Quark-Gluon Plasma Physics 2. Basics of Nucleon-Nucleon and Nucleus-Nucleus Collisions

Prof. Dr. Peter Braun-Munzinger Dr. Alexander Schmah Heidelberg University SS 2021

Part I: proton-proton collisions

Total p+p(pbar) Cross Section (I)

ATLAS, arXiv:1408.5778

parameterization from Regge theory:

$$
\begin{aligned}
& \sigma_{\text {tot }}=X s^{\epsilon}+Y s^{\epsilon^{\prime}} \\
& \epsilon=0.08-0.1, \quad \epsilon^{\prime} \approx-0.45
\end{aligned}
$$

Above $\sim \sqrt{ } s=20 \mathrm{GeV}$ all hadronic cross sections rise with increasing $\sqrt{ } s$

Data show that

$$
\sigma_{\mathrm{tot}}(h+X)=\sigma_{\mathrm{tot}}(\bar{h}+X)
$$

(in line with Pomeranchuk's theorem)
Soft processes: hard to calculate $\sigma_{\text {tot }}(\sqrt{ } s)$ in QCD

Modeling based on Regge theory: exchange of color-neutral object called pomeron
"According to Regge theory, the strong interaction is due not to the exchange of particles with a definite spin, but rather to the exchange of a Regge trajectory, i.e., of a whole family of resonances." Vincenzo Barone, Enrico Predazzi Pages 83-121

Total p+p(pbar) Cross Section (II)

https://pdg.lbl.gov/2019/reviews/rpp2019-rev-cross-section-plots.pdf

Diffractive collisions (I)

(Single) diffraction in $\mathrm{p}+\mathrm{p}$:
"Projectile" proton is excited to a hadronic state X with mass M

$$
p_{\text {proj }}+p_{\text {targ }} \rightarrow X+p_{\text {targ }}
$$

The excited state X fragments, giving rise to the production of (a small number) of particles in the forward direction

Theoretical view:

- Diffractive events correspond to the exchange of a Pomeron
- The Pomeron carries the quantum numbers of the vacuum ($\mathrm{JPC}=0^{++}$)
- Thus, there is no exchange of quantum numbers like color or charge
- In a QCD picture the Pomeron can be considered as a two- or multi-gluon state, see, e.g., O. Nachtmann (\rightarrow link)

Diffractive collisions (II)

Diffractive collision = no color charge exchanged = "pompon exchange"

Diffractive collisions (II)

non-diffractive collisions

single-diffractive dissociation

double-diffractive dissociation

central diffraction

$$
\sigma_{\mathrm{tot}}=\sigma_{\mathrm{el}}+\sigma_{\text {inel }}, \quad \sigma_{\text {inel }}=\sigma_{\mathrm{SD}}+\sigma_{\mathrm{DD}}+\sigma_{\mathrm{CD}}+\sigma_{\mathrm{ND}}
$$

Diffractive collisions (III)

UA5, Z. Phys. C33, 175, 1986

$p+\bar{p}$	$V_{\mathrm{s}}=200 \mathrm{GeV}$	$V_{\mathrm{s}}=900 \mathrm{GeV}$
Total inelastic	$(41.8 \pm 0.6) \mathrm{mb}$	$(50.3 \pm 0.4 \pm 1.0) \mathrm{mb}$
Single-diffractive	$(4.8 \pm 0.5 \pm 0.8) \mathrm{mb}$	$(7.8 \pm 0.5 \pm 1.8) \mathrm{mb}$
Double-diffractive	$(3.5 \pm 2.2) \mathrm{mb}$	$(4.0 \pm 2.5) \mathrm{mb}$
Non-diffractive	$\approx 33.5 \mathrm{mb}$	$\approx 38.5 \mathrm{mb}$

Fraction of diffractive dissociation events with respect to all inelastic collisions is about 20-30\% (rather independent of $\sqrt{ } s$) See also ATLAS, arXiv:1201.2808

Charged-particle Multiplicity as a fct. of $\sqrt{ } \mathrm{s}$: Similarities between pp and $\mathrm{e}^{+} \mathrm{e}^{-}$

$\underset{\mathrm{V}}{\mathrm{Z}_{\mathrm{c}}}$

The increase of $N_{\text {ch }}$ with $\sqrt{ } s$ looks rather similar in $\mathrm{p}+\mathrm{p}$ and $\mathrm{e}^{+} \mathrm{e}^{-}$

Roughly speaking, the energy available for particle production in p+p seems to be ~30-50\%:
$f(\sqrt{s}):=N_{c h}^{e+e-}(\sqrt{s})$
$\rightarrow N_{c h}^{p+p}=f\left(K \sqrt{s_{p p}}\right)+n_{0}$

A fit yields: $K \approx 0.35, \quad n_{0} \approx 2.2$

What is the distribution of the number of produced particles per collision?

Independent sources: Poisson distribution
Observation:
Multiplicity distributions in $\mathrm{pp}, \mathrm{e}^{+} \mathrm{e}^{-}$, and lepton-hadron collisions well described by a Negative Binomial Distribution (NBD)

Deviations from the NBD were discovered by UA5 at $\sqrt{ } s=900 \mathrm{GeV}$ and later confirmed at the Tevatron at $\sqrt{ } s=1800 \mathrm{GeV}$ (shoulder structure at $n \approx 2<n>$)

$$
P_{\mu, k}^{\mathrm{NBD}}(n)=\frac{(n+k-1) \cdot(n+k-2) \cdot \ldots \cdot k}{\Gamma(n+1)}\left(\frac{\mu / k}{1+\mu / k}\right)^{n} \frac{1}{(1+\mu / k)^{k}}
$$

Limits of the NBD:

$$
\langle n\rangle=\mu, D:=\sqrt{\left\langle n^{2}\right\rangle-\langle n\rangle^{2}}=\sqrt{\mu\left(1+\frac{\mu}{k}\right)}
$$

$$
k \rightarrow \infty \text { : Poisson distribution }
$$

integer $k, k<0$: Binomial distribution ($N=-k, p=-\langle n\rangle / k)$

π^{0} transverse momentum

 distributions at different $\sqrt{ } \mathrm{s}$Low $p_{T}(<\sim 2 \mathrm{GeV} / \mathrm{c}$):
"soft processes"
$E \frac{\mathrm{~d}^{3} \sigma}{\mathrm{~d}^{3} \rho}=A(\sqrt{s}) \cdot e^{-\alpha \rho_{\mathrm{T}}}, \alpha \approx 6 /(\mathrm{GeV} / c)$
High p_{T} ("hard scattering"):

$$
E \frac{\mathrm{~d}^{3} \sigma}{\mathrm{~d}^{3} p}=B(\sqrt{s}) \cdot \frac{1}{p_{\mathrm{T}}^{n(\sqrt{s})}}
$$

Average рт:

$$
\left\langle p_{T}\right\rangle=\frac{\int_{0}^{\infty} p_{T} \frac{\mathrm{~d} N_{x}}{\mathrm{~d} p_{T}} \mathrm{~d} p_{T}}{\int_{0}^{\infty} \frac{\mathrm{d} N_{x}}{\mathrm{~d} p_{T}} \mathrm{~d} p_{T}} \approx \begin{aligned}
& \text { pretty energy-indepe } \\
& \text { for } \sqrt{ } \leqslant<100 \mathrm{GeV}
\end{aligned}
$$

Mean p_{t} increases with $\sqrt{ } s$

Increase of $\left\langle p_{T}\right\rangle$ with $\sqrt{ } s$ (most likely) reflects increase in particle production from hard parton-parton scattering

CMS, PRL 105, 022002 (2010) CDF, PRL 61, 1819 (1988)

m_{T} scaling in pp collisions

m_{T} scaling (early ref's):
Nucl. Phys. B70, 189-204 (1974)
Nucl.Phys. B120 (1977) 14-22
m_{T} scaling: shape of m_{T} spectra the same for different hadron species

$$
\text { example: } \frac{d N /\left.d m_{T}\right|_{\eta}}{d N /\left.d m_{T}\right|_{\pi^{0}}} \approx 0.45
$$

possible interpretation:
thermodynamic models
$E \frac{\mathrm{~d}^{3} n}{\mathrm{~d}^{3} p} \propto E e^{-E / T}$

$$
\rightarrow \frac{1}{m_{T}} \frac{\mathrm{~d} n}{\mathrm{~d} m_{T}} \propto K_{1}\left(\frac{m_{T}}{T}\right)
$$

RHIC/LHC:
m_{T} scaling (approximately) satisfied, different universal function for mesons and baryons
Do deviations from m_{T} scaling in pp at low p_{T} indicate onset of radial flow?
(1312.4230)

Theoretical modeling: General considerations

- Description of particle production amenable to perturbative methods only at sufficiently large p_{T} (so that a_{s} becomes sufficiently small)
- parton distributions (PDF)
- parton-parton cross section from perturbative QCD (pQCD)
- fragmentation functions (FF)
- Low-pt:
$E \frac{\mathrm{~d}^{3} \sigma}{\mathrm{~d}^{3} p}=\int \mathrm{PDF} \otimes \mathrm{pQCD} \otimes \mathrm{FF}$
 Need to work with (QCD inspired) models, and confront them with data
- e.g. Lund string model

Modeling particle production as string breaking (I)

by Yoichiro Nambu

1976

- Color flux tube between two quarks breaks due to quark-antiquark pair production in the intense color field
- String tension increases linearly with distance

Modeling particle production as string breaking (II)

- Lund model:

The basic assumption of the symmetric Lund model is that the vertices at which the quark and the antiquark are produced lie approximately on a curve on constant proper time

- Result: flat rapidity distribution of the produced particles

Modeling particle production as string breaking (III)

$$
\begin{array}{lll:l}
q \bar{q}^{\prime} \leftrightarrows q^{\prime} \\
q & q \bar{q}^{\prime} \longleftarrow & q^{\prime} \\
\hline
\end{array}
$$

In terms of the transverse mass of the produced quark ($m_{T, \mathrm{q}^{\prime}}=m_{T, \mathrm{q}^{\prime} \text { bar }}$) the probability that the break-up occurs is:

$$
P \propto \exp \left(-\frac{\pi m_{\perp q^{\prime}}^{2}}{k}\right)=\exp \left(-\frac{\pi p_{\perp q^{\prime}}^{2}}{k}\right) \exp \left(-\frac{\pi m_{q^{\prime}}^{2}}{k}\right)
$$

Result of the Schwinger equation

This leads to a transverse momentum distribution for the quarks of the form:

$$
\frac{1}{p_{T}} \frac{\mathrm{~d} N_{\text {quark }}}{\mathrm{d} p_{T}}=\text { const. } \cdot \exp \left(-\pi p_{T}^{2} / k\right) \quad \rightsquigarrow \quad \sqrt{\left\langle p_{T}^{2}\right\rangle_{\text {quark }}}=\sqrt{k / \pi}
$$

For pions (two quarks) one obtains: $\sqrt{\left\langle p_{T}^{2}\right\rangle_{\text {pion }}}=\sqrt{2 k / \pi}$
With a string tension of $1 \mathrm{GeV} / \mathrm{fm}$ this yields $\left\langle p_{T}\right\rangle_{\text {pion }} \approx 0.37 \mathrm{GeV} / \mathrm{c}$, in approximate agreement with data

Modeling particle production as string breaking (IV)

Convolution of the string breaking mechanism with fluctuations of the string tension described by a Gaussian give rise to exponential ρ_{T} spectra

Phys. Lett. B466, 301-304 (1999)
The tunneling process implies heavy-quark suppression:

$$
u \bar{u}: d \bar{d}: s \bar{s}: c \bar{c} \approx 1: 1: 0.3: 10^{-11}
$$

The production of baryons can be modeled by
quark-diquark string replacing the q-qbar pair by an quark-diquark pair

Collisions of hadrons described as excitation of quark-diquarks strings:

Part II: nucleus-nucleus collisions

Ultra-Relativistic Nucleus-Nucleus Collisions: Importance of Nuclear Geometry

- Ultra-relativistic energies
- De Broglie wave length much smaller than size of the nucleon
- Wave character of the nucleon can be neglected for the estimation of the total cross section

- Nucleus-Nucleus collision can be considered as a collision of two black disks

$$
\begin{aligned}
& R_{A} \approx r_{0} \cdot A^{1 / 3}, r_{0}=1.2 \mathrm{fm} \\
& \sigma_{\mathrm{inel}}^{\mathrm{A}+\mathrm{B}} \approx \sigma_{\mathrm{geo}} \approx \pi r_{0}^{2}\left(A^{1 / 3}+B^{1 / 3}\right)^{2}
\end{aligned}
$$

Participants and spectators. (I)

- $N_{\text {coll: }}$ number of (binary) inelastic nucleon-nucleon collisions (important for hard processes)
- $N_{\text {part: }}$ number of nucleons which underwent at least one inelastic nucleonnucleon collision (important for soft processes)

Participants and spectators (II)

semi-central collision

central collision

$$
\begin{array}{lll}
00 & N_{\text {part }}=2 & N_{\text {coll }}=1 \\
00000 & N_{\text {part }}=5 & N_{\text {coll }}=6 \\
\text { Pb-Pb cent. } & N_{\text {part }}=360 & N_{\text {coll }}=1500 \\
\text { p-Pb cent. } & N_{\text {part }}=16 & N_{\text {coll }}=15
\end{array}
$$

Example shows that for heavy ions (usually)
$\mathrm{N}_{\text {coll }}>\mathrm{N}_{\text {part }}$

Charged particle pseudorapidity distributions for different $\sqrt{ } \mathrm{SNN}_{\mathrm{NN}}$

Charged-particle Pseudorapidity Distributions: Comparison e+e-, pp, and AA

Multiplicity per participant higher in AA than in pp $e^{+} e^{-}$:
pseudorapidity along the thrust axis

AA and $\mathrm{e}^{+} \mathrm{e}^{-} \eta$ distributions strikingly similar

$\mathrm{d} N_{\mathrm{ch}} / \mathrm{d} \eta$ vs $\sqrt{S_{\mathrm{NN}}}$ in pp and central $\mathrm{A}-\mathrm{A}$ collisions

- d $N_{\text {ch }} / d n$ scales with s^{a}
- Increase in central A+A stronger than in $p+p$

Centrality dependence of $\mathrm{d} / \mathrm{Nch}_{\mathrm{ch}} / \mathrm{d} \mathrm{\eta}$

- d $N_{\text {ch }} / d n / N_{\text {part }}$ increases with centrality
- Relative increase similar at RHIC and the LHC: Importance of geometry!

Average p_{T} of pions, kaons, and protons in Au-Au@200 GeV and Pb-Pb@2.76 TeV

Nuclear stopping power (Au-Au at $\sqrt{ } S_{N N}=200 \mathrm{GeV}$)

Brahms, PRL 93:102301, 2004

Average rapidity loss:
Initial rapidity:

$$
y_{\mathrm{p}}=5.36
$$

Net baryons after the collision:

$$
\langle y\rangle=\frac{2}{N_{\mathrm{part}}} \int_{0}^{y_{p}} y \frac{d N_{B-\bar{B}}}{d y} d y
$$

Average rapidity loss:

$$
\langle\delta y\rangle=y_{p}-\langle y\rangle \approx 2
$$

Average energy per (net) baryon:

$$
E_{\mathrm{p}}=100 \mathrm{GeV}, \quad\langle E\rangle=\frac{1}{N_{\mathrm{part}}} \int_{-y_{p}}^{y_{\mathrm{p}}} \underbrace{\left\langle m_{T}\right\rangle \cosh y}_{E} \frac{\mathrm{~d} N_{B-\bar{B}}}{\mathrm{~d} y} \mathrm{~d} y \approx 27 \pm 6 \mathrm{GeV}
$$

Average energy loss of a nucleon in central Au+Au@200GeV is $73 \pm 6 \mathrm{GeV}$

Bjorken's formula for the initial energy density

Consider total energy in
slice at $z=0$ at time To $_{0}$

Assumptions:

- Particles (quarks and gluons) materialize at proper time to
- Position z and longitudinal velocity (i.e. rapidity) are correlated
- As if particles streamed freely from the origin
$\beta \gamma=\sinh (y)$
$z=\tau \sinh y$

$$
E_{T}=<m_{T}>\cdot N
$$

$\varepsilon=\frac{E}{V}=\left.\frac{1}{A} \frac{\mathrm{~d} E}{\mathrm{~d} z}\right|_{z=0}=\left.\left.\frac{1}{A} \frac{\mathrm{~d} E}{\mathrm{~d} y}\right|_{y=0} \frac{\mathrm{~d} y}{\mathrm{~d} z}\right|_{z=0}=\left.\frac{1}{A} \frac{\mathrm{~d} E}{\mathrm{~d} y}\right|_{y=0} \frac{1}{\tau}=\left.\frac{\left\langle m_{T}\right\rangle}{A \cdot \tau} \frac{\mathrm{~d} N}{\mathrm{~d} y}\right|_{y=0}$
$A=$ transverse area

$$
\varepsilon=\left.\frac{1}{A \cdot \tau_{0}} \frac{\mathrm{~d} E_{\mathrm{T}}}{\mathrm{~d} y}\right|_{y=0}, \quad \tau_{0} \approx 1 \mathrm{fm} / \mathrm{c}
$$

However, this formula neglects longitudinal work:

- dE/dy drops as a fct. of time
- Bjorken formula underestimates ε

Energy density in central Pb-Pb collisions at the LHC

$$
\begin{aligned}
\varepsilon= & \left.\frac{1}{A \cdot \tau_{0}} \frac{\mathrm{~d} E_{\mathrm{T}}}{\mathrm{~d} y}\right|_{y=0} \\
= & \left.\frac{1}{A \cdot \tau_{0}} J(y, \eta) \frac{\mathrm{d} E_{\mathrm{T}}}{\mathrm{~d} \eta}\right|_{\eta=0} \\
& \quad \text { with } J(y, \eta) \approx 1.09
\end{aligned}
$$

Transverse area:

$$
A=\pi R_{\mathrm{Pb}}^{2} \quad \text { with } R_{\mathrm{Pb}} \approx 7 \mathrm{fm}
$$

Central Pb-Pb at $\sqrt{ } \mathrm{SNN}^{\prime}=2.76 \mathrm{TeV}$:

$$
d E_{T} / d \eta=2000 \mathrm{GeV}
$$

Energy density:

$$
\begin{aligned}
\varepsilon_{\mathrm{LHC}} & =14 \mathrm{GeV} / \mathrm{fm}^{3} \\
& \approx 2.6 \times \varepsilon_{\mathrm{RHIC}} \text { for } \tau_{0}=1 \mathrm{fm} / \mathrm{c}
\end{aligned}
$$

Glauber modeling:

An interface between theory and experiment

Starting point: nucleon density

$$
\rho(r)=\frac{\rho_{0}\left(1+w r^{2} / R^{2}\right)}{1+\exp ((r-R) / a)}
$$

$w=$ "wine bottle" parameter

H. De Vries, C.W. De Jager, C. De Vries,

Nuclear charge-density-distribution parameters from elastic electron scattering,
Atomic Data and Nuclear Data Tables, Volume 36, Issue 3, 1987

Nucleus	A	$\mathrm{R}(\mathrm{fm})$	$\mathrm{a}(\mathrm{fm})$	w
\boldsymbol{C}	12	2.47	0	$\mathbf{0}$
\boldsymbol{O}	16	2.608	0.513	-0.051
$\boldsymbol{A} \boldsymbol{I}$	27	3.07	0.519	0
\boldsymbol{S}	32	3.458	0.61	0
$\mathbf{C a}$	40	3.76	0.586	-0.161
$\mathbf{N i}$	58	4.309	0.516	-0.1308
$\boldsymbol{C u}$	63	4.2	0.596	0
\boldsymbol{W}	186	6.51	0.535	0
$\boldsymbol{A} \boldsymbol{u}$	197	$\mathbf{6 . 3 8}$	$\mathbf{0 . 5 3 5}$	$\mathbf{0}$
$\boldsymbol{P b}$	208	6.68	0.546	0
\boldsymbol{U}	238	6.68	0.6	$\mathbf{0}$

Woods-Saxon parameters typically from e--nucleus scattering (sensitive to charge distribution only)

Difference between neutron and proton distribution small and typically neglected

Nuclear Thickness Function

side view:
transverse plane:

Projection of nucleon density on the transverse plane ("nuclear thickness fct."):

$$
T_{\mathrm{A}}\left(\vec{s}^{\prime}\right)=\int \mathrm{d} z \rho_{\mathrm{A}}\left(z, \vec{s}^{\prime}\right)
$$

(analogous for nucleus B)
Number of nucleon-nucleon encounters per transverse area element:

$$
\mathrm{d} T_{\mathrm{AB}}=T_{\mathrm{A}}(\vec{s}+\vec{b} / 2) \cdot T_{\mathrm{B}}(\vec{s}-\vec{b} / 2) \mathrm{d}^{2} s
$$

Nuclear Overlap function and the number of nucleon-nucleon collisions

Nuclear overlap function:

$$
T_{\mathrm{AB}}(\vec{b})=\int T_{\mathrm{A}}(\vec{s}+\vec{b} / 2) \cdot T_{\mathrm{B}}(\vec{s}-\vec{b} / 2) \mathrm{d}^{2} s
$$

Nuclear overlap function resembles integrated luminosity of a collider:

$$
N_{\text {coll }}(b)=T_{\mathrm{AB}}(b) \cdot \sigma_{\text {inel }}^{\mathrm{NN}}
$$

Or, more generally for a process with cross section $\sigma_{i n t}$:

$$
N_{\mathrm{int}}(b)=T_{\mathrm{AB}}(b) \cdot \sigma_{\mathrm{int}}
$$

Probability for an Inelastic A+B collision

Def's (different normalization of the thickness functions):

$$
\hat{T}_{\mathrm{A}}\left(\vec{s}^{\prime}\right)=T_{\mathrm{A}}\left(\vec{s}^{\prime}\right) / A \quad \hat{T}_{\mathrm{B}}\left(\vec{s}^{\prime}\right)=T_{\mathrm{B}}\left(\vec{s}^{\prime}\right) / B \quad \hat{T}_{\mathrm{AB}}(\vec{b})=T_{\mathrm{AB}}(\vec{b}) /(A B)
$$

We can then write:

$$
N_{\text {coll }}(b)=A B \hat{T}_{\mathrm{AB}}(b) \cdot \sigma_{\text {inel }}^{\mathrm{NN}} \quad p_{\mathrm{NN}}=\hat{T}_{\mathrm{AB}}(\vec{b}) \cdot \sigma_{\text {inel }}^{\mathrm{NN}}
$$

probability for a certain nucleon from nucleus A to collide with a certain nucleon from nucleus B

Probability for k nucleon-nucleon coll.:

$$
P(k, \vec{b})=\binom{A B}{k} p_{\mathrm{NN}}^{k}\left(1-p_{\mathrm{NN}}\right)^{A B-k}
$$

Probability for $k=0$ is $\left(1-p_{\mathrm{NN}}\right)^{A B}$. Thus:

$$
(1-x)^{n}=\exp (n \ln (1-x))
$$

$$
\stackrel{x \rightarrow 0}{\approx} \exp (-n x)
$$

$$
p_{\text {inel }}^{\mathrm{AB}}(\vec{b})=1-\left(1-\hat{T}_{\mathrm{AB}}(\vec{b}) \cdot \sigma_{\text {inel }}^{\mathrm{NN}}\right)^{A B} \underset{\text { Poisson limit of the binomial distribution }}{ } 1-\exp \left(-A B \hat{T}_{\mathrm{AB}}(\vec{b}) \cdot \sigma_{\text {inel }}^{\mathrm{NN}}\right)
$$

$\mathrm{d} \sigma / \mathrm{db}$ for $\mathrm{Pb}-\mathrm{Pb}$

Total cross section: $\quad \sigma_{\text {inel }}^{\mathrm{AB}}=\int_{0}^{\infty} \frac{d \sigma}{d b} d b \approx 784 \mathrm{fm}^{2}=7.84 \mathrm{~b}$

Number of Participants

Probability that a test nucleon of nucleus A interacts with a certain nucleon of nucleus B:

$$
p_{\mathrm{NN}, \mathrm{~A}}(\vec{s})=\hat{T}_{\mathrm{B}}(\vec{s}-\vec{b} / 2) \sigma_{\text {inel }}^{\mathrm{NN}}
$$

Probability that the test nucleon does not interact with any of the B nucleons of nucleus B:

$$
\left(1-p_{\mathrm{NN}, \mathrm{~A}}(\vec{s})\right)^{B}
$$

Probability that the test nucleon makes at least on interaction:

$$
1-\left(1-p_{\mathrm{NN}, \mathrm{~A}}(\vec{s})\right)^{B} \approx 1-\exp \left(-B p_{\mathrm{NN}, \mathrm{~A}}(\vec{s})\right)
$$

Number of participants:

$$
\begin{aligned}
N_{\text {part }}(\vec{b})= & N_{\text {part }}^{\mathrm{A}}(\vec{b})+N_{\text {part }}^{\mathrm{B}}(\vec{b}) \\
= & \int T_{\mathrm{A}}(\vec{s}+\vec{b} / 2) \cdot\left[1-\exp \left(-T_{\mathrm{B}}(\vec{s}-\vec{b} / 2) \sigma_{\text {inel }}^{\mathrm{NN}}\right)\right] \mathrm{d}^{2} s \\
& +\int T_{\mathrm{B}}(\vec{s}-\vec{b} / 2) \cdot\left[1-\exp \left(-T_{\mathrm{A}}(\vec{s}+\vec{b} / 2) \sigma_{\text {inel }}^{\mathrm{NN}}\right)\right] \mathrm{d}^{2} s
\end{aligned}
$$

$N_{\text {part }}$ vs Impact Parameter b

Glauber Monte Carlo Approach

- Randomly select impact parameter b
- Distribute nucleons of two nuclei according to nuclear density distribution
- Consider all pairs with one nucleon from nucleus A and the other from B
- Count pair as inel. n-n collision if distance d in $x-y$ plane satisfies:

$$
d<\sqrt{\sigma_{\text {inel }}^{\mathrm{NN}} / \pi}
$$

- Repeat many times: $\left\langle N_{\text {part }}(b)\left\langle N_{\text {coll }}\right\rangle(b)\right.$

Centrality selection: Forward and transverse energy

Example: Pb-Pb, fixed-target experiment (WA98, CERN SPS)

Both E_{T} and $E_{z d c}$ can be used to define centrality classes

Centrality Selection: Charged-Particle Multiplicity

- Measure charged particle multiplicity
- ALICE: VZERO detectors ($2.8<\eta<5.1$ and $-3.7<\eta<-1.7$)
- Assumption: 〈 $N_{\text {ch }\rangle(b) \text { increases monotonically with decreasing } b}$
- Define centrality class by selecting a percentile of the measured multiplicity distribution (e.g. 0-5\%)
- Need Glauber fit to define "100\%" (background at low multiplicities)

Energy dependence of charged particle multiplicity

How $\left\langle N_{\text {part }}\right\rangle,\left\langle N_{\text {coll }}\right\rangle$, and $\langle b\rangle$ are Assigned to an Experimental Centrality Class?

ALICE, arXiv:1301.4361v3

- Glauber Monte Carlo
- Find impact parameter interval
[b_{1}, b_{2}] which corresponds to the same percentile
- Average $N_{\text {part }}(b)$, $N_{\text {coll }}(b)$, etc over this interval
- Example:
$\mathrm{Pb}-\mathrm{Pb}$ at $\sqrt{ }{ }^{S_{N N}}=2.76 \mathrm{TeV}$
- $\sigma_{N n}($ inel $)=(64 \pm 5) \mathrm{mb}$

Centrality	$b_{\min }$ (fm)	$b_{\max }$ (fm)	$\left\langle N_{\text {part }}\right\rangle$	RMS	$($ sys. $)$	$\left\langle N_{\text {coll }}\right\rangle$	RMS	$($ sys. $)$	$\left\langle T_{\mathrm{AA}}\right\rangle$ $1 / \mathrm{mbarn}$	RMS $1 / \mathrm{mbarn}$	$($ sys. $)$ $1 / \mathrm{mbarn}$
$0-5 \%$	0.00	3.50	382.7	17	3.0	1685	140	190	26.32	2.2	0.85
$5-10 \%$	3.50	4.94	329.4	18	4.3	1316	110	140	20.56	1.7	0.67
$10-20 \%$	4.94	6.98	260.1	27	3.8	921.2	140	96	14.39	2.2	0.45
$20-40 \%$	6.98	9.88	157.2	35	3.1	438.4	150	42	6.850	2.3	0.23
$40-60 \%$	9.88	12.09	68.56	22	2.0	127.7	59	11	1.996	0.92	0.097
$60-80 \%$	12.09	13.97	22.52	12	0.77	26.71	18	2.0	0.4174	0.29	0.026
$80-100 \%$	13.97	20.00	5.604	4.2	0.14	4.441	4.4	0.21	0.06939	0.068	0.0055

