of the misID background.
The third uncertainty, given relative to the measured branching ratio, covers all other
systematic uncertainties, apart from the misID parameterisation and the uncertainty of
the normalisation branching ratio. The fourth relative uncertainty is the uncertainty due
to the uncertainty of the normalisation branching fraction.

Using the CLs method, the following expected limits at 95%(90%) CL are evaluated:

B(D0 → K−K+µ±e∓) ≤ 6.5(5.5)× 10−8

B(D0 → K−π+µ±e∓) ≤ 11.2(9.5)× 10−8

B(D0 → π−π+µ±e∓) ≤ 7.8(6.6)× 10−8

With the expected limit obtained from the LHCb dataset for a non observation, the
current best limits, set by BaBar, will be improved by two orders of magnitude.

To be able to set more precise limits for new physics theories, the data samples are split
depending on the relative charges in the final state particle composition. In this way, the
flavour of the D0 meson is directly linked to the lepton flavour. Using the CLs method,
the following limits are expected at 95%(90%) CL for muons with the same charge as the
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accompanying slow tag pion (the D0 and muon have the opposite flavour):

B(D0 → K+K−µ+e−) ≤ 5.5(4.8)× 10−8

B(D0 → K−π+µ+e−) ≤ 9.0(8.1)× 10−8

B(D0 → π+π−µ+e−) ≤ 5.7(4.9)× 10−8

The expected 95%(90%) CL limits for muons with the opposite charge as the accompanying
slow tag pion (the D0 and muon have the same flavour) are:

B(D0 → K+K−µ−e+) ≤ 4.5(3.9)× 10−8

B(D0 → K−π+µ−e+) ≤ 6.7(6.0)× 10−8

B(D0 → π+π−µ−e+) ≤ 6.4(5.8)× 10−8

No previous measurement for the differently charged final states exists.

According to theoretical calculations [46], new physics is not yet excluded for:

B(D0 → π−π+µ±e∓) . 10−7

B(D0 → K−K+µ±e∓) . 10−9.

The above calculated expected limit for D0 → π−π+µ±e∓ decays shows that it is
possible to further restrict possible new physics scenarios with the LHCb Run 2 dataset.
D0 → K−K+µ±e∓ decays above 10−9 are already excluded with the help of auxiliary
measurements. Nevertheless, this measurement will provide an important direct input.
For D0 → K−π+µ±e∓ decays, no such calculation was performed.

The largest systematic uncertainties are introduced by misidentified hadronic decays of the
form D0 → h(

′)−h+π−π+. The reason for this is that candidates where a bremsstrahlung
photon is lost are difficult to separate from the misidentified hadronic decays. However,
the understanding of the misID background scales similar to the understanding of the
signal decays with the recorded data sample. It will, therefore, with today’s understanding,
not be a limiting factor for future measurements.

Two of the three largest uncertainties introduced through the efficiency ratio are due
to the size and quality of the simulation samples used to estimate the efficiency. The
quality of the simulation sample can be improved by the implementation of a dedicated
decay model using data of already existing measurements [44, 61]. The sample size of the
simulated sample can be increased by generating more events. However, a full detector
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simulation was used in this thesis, and no fast simulation methods were used. One
would need to change this for the generation of significantly larger simulation samples.
The uncertainty on the decay model is introduced by the normalisation mode, while
the uncertainty due to the limited statistic is driven by the signal modes. The third
large uncertainty introduced by the efficiency ratio is the uncertainty due to hadronic
interaction with the detector material. During the evaluation of this uncertainty, it is
assumed that the material per track is known to a precision of 10%. Ideally, one would
like to directly measure the effect of the hadronic interactions instead of performing an
approximation.

If, after unblinding, a signal would be observed by this measurement, it would be crucial to
perform a second independent measurement, which could be performed with the upgraded,
mostly new LHCb detector using data recorded in Run 3. If no signal is observed, redoing
the measurement with a larger dataset, without external input indicating differently,
would only be sensible if the limit could be increased by another order of magnitude. This
would require a by a factor hundred larger dataset, which is not achievable in the near
future. However, a feasible next step would be to use the understanding gained here for
four body decays containing muon and electrons to perform a lepton flavour universality
(LFU) measurement between D0 → h+h−e+e− and D0 → h+h−µ+µ− decays:

Rc
hh =

∫ q2max

q2min

dB(D0→h+h−µ+µ−)
dq2

dq2∫ q2max

q2min

dB(D0→h+h−e+e−)
dq2

dq2

In case of Lepton Flavour conservation, the ratio Rc
hh is expected to be equal to one. This

would complement the already performed searches in the down-type quark sector [13, 14].
The advantage of performing a LFU measurement is that most theoretical uncertainties
cancel in the ratio. Based on the results in this thesis, especially the relative efficiency
estimates between muon and electrons, combined with the already published measurement
of the observed D0 → K−K+µ−µ+ and D0 → π−π+µ−µ+ decays [44] and the expected
results from the ongoing search for D0 → K+K−e+e− and D0 → π+π−e+e− decays [52]
a measurement of LFU in four body charm decays could be feasible in the near future by
using the larger Run 3 dataset. It is worth noting that the LFV decay modes, similar to
the dimuon decay modes, were measured relative to D0 → K−π+[µ+µ−]ρ0/ω decays. The
dielectron modes are measured relative to D0 → K−π+[e+e−]ρ0/ω. In this thesis, muon
and electron candidates were studied relative to each other, which provides the linking
component.
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More directly, with this thesis it was possible to show that with the LHCb dataset, the
current best limits on the branching fraction of D0 → π−π+µ±e∓, D0 → K−π+µ±e∓ and
D0 → K−K+µ±e∓ decays set by BaBar will be improved by two orders of magnitude. In
addition, an updated measurement of the branching ratio for D0 → K−K+µ−µ+ and
D0 → π−π+µ−µ+ decays was performed, which provides an important validation for the
still-blind search. Lastly, additional limits considering the flavour composition of the LFV
decays are provided to further limit new physics scenarios.
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Appendix A

Detailed selection steps

Detailed tables on the selection explained in chapter 5 are provided, split up into HLT2
trigger requirements, table A.2, stripping requirements, table A.1, and additional selection
steps, table A.3.
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Particle Variable signal modes normalisation
2015-2016 (S24r1,S28r1) 2017-2018 (S29r2,S34) 2015-2016 2017-2018

h, µ, e p > 3GeV/c 3GeV/c 3GeV/c 3GeV/c

pT > 300MeV/c 300MeV/c 300MeV/c 300MeV/c

Track χ2/dof < 3 3 3 3

µ IP χ2 > 3 3 3 3

isMuon true true true true
e IP χ2 > 3 3 3 3

DLLe > −2 −2

K DLLK > −5 −5 −5 −5

(hh``) m(hh``) > mPDG − 120MeV/c2 mPDG − 240MeV/c2 mPDG − 120MeV/c2 mPDG − 240MeV/c2

< mPDG + 120MeV/c2 mPDG + 240MeV/c2 mPDG + 120MeV/c2 mPDG + 240MeV/c2

max DOCA < 0.3mm 0.3mm 0.3mm 0.3mm

max IP χ2 > 9 9 9 9

D0 m(D0) > mPDG − 100MeV/c2 mPDG − 220MeV/c2 mPDG − 100MeV/c2 mPDG − 220MeV/c2

< mPDG + 100MeV/c2 mPDG + 220MeV/c2 mPDG + 100MeV/c2 mPDG + 220MeV/c2

Vertex χ2/dof < 20 20 20 20

FD χ2 > 30 16 30 16

DIRA > 0.9998 0.9999 0.9998 0.9999

IP χ2 < 36 36 36 36

pT > 2GeV/c 2GeV/c 2GeV/c 2GeV/c

p > 3GeV/c 3GeV/c 3GeV/c 3GeV/c

πs pT > 120MeV/c 120MeV/c 120MeV/c 120MeV/c

D0π+
s ∆m > 136.4MeV/c2 125.4MeV/c2 136.4MeV/c2 125.4MeV/c2

< 165.4MeV/c2 185.4MeV/c2 165.4MeV/c2 185.4MeV/c2

pT > 2GeV/c 2GeV/c 2GeV/c 2GeV/c

max DOCA < 0.3mm 0.3mm 0.3mm 0.3mm

D∗+ ∆m > 137.4MeV/c2 129.4MeV/c2 137.4MeV/c2 129.4MeV/c2

< 163.4MeV/c2 181.4MeV/c2 163.4MeV/c2 181.4MeV/c2

Vertex χ2/dof < 20 20 20 20

Table A.1: Stripping selection requirements.
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Particle Variable signal modes normalisation
2015-2016 2017-2018 2015-2016 2017-2018

h, µ, e p > 3GeV/c 3GeV/c 3GeV/c 3GeV/c

pT > 300MeV/c 300MeV/c 300MeV/c 300MeV/c

Track χ2/dof < 4 4 4 4

µ IP χ2 > 2 2 2 2

e IP χ2 > 3 3 3 3

(``) m(``) < 2100MeV/c2 2100MeV/c2 2100MeV/c2 2100MeV/c2∑
pT > 0.MeV/c 0.MeV/c 0.MeV/c 0.MeV/c

DOCA < 0.1mm 0.1mm 0.1mm 0.1mm

Dilepton object FD χ2 > 20 20 9 9

FD > 0mm 0mm 0mm 0mm

Mcorrected < 3500MeV/c2 3500MeV/c2 3500MeV/c2 3500MeV/c2

(hh``) m(hh``) > – 1550MeV/c2 – 1550MeV/c2

< 2100MeV/c2 2200MeV/c2 2100MeV/c2 2200MeV/c2

max pT > 0.MeV/c 0.MeV/c 0.MeV/c 0.MeV/c∑
pT > 3000MeV/c 3000MeV/c 3000MeV/c 3000MeV/c

min DOCA < 0.1mm 0.2mm 0.1mm 0.2mm

max DOCA < 0.2mm 0.3mm 0.2mm 0.3mm

max IP χ2 > 9 9 9 9

D0 m(D0) > 1800MeV/c2 1700MeV/c2 1800MeV/c2 1700MeV/c2

< 1950MeV/c2 2050MeV/c2 1950MeV/c2 2050MeV/c2

Vertex χ2/dof < 15 15 15 15

Mcorrected < 3500MeV/c2 3500MeV/c2 3500MeV/c2 3500MeV/c2

FD χ2 > 49 49 36 16

DIRA > 0.9999 0.9999 0.9999 0.9999

IP χ2 < 25 25 25 25∑√
IPχ2 > 12 8 12 8

πs pT > – 120MeV/c – 120MeV/c

(D0πs) Q > – 130MeV/c2-mπ – 130MeV/c2-mπ

< – 180MeV/c2-mπ – 180MeV/c2-mπ

D∗+ Q > – 130MeV/c2-mπ – 130MeV/c2-mπ

< – 170MeV/c2-mπ – 170MeV/c2-mπ

Vertex χ2/dof < – 25 – 25

Table A.2: Requirements for D0 (2015/2016) and D∗+ (2017/2018) candidates of the HLT2
selection.
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particle Variable D0 → h+h−µ±e∓ D0 → K−π+µ+µ−

K, π, µ TRACKGhostProb < 0.3 < 0.3

µ NShared == 0 == 0

π ProbNNpi > 0.5 > 0.5

K ProbNNK > 0.5 > 0.5

D0 IPχ2 < 9 < 9

D0 FD_CHI2 > 49 > 49

D∗+ ∆m > 144.5MeV/c2 > 144.5MeV/c2

< 146.5MeV/c2 < 146.5MeV/c2

Table A.3: Additional selection requirements.
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Appendix B

Additional training variable
distributions of the BDT

In this section, all variable distributions used to train the BDT for signal and background
proxy, normalised and overlaid, are shown. For a detailed description, see chapter 5.
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Figure B.1: Normalised BDT input variable distributions for signal, D0 → K−K+µ±e∓ decays,
(blue) and background proxy (red) overlaid.
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Figure B.2: Normalised BDT input variable distributions for signal, D0 → K−π+µ±e∓ decays,
(blue) and background proxy (red) overlaid.
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Figure B.3: Normalised BDT input variable distributions for signal, D0 → π−π+µ±e∓ decays,
and background proxy overlaid.
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Appendix C

Additional material on the
optimisation

In the following all signal efficiencies and expected background yields separately for
combinatorial and misID background in BDT response and PID bins are reported.
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Figure C.1: D0 → K−K+µ±e∓ decay signal efficiencies.
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Figure C.2: D0 → K−π+µ±e∓ decay signal efficiencies.
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Figure C.3: D0 → π−π+µ±e∓ decay signal efficiencies.
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Figure C.4: Expected number of combinatorial background candidates for D0 → K−K+µ±e∓

decay selection.
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Figure C.5: Expected number of combinatorial background candidates for D0 → K−π+µ±e∓

decay selection.
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Figure C.6: Expected number of combinatorial background candidates for D0 → π−π+µ±e∓

decay selection.
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Figure C.7: Expected number of misID background candidates for D0 → K−K+µ±e∓ decay
selection.

184



Figure C.8: Expected number of misID background candidates for D0 → K−π+µ±e∓ decay
selection.
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Figure C.9: Expected number of misID background candidates for D0 → π−π+µ±e∓ decay
selection.
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Figure C.10: Punzi figure of merit for D0 → K−K+µ±e∓ decays.
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Figure C.11: Punzi figure of merit for D0 → K−π+µ±e∓ decays.
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Figure C.12: Punzi figure of merit for D0 → π−π+µ±e∓ decays.
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Appendix D

Efficiency Tables

Summary of the efficiencies for the selection explained in chapter 5.

D.1 Reference decays

All efficiency ratios for the reference modes are reported in table D.1.

ε(D0→K−K+µ−µ+)
ε(D0→K−π+µ−µ+)

ε(D0→π−π+µ−µ+)
ε(D0→K−π+µ−µ+)

racc 1.045± 0.017 0.925± 0.015

rrec 0.747± 0.01 1.146± 0.012

rsele 0.948± 0.005 1.025± 0.004

rPID 0.951± 0.005 1.072± 0.007

rBDT 1.085± 0.01 0.927± 0.008

rTrig 0.629± 0.037 1.060± 0.031

r 0.481± 0.031 1.145± 0.042

(a) 2015/2016

ε(D0→K−K+µ−µ+)
ε(D0→K−π+µ−µ+)

ε(D0→π−π+µ−µ+)
ε(D0→K−π+µ−µ+)

racc 1.045± 0.017 0.925± 0.015

rrec 0.751± 0.004 1.154± 0.006

rsele 0.937± 0.003 1.031± 0.002

rPID 0.946± 0.003 1.100± 0.005

rBDT 1.079± 0.007 0.940± 0.006

rTrig 0.741± 0.007 1.106± 0.007

r 0.556± 0.012 1.259± 0.025

(b) 2017/2018

Table D.1: Summary table for all efficiency ratios acceptance, reconstruction, PID selection,
BDT selection and trigger selection for the different reference modes.
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D.2 Signal decays

Efficiencies for each selection step and fit category are reported in table D.2, table D.3
and table D.4 for the different signal modes.

noBrem15/16 noBrem17/18 Brem15/16 Brem17/18 norm15/16 norm17/18

εacc[%] 19.927± 0.044 19.927± 0.044 19.927± 0.044 19.927± 0.044 19.79± 0.3 19.79± 0.3

εrec[%] 41.641± 0.567 55.951± 0.479 19.046± 0.389 25.049± 0.32 113.577± 0.726 168.302± 0.706

εPID[%] 62.268± 0.632 59.657± 0.425 64.094± 0.951 60.613± 0.641 71.378± 0.185 72.649± 0.164

εBDT [%] 50.737± 0.826 50.766± 0.56 55.958± 1.229 56.652± 0.835 48.252± 0.242 45.49± 0.215

εtrig[%] 5.295± 0.467 15.598± 0.342 2.098± 0.322 12.429± 0.409 11.039± 0.392 28.902± 0.146

ε[%] 0.139± 0.013 0.527± 0.014 0.029± 0.004 0.213± 0.008 0.855± 0.034 3.181± 0.055

Table D.2: Efficiencies for D0 → K−K+µ±e∓ split by the different fit categories used in the
simultaneous fit.

noBrem15/16 noBrem17/18 Brem15/16 Brem17/18 norm15/16 norm17/18

εacc[%] 18.872± 0.041 18.872± 0.041 18.872± 0.041 18.872± 0.041 19.79± 0.3 19.79± 0.3

εrec[%] 46.743± 0.427 62.863± 0.355 26.48± 0.323 35.128± 0.267 113.577± 0.726 168.302± 0.706

εPID[%] 35.649± 0.408 33.25± 0.264 38.926± 0.563 35.278± 0.364 35.215± 0.196 37.06± 0.178

εBDT [%] 62.396± 0.691 61.837± 0.471 68.016± 0.864 68.382± 0.596 67.223± 0.324 64.813± 0.289

εtrig[%] 10.163± 0.46 27.277± 0.355 5.032± 0.482 24.943± 0.427 14.994± 0.397 36.175± 0.187

ε[%] 0.199± 0.01 0.665± 0.012 0.067± 0.007 0.399± 0.009 0.798± 0.026 2.894± 0.052

Table D.3: Efficiencies for D0 → K−π+µ±e∓ split by the different fit categories used in the
simultaneous fit.

noBrem15/16 noBrem17/18 Brem15/16 Brem17/18 norm15/16 norm17/18

εacc[%] 17.996± 0.04 17.996± 0.04 17.996± 0.04 17.996± 0.04 19.79± 0.3 19.79± 0.3

εrec[%] 55.715± 0.467 78.136± 0.404 34.493± 0.376 47.515± 0.313 113.577± 0.726 168.302± 0.706

εPID[%] 46.412± 0.402 45.286± 0.264 48.887± 0.522 47.485± 0.341 47.778± 0.205 49.687± 0.184

εBDT [%] 47.551± 0.591 49.049± 0.395 54.842± 0.743 56.187± 0.492 54.464± 0.295 51.073± 0.261

εtrig[%] 13.595± 0.507 33.44± 0.342 3.943± 0.359 31.829± 0.391 15.407± 0.466 36.941± 0.148

ε[%] 0.301± 0.012 1.044± 0.016 0.066± 0.006 0.726± 0.013 0.901± 0.032 3.122± 0.054

Table D.4: Efficiencies for D0 → π−π+µ±e∓ split by the different fit categories used in the
simultaneous fit.
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Appendix E

Tracking Maps

In figure E.1 the data simulation correction maps for the muon reconstruction efficiency
ratio, for details see section 6.2, are reported. The electron maps are reported in figure E.2
(2015), figure E.3 (2016), figure E.4 (2017) and figure E.5 (2018).

Figure E.1: Muon tracking data-simulation correction map in kinematic variables of the muon.
The values for the muon correction map are provided centrally to the LHCb collaboration.
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Figure E.2: Electron tracking data-simulation correction map in kinematic variables of the
electron for 2015. The values for the electron correction map are taken from the RX analysis [13,
14].
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Figure E.3: Electron tracking data-simulation correction map in kinematic variables of the
electron for 2016. The values for the electron correction map are taken from the RX analysis [13,
14].

195



Figure E.4: Electron tracking data-simulation correction map in kinematic variables of the
electron for 2017. The values for the electron correction map are taken from the RX analysis [13,
14].
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Figure E.5: Electron tracking data-simulation correction map in kinematic variables of the
electron for 2018. The values for the electron correction map are taken from the RX analysis [13,
14].
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Appendix F

Fit results

In the following, all fits and their results to the simulation samples to fix the shape of the
signal and misID component in the simultaneous fit are summarised.

F.1 Signal shape fit
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Figure F.1: MC fits to extract the shapes for the simultaneous fit for D0 → K−K+µ±e∓. Left
is the Fit of the normalisation channel (with D0 → K−K+µ±e∓ BDT selection). In the middle
(right), the fit to the reconstructed invariant D0 mass in category noBrem (Brem). The upper
row shows the fits for 2015/2016, and the lower row for 2017/2018.
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Figure F.2: MC fits to extract the shapes for the simultaneous fit for D0 → K−π+µ±e∓. Left
is the fit of the normalisation channel (with D0 → K−π+µ±e∓ BDT selection). In the middle
(right), the fit to the reconstructed invariant D0 mass in category noBrem (Brem). The upper
row shows the fits for 2015/2016, and the lower row for 2017/2018.
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Figure F.3: MC fits to extract the shapes for the simultaneous fit for D0 → π−π+µ±e∓. Left
is the fit of the normalisation channel (with D0 → π−π+µ±e∓ BDT selection). In the middle
(right), the fit to the reconstructed invariant D0 mass in category noBrem (Brem). The upper
row shows the fits for 2015/2016, and the lower row for 2017/2018.
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F.2 Peaking background shape fit
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Figure F.4: MC fits to extract the shapes for the simultaneous fit for D0 → K−K+µ±e∓ (top),
D0 → K−π+µ±e∓ (middle) and D0 → π−π+µ±e∓ (bottom). Left is the fit to the normalisation
channel (the difference in the distribution is due to a different BDT selection). In the middle
(right), the fit to the reconstructed invariant D0 mass in category noBrem (Brem).
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F.3 Fit results

In table F.1, the fit results for the data sample with opposite charge and in table F.2 with
the same charge between the slow pion and muon are reported.

Parameter D0 → K−K+µ−e+ D0 → K−π+µ−e+ D0 → π−π+µ−e+

branchingRatio x.x± 1.3 x.x± 2.5 x.x± 2.3

N1516
Comb,Brem 1.8± 1.4 11.2± 3.5 6.5± 2.9

N1516
Comb,noBrem 4.0± 3.0 23.5± 6.2 40.2± 8.2

N1516
Comb,norm 11.4± 7.5 3.9± 4.1 10.7± 6.9

N1718
Comb,Brem 26.3± 5.5 81.0± 10.0 246.0± 18.0

N1718
Comb,noBrem 48.6± 9.5 119.0± 15.0 183.0± 19.0

N1718
Comb,norm 92.0± 21.0 45.0± 14.0 35.0± 14.0

N1516
sig 1244.0± 38.0 946.0± 32.0 1073.0± 35.0

N1718
sig 5883.0± 82.0 4569.0± 71.0 5226.0± 76.0

N1516
misID,norm 668.0± 29.0 181.0± 17.0 268.0± 20.0

N1718
misID,norm 3335.0± 66.0 921.0± 38.0 1531.0± 47.0

N1516
misID 7.8± 3.4 16.5± 5.7 29.8± 7.8

N1718
misID 24.8± 8.2 117.0± 15.0 137.0± 18.0

ν1516norm −0.18± 0.24 −0.86± 0.26 −0.72± 0.25

ν1718norm −0.45± 0.1 −0.79± 0.11 −0.61± 0.11

Table F.1: Fit results of the simultaneous fit. The quoted branching ratio is blind.
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Parameter D0 → K−K+µ+e− D0 → K−π+µ+e− D0 → π−π+µ+e−

branchingRatio x.x± 2.2 x.x± 4.2 x.x± 2.3

N1516
Comb,Brem 3.8± 2.0 21.2± 5.0 10.4± 3.8

N1516
Comb,noBrem 8.1± 3.9 35.7± 7.9 28.1± 7.0

N1516
Comb,norm 11.4± 7.5 3.9± 4.1 10.7± 6.9

N1718
Comb,Brem 45.1± 7.3 234.0± 18.0 208.0± 16.0

N1718
Comb,noBrem 83.0± 11.0 203.0± 21.0 176.0± 18.0

N1718
Comb,norm 92.0± 21.0 45.0± 14.0 35.0± 14.0

N1516
sig 1245.0± 38.0 946.0± 32.0 1074.0± 35.0

N1718
sig 5882.0± 82.0 4569.0± 71.0 5225.0± 76.0

N1516
misID,norm 668.0± 29.0 181.0± 17.0 268.0± 20.0

N1718
misID,norm 3335.0± 66.0 921.0± 38.0 1531.0± 46.0

N1516
misID 3.3± 2.7 30.0± 7.5 43.2± 8.4

N1718
misID 0.4± 2.2 162.0± 20.0 176.0± 19.0

ν1516norm −0.18± 0.24 −0.86± 0.26 −0.73± 0.25

ν1718norm −0.45± 0.1 −0.79± 0.11 −0.61± 0.11

Table F.2: Fit results of the simultaneous fit. The quoted branching ratio is blind.
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