Waermekapazitaet von Diamant

Temperaturabhängigkeit der Wärmekapazität im Einsteinmodell im Vergleich zu Daten fuer einen typischen Isolator

Zustandsdichte fuer Kupfer, gemessen in Neutronenstreuung (____) im Vgl. zu Debye Zustandsdichte (----)

Temperaturabhaengigkeit der Debye-Temperatur aus der exp. Zustandsdichte von oben (____) im Vgl. zu aus der gemessenen Waermekapazitaet rueckgerechneten Werten -> Debey-Modell ziemlich gut

Material	Bindung	$\Theta_{\rm D}({\rm K})$		$\omega_{_{Young}}$	Wmeas
Blei Diamant	metallisch kovalent	105 1860	$1.4 \ 10^{13} \\ 2.4 \ 10^{14}$	4 10 ¹² 9 10 ¹³	$\begin{array}{c} 7 \ 10^{12} \\ 1.8 \ 10^{14} \end{array}$

Fig. 3-8b

anhand der Vibrationsamplitude abgeschätzte Schmelztemperatur stimmt relativ gut mit Daten überein

Metall	Zv	atomare Dichte $n (10^{28} m^{-3})$	$-\frac{1}{R_H n e} \approx Z_V^{exp}$	$\hbar\omega_p(eV)$	$\hbar \omega_p^{exp}(eV)$
Li	1	4,6	0,8	8,3	6,2
Na	1	2,5	1,0	6,2	
К	1	1,3	1,1	4,3	3,7
Cu	1	8,5	1,3	10,8	
Au	1	5,9	1,5	9,4	
Mg	2	4,3	1,6	10,9	10,6
Ве	2	12,4	-0,2	18,6	
AI	3	6,0	3,5	15,8	15,3
Bi	5	2,8	$4, 5 \cdot 10^{-4}$	13,9	

Fig. 4-1

Resistivitaet als Funktion der Temperatur fuer Na-Proben verschiedener Reinheit

Fig. 4-3

Metall	E _F (eV)	$v_F 10^6 \frac{m}{s}$	T _F (10 ⁴ K)
Na	3,3	1,1	3,6
Ag	5,5	1,4	6,4
Cu	7,0	1,6	8,2
Al	11,7	2,0	13,5

Fig. 4-5