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Abstract

Our experiment aims to study the polaron scenario in an ultracold mixture of fermionic

lithium and bosonic caesium at a relatively high magnetic field of around 900G. This

requires precise imaging techniques, in order to reliably obtain relevant system pa-

rameters, such as the temperature. Employing low intensity absorption imaging for
6Li for this task comes with challenges in terms of mitigating potential noise sources,

most importantly photon shot noise and read out noise from the CCD camera. There-

fore, this thesis investigates a theoretical model for the signal-to-noise ratio of our

absorption imaging setup, resulting in finding the optimal imaging parameters, that

maximise the signal-to-noise ratio, while also satisfying limits due to the Doppler ef-

fect and a random walk. In addition, we perform a scan over the imaging parameters,

while determining the SNR, confirming these findings of our theoretical model. Fur-

thermore two improvements to the setup are presented. A fibre monitoring system,

that allows for tracking of the imaging pulses’ optical power and a two-frequency AOM

driver, which reduces thermalisation effects inside the AOM’s crystal by employing two

RF frequencies. We conduct several measurements regarding the driver’s characteris-

tics as well as long-term drifts in the optical power.



Zusammenfassung

Unser Experiment zielt darauf ab, in einem ultrakalten Gemisch aus fermionischem

Lithium und bosonischem Caesium, bei einem magnetisch Feld von ca. 900G, Polaro-

nen zu beobachten. Dazu erfordert es ein akkurates Abbildungssystem, um relevante

Systemparameter wie die Temperatur zuverlässig zu erfassen. Hierfür verwenden wir

für 6Li die Absorptionsbildgebung bei niedrigen Intensitäten. Daher untersucht diese

Arbeit ein theoretisches Modell für das Signal-Rausch-Verhältnis unseres Absorptions-

bildgebungsaufbaus, um optimale Parameter, wie die Intesität und Belichtungsdauer

zu finden, die das Signal-Rausch-Verhältnis maximieren und gleichzeitig Grenzen auf-

grund des Dopplereffekts und eines Random Walks einhalten. Darüber hinaus füh-

ren wir einen Scan über die Aufbauparameter durch und bestimmen so das Signal-

Rausch-Verhältnis für verschiedene Parameterkonfigurationen, und bestätigen damit

die Ergebnisse unseres theoretischen Modells. Darüber hinaus werden zwei Verbes-

serungen des Aufbaus vorgestellt. Eine optisch Faser mit eingebauter photo diode, die

Messungen der optischen Leistung der Laserpulse ermöglicht, und ein Zwei-Frequenz-

AOM-Treiber, der thermische Effekte im Kristall des AOMs durch die Verwendung von

zwei RF-Frequenzen reduziert. Wir führen mehrere Messungen zu den Eigenschaften

des Treibers sowie zu potentiellen Langzeitdrifts in der optischen Leistung der Pulse

durch.
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1. Introduction

The study of quantum many body physics explores emergent properties of many inter-

acting quantum particles, which often have no counterpart in classical systems. One

area of particular interest is the field of ultracold-atomic quantum gases. To bridge the

gap between quantum and classical regimes, theories like the polaron concept have

been formulated. Originally formulated by Lev Landau in 1933, the polaron is a single

impurity particle with a many-body background, forming a quasi-particle. Lev Lan-

dau described this in the context of an electron moving through a crystal lattice, that

attracts nearby ionic crystal cores. Hence the electron drags along a cloud of polari-

sation as it moves through the crystal. The resulting quasi-particle consisting of the

electron and its surrounding polarisation is called polaron. Other notable examples

include investigations involving 3He impurities immersed in a bosonic 4He bath and

the examination of the Kondo effect induced by localized magnetic impurities within

metals.

In ultracold-atomic quantum gases, the polaron scenario can be realised as minor-

ity atoms (impurities) immersed in a majority atom bath, with interactions tunable

by means of Feshbach resonances [1]. The designation of the quasi-particle as either

a Fermi or Bose polaron depends on the quantum statistics exhibited by the atoms

forming the surrounding bath. The first attractive Fermi polaron was realised with 6Li

atoms in 2009 [2]. Since then many other experiments successfully investigated the

Fermi polaron [3, 4]. In 2016 the first Bose polaron was realised [5, 6].

The experiment, this thesis was conducted with, aims to investigate the polaron sce-

nario in a mixture of fermionic lithium and bosonic caesium. This mixture is of partic-

ular interest, due to its high mass ratio of ∼ 22. This large mass imbalance enhances

the Efimov effect, which led to observations of a series of Efimov states [7]. Building

upon these investigations, delving into polaron physics is the next step. The polaron’s

ground state energy is strongly dependent on the temperature relative to the Fermi

temperature T/TF . Thus it is crucial to measure this parameter precisely, which is in our

case done by means of imaging the fermionic lithium cloud by employing absorption

imaging for this task.

The technique of absorption imaging serves as a fundamental tool in extracting phys-
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ical quantities from a cloud of cold atoms and is widely used [8, 9, 10]. It operates

based on the Beer-Lambert law, which describes how a cloud of atoms attenuates light

passing through it. This attenuation effect can be harnessed by detecting the inten-

sity of light from a laser passing through the atoms, by a CCD camera positioned be-

hind the atom cloud. By analysing the resulting shadow cast by the cloud, valuable

insights into the density profile of the atom cloud can be obtained. Especially due the

the low mass of lithium atoms, probing them presents challenges, such as detuning

due to the Doppler effect or image blurring caused by a random walk process. Such

effects highly depend on the imaging laser’s intensity, which led to imaging being per-

formed at relatively low intensities compared to the saturation intensity. However,

studies have shown that high-intensity absorption imaging offers improved reliability

[11]. The central goals of this thesis are therefore understanding and reducing possible

noise sources and determining the optimal imaging parameters for our setup.

Firstly, in Chapter 2, I’m going to give a brief overview of the absorption imaging tech-

nique as well as the dipole transition within the lithium level structure, that is used

for imaging. Following I will introduce a theoretical model for the signal-to-noise ratio

(SNR) of our imaging setup in Chapter 3. The aim here is to find the optimal imag-

ing parameters, that maximise the SNR, while also satisfying limitations due to the

Doppler effect and a random walk. Chapters 4 and 5 present two approaches to im-

prove our imaging setup. Afterwards chapter 6 deals with experimentally verifying the

findings of our noise analysis. Lastly, a conclusion is given in chapter 7.
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2. Absorption imaging

To ascertain relevant physical quantities from a cloud of 6Li atoms one typically wants

to measure the density distribution. This can be done using the absorption imaging

technique. For this approach the atom cloud is placed within a laser beam, appro-

priately tuned to a designated imaging transition within the lithium level structure.

Consequently, the atoms scatter photons and create a shadow behind the cloud, that

can be imaged onto a CCD camera. Modelling the atom-light interactions then permits

deducing the 2d density integrated along the line of sight.

2.1. Imaging transition

Let us first look at the level structure of 6Li. It has a single valence electron giving it

a total electronic spin of s = 1/2. Employing the central-field approximation to assess

all states reveals the two states with the lowest energy, the ground and excited state,

denoted as 2S and 2P respectively, which are illustratively depicted in the leftmost col-

umn of Figure 2.1. Notably, the transition between these two states manifests as the

so-called spectroscopic D-line. This D-line splits into two lines, the D1 and the D2

line, when taking coupling between the electronic spin of the valence electron and its

orbital angular momentum into account. Then the excited state splits into two fine

states 2P1/2 and 2P3/2, while the ground state has only one fine state 2S1/2. This fine

structure is schematically indicated in the middle column of Figure 2.1. The figure

also shows that the D1-line is the spectroscopic feature that results from 2S1/2 ↔ 2P1/2

transitions and the D2-line results from 2S1/2 ↔ 2P3/2 transitions. The energy splitting

between the two excited states is around 10 GHz [12], which is sufficiently far enough

for the two lines to not overlap. This is crucial, because for imaging we only want to

drive the D2-line transition, exciting the atoms into the 2P3/2, without exciting them

into the 2P1/2 state. Let us now also consider the hyperfine coupling of the nuclear

spin i = 1 to the total angular momentum j , which introduces a new quantum number

f corresponding to the operator F̂ = Î+ Ĵ. Here Î is the total nuclear angular momen-

tum operator and Ĵ is the total electron angular momentum operator. The quantum

number F can therefore take on values in integral steps in the range | j − i | ≤ f ≤ ( j + i ).
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Figure 2.1.: Level structure of 6Li with fine and hyperfine splitting at no magnetic field.
Figure taken and adapted from [13]

As shown in the right column of Figure 2.1 the 2S1/2 state and the 2P1/2 state there-

fore split into two hyperfine states with two possible values for the quantum number

f = 1/2, 3/2. The excited state 2P3/2 however splits into three states with quantum

numbers f = 1/2, 3/2, 5/2. Each state comprises (2 f +1) m f Zeeman sublevels, which

are degenerate at zero magnetic field, but split up as we apply an external magnetic

field.

Since we are only interested in the D2 line, let us focus on the ground- and the 2P3/2 ex-

cited state for the following. If a magnetic field is applied and the Zeeman interaction

is small compared to the hyperfine splitting, then the Zeeman effect can be treated as

a perturbation to the hyperfine states. In this case, the energy splitting goes linear with

the B-field.

∆EZ = µB

ħ g f mF B (2.1)

HereµB is the Bohr magneton, B the magnetic field and g f a Landé g-factor combining
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gi and g j

g f = g j
f ( f +1)− I (I +1)+ J (J +1)

2 f ( f +1)
+ gi

f ( f +1)+ I (I +1)− J (J +1)

2 f ( f +1)
(2.2)

Since the hyperfine energies for 6Li are small in comparison with other alkalis [13], the

linear Zeeman regime only holds for magnetic fields up to a few Gauss. Increasing the

magnetic field further leads to the Zeeman interaction getting more and more signif-

icant. This causes the energy levels to bend with increasing magnetic field, as can be

seen in figure 2.2.

(a) 2S1/2 (b) 2P3/2

Figure 2.2.: Magnetic-field dependence of the 2S1/2 ground state (a) and the 2P3/2 ex-
cited state (b) of 6Li. Figure taken and adapted from [13].

Eventually, it can no longer be treated as a perturbation and the quantum number f

ceases to be a good quantum number. This happens because the nuclear spin and

the angular momentum decouple. Finding the eigenstates, in this case, is usually done

numerically but can be done analytically for the ground state [14]. One finds the eigen-

states in the |m j mi 〉 basis

|1〉 = sinθ+ |1/2 0〉−cosθ+ |−1/2 1〉
|2〉 = sinθ− |1/2 −1〉−cosθ− |−1/2 0〉
|3〉 = |−1/2 −1〉
|4〉 = cosθ− |1/2 −1〉+ sinθ− |−1/2 0〉
|5〉 = cosθ+ |1/2 0〉+ sinθ+ |−1/2 1〉
|6〉 = |1/2 1〉

(2.3)
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where sinθ± and cosθ± are defined as

sinθ± = 1√
1+ 1

2 (Z±+R±)2

cosθ± =
√

1− sinθ2
±

Z± = (µn +2µe )
B

A2S1/2

± 1

2

R± =
√

Z 2
±+2

(2.4)

with the magnetic dipole constant A2S1/2
= 152.1368407 MHz [15], the neutron’s mag-

netic moment µn and the electron’s magnetic moment µe . Note that the states are

increasingly numbered according to their energy (see figure 2.2). As the magnetic field

increases the coefficients sinθ2
± approach 0, while cosθ2

± goes to 1, as can be seen in

figure 2.3

0 200 400 600 800 1000
B[G]

0.0

0.2

0.4

0.6

0.8

1.0

sin( + )2

sin( )2

cos( + )2

cos( )2

Figure 2.3.: Magnetic-field dependence of the coefficients of states |1〉 and |2〉 of the 6Li
ground state.
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This implies, that for high magnetic fields the ground states can be approximated as

|1〉→ |−1/2 1〉
|2〉→ |−1/2 0〉
|3〉 = |−1/2 −1〉
|4〉→ |1/2 −1〉
|5〉→ |1/2 0〉
|6〉 = |1/2 1〉

(2.5)

Similarly, we can describe the 2P3/2 excited state in the |m j mi 〉 basis. However, this

can only be done numerically since there is no analytic form for the different levels.

Analogous to the ground state, the nuclear spin and the angular momentum decouple

for an increasing magnetic field. But compared to the ground state this decoupling

already happens at much lower magnetic field strengths on the order of 1G [16]. Let

us now focus only on the three lowest lying excited states, denoted as |1′〉, |2′〉 and |3′〉
(see figure 2.2). For high magnetic fields, they can be expressed in the |m j mi 〉 basis as

found by [16]

|1′〉 = |−3/2 −1〉
|2′〉→ |−3/2 0〉
|3′〉→ |−3/2 1〉

(2.6)

For now, let us assume an infinitely strong magnetic field, making the approximations

in 2.5 and 2.6 exact. The possible dipole transitions are then relatively simple since the

selection rules only allow for transitions with ∆I = 0. Consequently, the three lowest

lying ground states |1〉, |2〉 and |3〉 get excited by the imaging laser to |3′〉, |2′〉 and |1′〉
respectively, which are the transitions our experiment is conducted with. Figure 2.4

schematically illustrates these relevant transitions.

Figure 2.4.: Imaging transition within the D2-line for all three ground states.
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When introducing a finite magnetic field, the possible transitions become significantly

more complicated, because both the ground and excited states have admixtures of

other states than the approximation. This causes the risk of the atoms transitioning

into states that are off resonant from our imaging laser and therefore don’t contribute

to the absorption signal anymore. The loss incurred due to these unobservable "dark

states" will be explored in detail in the following section.

2.2. Decay into dark states

Every ground and excited state has admixtures of multiple |m j mi 〉 states, except the

states |3〉 and |1′〉. Due to this the dipole transition between |3〉 and |1′〉, as can be seen

on the right-hand side of figure 2.4, is the only closed transition no matter in which

magnetic field. All the other transitions are no closed loops. To account for this we

consider the full expressions of the ground states, as described in eq. 2.3. Although also

the excited states |2′〉 and |3′〉 have admixtures as well, we still use the approximation

in eq. 2.6. This is a valid approach, since the excited states already approach their

approximation at much lower magnetic field values, such that for a magnetic field of

500G the state |2′〉 has admixture coefficients on the order of 10−6 [16]. Starting from

state |1〉 (|2〉) an atom gets excited into the state |3′〉 (|2′〉). From there the excited state

|3′〉 = |−3/2 1〉 decays back to the state |−1/2 1〉, which could either be in state |1〉 or |5〉.
State |2′〉 analogously decays to either the state |2〉 or |4〉.

|1〉→ |3′〉 = |−3/2 1〉→ |−1/2 1〉 = si nθ+ |5〉− cosθ+ |1〉
|2〉→ |2′〉 = |−3/2 0〉→ |−1/2 0〉 = si nθ− |4〉− cosθ− |2〉

(2.7)

If the atom decays into the states |4〉 or |5〉 depending on the excited state it was in, it

no longer contributes to the absorption signal. The probabilities of this happening in

each cycle are

p |1〉
loss = |si nθ+|2

p |2〉
loss = |si nθ−|2

(2.8)

Since si nθ± depends on the magnetic field according to eq. 2.4, the loss probabilities

decrease with increasing magnetic field, as can be seen in figure 2.5. This implies, that

the imaging loops for states |1〉 and |2〉 can be closed by increasing the magnetic field.
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Figure 2.5.: Probability of decay into dark states. Given that the imaging transitions for
both states |1〉 and |2〉 are not closed, the excited states |3′〉 and |2′〉 may
decay into states |5〉 and |4〉, respectively. These states no longer scatter
photons and thus do not contribute to the imaging signal.

Our experiment is conducted at magnetic fields around 890G, at which the loss proba-

bilities become
p |1〉

loss = 0.17%

p |2〉
loss = 0.20%

(2.9)

Since these probabilities are per cycle, the probability of the atom decaying into a dark

state during the whole exposure time depends on the number of scattered photons

during that time. Depending on the imaging intensity and the exposure time, the num-

ber of scattered photons are on the order of 20 (see Chapter 3.1 for details). Therefore

the probabilities of losing an atom to a dark state at some point during the exposure

time are
p |1〉

tot al l oss = 3.4%

p |2〉
tot al l oss = 3.9%

(2.10)

Considering that an atom will contribute to the absorption signal up until it decays into

a dark state means that the loss in the absorption signal is even lower than the total loss

probabilities. Therefore the effect of signal reduction due to a loss to dark states will be

neglected in this work. But it needs to be kept in mind especially when working with

a weak magnetic field. Before turning to the noise analysis, I want to introduce the

Beer-Lambert law and its high-intensity correction.
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2.3. Beer-Lambert law

The light from a laser, with the intensity I , propagating along the z direction through

a cloud of atoms is attenuated due to photon scattering. This attenuation is described

by the Beer-Lambert law:

d I (x, y, z)

d z
=−n3D (x, y, z)σabs I (x, y, z) (2.11)

where n3D is the cloud’s density distribution and σabs the absorption cross-section.

Employing this attenuation by imaging the intensity profile behind the cloud onto a

CCD camera is called absorption imaging. If the laser intensity approaches the atoms’

saturation intensity, eq. 2.11 is modified to

d I (x, y, z)

d z
=−n3D (x, y, z)

σabs

1+ s +δ2
I (x, y, z) (2.12)

with the saturation parameter s = I
Isat

, where Isat (25.4 W
m2 in the case of 6Li) is the sat-

uration intensity. Additionally eq. 2.12 accounts for a possible detuning of the probe

laser δ= ωL−ω0
Γ/2

, where ωL , ω0 and Γ are the laser’s angular frequency, the resonant fre-

quency and the natural linewidth. Let us now define the probe’s intensity before the

cloud Ii n(x, y) = I (x, y, z = −∞), after the cloud Iout (x, y) = I (x, y, z =∞), the column

density n2D (x, y) = ∫ ∞
−∞ n3D (x, y, z)d z, the transmittance Tabs(x, y) = Iout (x,y)

Ii n (x,y) and the

optical density OD(x, y) = σabsn2D . From eq. 2.12 we then find the optical density to

be

OD(x, y) =−(1+δ2)l og
(
Tabs(x, y)

)+ s(1−Tabs(x, y)) (2.13)

The second term can be neglected in the case of a relatively low probe intensity in com-

parison with Isat , but for intensities on the order of Isat or higher this correction term

becomes relevant.

For absorption imaging one typically acquires three images, measuring the CCD counts

C (x, y). One absorption image Cabs(x, y) with the atoms and the probe laser on. One

division image Cdi v (x, y) without the atoms and the probe beam on and a background

image Cbac (x, y) without atoms and probe off. The absorption and division images

are then corrected by means of subtracting the background counts. In this way, any

background stray light is removed.

Cout (x, y) =Cabs(x, y)−Cbac (x, y)

Ci n(x, y) =Cdi v (x, y)−Cbac (x, y)
(2.14)
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Given that C ∝ I , eq. 2.13 can then be written in terms of CCD counts as

OD(x, y) =−(1+δ2)log

(
Cout (x, y)

Ci n(x, y)

)
+ Ci n(x, y)−Cout (x, y)

χsatτ
(2.15)

Note that here we assumed Csat = χsat ·τ to be linear in the exposure time τ, with a

time-independent part χsat . This factor needs to be experimentally calibrated, which

will be done in Chapter 6.
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3. Noise analysis

Employing a CCD camera for recording absorption imaging signals introduces various

noise sources that depend on the imaging parameters such as the relative probe inten-

sity s and the exposure time τ. In order to find the optimal imaging parameters en-

suring the highest possible signal-to-noise ratio, this chapter undertakes a theoretical

investigation of the influence of these imaging parameters on the signal-to-noise ratio.

First, two limitations on the imaging parameters due to photon recoil are introduced

in the following sections.

3.1. Doppler shift

During the imaging process, the atoms scatter multiple photons and for each photon

they obtain a momentum kick in the propagation direction, gaining a recoil velocity

vr ec = ħk
m per absorbed photon. With the probe laser’s wavenumber k = 2π

λ
, a wave-

length ofλ= 671nm and a mass of m = 9.988·10−27kg this recoil velocity turns out to be

vr ec = 9.89 cm
s for 6Li. Especially due to lithium being extremely light, this recoil veloc-

ity is rather high in comparison with other atoms and can therefore not be neglected.

Starting with the probe laser on resonance with the imaging transition, each recoil in-

duces a detuning, due to the Doppler effect. So during the entire imaging pulse, the

atoms acquire more and more detuning as they scatter multiple photons. The time it

takes for the atoms to reach a certain detuning depends on the saturation parameter

s, because they scatter more photons for higher probe intensities, leading to a faster

accumulation of detuning. Let us define a detuning per photon recoil relative to half

the natural linewidth δD [17]

δD = vr ec k

Γ/2
(3.1)

where k is the probe laser’s wavenumber and Γ the natural linewidth of the atomic

transition. The total detuning δ as a function of time t is then

δ(t ) = Nsc (t )δD (3.2)
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with Nsc (t ), the number of scattered photons after time t . The scattering rate Rsc (t ) is

dependent on the detuning as

Rsc (t ) = Γ
2

s

1+ s +δ(t )2
(3.3)

which shows that over time as the detuning increases, the atoms will scatter fewer pho-

tons. Together with eq. 3.2 one obtains a differential equation for Nsc (t ), similar to the

approach in [18]
d

d t
Nsc (t ) = Rsc (t ) = Γ

2

s

1+ s +Nsc (t )2δ2
D

(3.4)

This equation can be solved analytically by separating the variables and assuming that

at the initial time t = 0 the atoms start with no detuning δ (t = 0) = 0. The full solution

can be found in the appendix A.1, while figure 3.1, shows this solution for a range of

saturation parameters spanning from 0.1 to 2.

Let us now introduce a limitation to keep the Doppler shift’s impact low. We simply

force that for the imaging parameters 1+ s > δ (τ)2 holds, suppressing the influence of

δ in eq. 2.12, which gives us a limit for the exposure time, given a saturation parameter.

This limit is plotted as a black line in figure 3.3 with the area under this curve satisfying

this limit.
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Figure 3.1.: Time dependence of the number of scattered photons per atom for differ-
ent imaging intensities, calculated analytically from eq. 3.4. The green sec-
tions satisfy the Doppler limit, while the red sections do not.

Neglecting the detuning induced by the Doppler effect, we underestimate the number
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of atoms from the obtained imaging signal, which could be corrected afterwards. Alter-

natively one could adjust the probe laser’s frequency, such that it is resonant with the

atomic transition frequency at all times [19]. Assuming the laser frequency is always

resonant with this technique means that the scattering rate as well as the atoms’ ac-

celeration is constant. Consequently, the laser frequency needs to be changed linearly

with time to compensate for the Doppler detuning.

3.2. Random walk

This chapter addresses the problem of blurring due to the movement of the atoms on

the object plane. The excited states of 6Li are not stable, with a lifetime of 27.102 ns

[20]. This means around 27.102 ns after absorbing a photon the atoms decay back to

the ground state and emit another photon in isotropic directions, giving them a mo-

mentum kick. Due to the isotropic property of the spontaneous emission of photons,

the atoms undergo a random walk in momentum space, similar to the Brownian mo-

tion of microscopic particles. The root mean square velocity vr ms resulting from this

random walk [21] is

vr ms(t ) =
√

Nsc (t )vr ec (3.5)

with Nsc the number of scattered photons and vr ec the recoil velocity as described

above. Integrating this velocity over the whole exposure time gives us the root mean

square displacement rr ms on the object plane.

rr ms =
∫ τ

0

√
2

3
vr ms(t )d t (3.6)

Note that this factor of
√

2
3 results from the fact that we are only interested in the dis-

placement on the object plane, which is perpendicular to the direction of the prop-

agating laser. Movement along the direction of the laser doesn’t cause the atoms to

change pixels and is therefore not relevant in this case. In figure 3.2, this displacement

is plotted against the exposure time for different saturation parameters.
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Figure 3.2.: Time dependence of the atoms’ displacement after a random walk on the
object plane for different imaging intensities, calculated numerically from
eq. 3.6. Above the dashed line, the displacement is larger than the pixels,
which causes blurring on the image.

To restrain the influence of this random walk, we introduce an upper limit for the dis-

placement rr ms

rr ms < Lpi x (3.7)

where Lpi x = 1.86 µm is the size of the visual field for one camera pixel at the position

of the atoms. From eq. 3.7 we again obtain a limit for the exposure time given a cer-

tain saturation parameter, which we compute numerically. In Figure 3.3, this limit is

represented by a blue line, with the area beneath the curve satisfying it.

3.3. Optimal imaging parameters

In order to find the optimal imaging parameters, which maximise the OD’s signal-to-

noise ratio, while also satisfying the limitations described in the two sections above, we

introduce a theoretical model for the SN R, following [17]. The SN R is defined as the

ratio between the OD and its standard deviation σOD .

SN R = OD

σOD
(3.8)
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It’s useful to have the transmission Tabs as a function of the OD , s and the detuning δ,

which we find by inverting eq. 2.15 to be

Tabs =
(1+δ2)

s
W

( s

1+δ2

1+δ2√
e s−OD

)
(3.9)

with W ( ) denoting the Lambert function. Note that the δ is time-dependent as it is

proportional to Nsc shown in figure 3.1. Following from eq. 2.15 and using standard

error propagation we find the OD’s variance to be

σ2
OD = (1+ s +δ2)2

(
σCi n

〈Ci n〉
)2

+ (1+ sTabs +δ2)2
(
σCout

〈Cout 〉
)2

(3.10)

with 〈Ci n〉 and 〈Cout 〉 being the mean pixel-wise counts on the division image and the

absorption image, respectively. Assuming Poissonian noise, we find

〈Ci n〉 = sNsatGCC D

〈Cout 〉 = sNsat TabsGCC D

(3.11)

The parameter GCC D characterises the CCD camera’s gain, which converts the num-

ber of photo electrons (PEs) to counts. However, as this factor ultimately cancels out,

its exact value becomes less relevant. Furthermore, we introduced the number of PEs

Nsat accumulated in the exposure time for I = Isat .

For our theoretical model, we consider only the two most dominant noise sources in

our system, which are photon shot noise and read out noise [22]. By photon shot noise

we mean statistical fluctuations in the number of photons striking the CCD pixels [23],

which is a property of the light field itself, rather than an issue of photodetection. To

this end, we assume photon shot noise to be Poisson distributed [23], which leads to

the variance of impinging photons to be equal to the mean value. The second noise

component of importance, read out noise, is a combination of various noise sources

that arise from reading out the collected photons [24]. Typically the major contribution

to read out noise stems from an on-chip preamplifier and this noise is added uniformly

to every pixel. Since the read out procedure is the same for every image, we assume this

noise to be independent of the imaging parameters. In the case of our Andor camera

it is σ2
RON = 19.3 e−/px (see appendix A.2), which we add to the photon shot noise ac-

cording to Gaussian error propagation. We therefore find the variance of the measured

counts to be
σ2

Ci n
= (sNsat +2Nback )G2

CC D +2σ2
RON G2

CC D

σ2
Cout

= (sNsat Tabs +2Nback )G2
CC D +2σ2

RON G2
CC D

(3.12)
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where Nback are the mean background PEs. Note that the factors of 2 emerge from the

fact, that Ci n and Cout are composed of two images as described in eq. 2.14. Inserting

this into eq. 3.10 we find an expression for the OD’s standard deviation as a function of

the OD itself, s and time t , which we average over the exposure time τ to find the mean

noise to be

σOD = 1

τ

∫ τ

0

√
σ2

OD d t (3.13)

Together with eq. 3.8 we can now numerically compute the signal-to-noise ratio for

various imaging parameters. In figure 3.3 I show the signal-to-noise ratio in a relevant

parameter space for an OD of 1. It additionally displays the limits discussed in the

previous two chapters. The Doppler limit in black and the random walk limit in blue.
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Figure 3.3.: Signal-to-noise ratio for an OD = 1 as a function of the imaging parameters
saturation s and exposure time τ. The imaging parameters are limited due
to a random walk from spontaneous emissions of photons and the Doppler
detuning. All parameter configurations below both curves (blue and black)
are within those limits. The current setting is marked by the green dashed
lines and the 6 dots along the boundary of the two limits numbered 0 to 5
correspond to the curves in figure 3.4

As intuitively anticipated, parameter configurations closest to the limits exhibit the

highest signal-to-noise ratio. Now arises the question of whether it is worthwhile to

17



employ higher imaging intensities compared to the previously used setting (highlighted

in green in Figure 3.3). To address this query, we compare the theoretical SN R for our

previously employed parameters with a series of six parameter configurations posi-

tioned along the boundary of the two limits. These configurations, numbered from

0 to 5 in ascending order of saturation s, are depicted as dots in Figure 3.3. For each

configuration, we illustrate the SN R as a function of the OD , as depicted in Figure 3.4.
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1: s=0.23, =7.32 s
2: s=0.42, =5.83 s
3: s=0.76, =4.43 s
4: s=1.38, =3.83 s
5: s=2.51, =3.77 s
current setting s = 0.12, = 7 s
experimental data

Figure 3.4.: Signal-to-noise ratio as a function of the OD for a set of imaging parameter
configurations. The dashed green line is the result of numerically comput-
ing the SNR with the currently used imaging parameters. Shown as black
dots is experimental data. The most dominant error here is the error from
computing the ODs standard deviation from small sets of datapoints (down
to 400 points). Especially for higher optical densities, this can lead to a rel-
ative error of up to 10%. The curves numbered from 0 to 5 correspond to
the points in figure 3.3

Furthermore, Figure 3.4 presents the outcomes derived from experimental data. To

obtain these results, we captured multiple images utilising parameters s = 0.12 and

18



τ = 7µs across diverse dense clouds. Subsequently, we computed the OD using the

Beer-Lambert law and fitted each image using a two-dimensional Fermi density dis-

tribution function. The fitting process was conducted employing the fitting routine

implemented by [22]. Following the fitting procedure, we calculated pixel-wise differ-

ences between the fit and the raw data, segmenting them into 12 bins based on the fit-

ted OD value. For each bin, we obtained the standard deviation and its error by means

of bootstrapping. For that, we create 1000 boot samples for every bin by randomly se-

lecting pixels within that bin. We then compute the mean of the standard deviation

of every boot sample and the standard error. The error of the signal-to-noise ratio can

then be determined using Gaussian error propagation. Since the images contain fewer

pixels the higher the OD value, the SNR’s standard error tends to increase for higher

OD values.

Looking at figure 3.4 and comparing the theoretically expected curve (dashed green)

with the experimental data points it appears that our theoretical model overestimates

the SNR by a factor of approximately 1.2. This has at least two reasons. Firstly, our

model only considers photon shot noise and readout noise, which are indeed the most

significant noise sources in our system. However, there are additional noise sources

that we have not taken into account. For example, dark current noise, which stems

from the creation of electron-hole pairs in a pixel due to thermal excitations also con-

tributes to the total noise. Secondly, the saturation parameter s = 0.12 could be inac-

curately calibrated and overestimated, which would lead to exactly the systematic shift

we see.

Finally, we want to identify the optimal imaging parameters for our setup, which max-

imise the SNR. Based on figure 3.4 we conclude that for our setup saturation values

ranging between s = 0.42 and s = 0.76 coupled with exposure times spanning from

τ = 5.8 µs to τ = 4.4 µs, corresponding to the curves denoted as 2 and 3 respectively,

exhibit the highest SNR within the relevant OD range up to an OD of 1. Given that

our experiment isn’t expected to extend beyond an optical density of 1, increasing the

imaging intensity above s = 0.76 would not only yield no additional benefits but might

even be counterproductive.

Before we are going to test if these findings can be experimentally verified in chapter 6,

we put some effort in enhancing the repeatability of the experimental setup. We start

by presenting a implemented power monitoring system, designed to track the imaging

pulses, in the following chapter.
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4. Fibre monitoring

This chapter gives a summary of a power monitoring setup we implemented. It aims to

track the imaging pulses’ optical power, which is crucial especially when imaging with

high intensities and can be helpful for example to explain possible drifts over time. Fur-

thermore, it can be used to actively stabilise the optical power and to rule out sources

of errors that might occur in the experiment. Instead of setting up a free-space photo-

diode, we implemented a fibre with an already built-in photodiode [25]. This fibre has

an optical tap built into the fibre core, which directs 1% of the light passing through

the fibre from the core to the cladding surface where it can be directly monitored with

a silicon photodiode. This makes setting up very easy since no additional optical com-

ponents are required, except the fibre.

Reading out the photodiode’s signal is relatively simple. The photodiode generates a

current proportional to the laser power, which needs to be transformed into a voltage

to be measured. Hence we use a combination of a transimpedance amplifier, that per-

forms exactly this conversion and a buffer amplifier, which amplifies the voltage signal

further to a reasonable range. Moreover, the buffer amplifier consist of two stages, from

which the second stage is optional, which means depending on the strength of the sig-

nal one can choose between a channel with a gain of 1 or one with a gain of 50.

Before the fibre was installed into the experimental setup, we performed various test

measurements, most importantly one regarding the photodiode’s frequency behaviour,

in which we modulated the laser power that was coupled into the fibre, using an AOM,

with frequencies ranging from 1kHz up to 10MHz. We observed a decrease in the am-

plitude of the modulated signal for increasing frequencies, as can be seen in figure 4.1.

Note that the y-axis is the relative amplitude in dB with the amplitude V0 at 1kHz as

a reference. It is unclear what exactly causes the slight dip at around 20kHz, but it

is probably some measurement error unrelated to the actual frequency behaviour of

the photodiode. For frequencies higher than 1MHz the signal drops significantly and

reaches a −3dB decrease at around 8MHz. This indicates that either the photodiode or

the amplifiers are not fast enough for such high frequencies. However since we do not

intend to use pulses shorter than 1µs, corresponding to a frequency of 1MHz this does

not affect the pulse monitoring.
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Figure 4.1.: Bode magnitude plot for the inline photodiode and amplifier. A -3dB drop
(dashed line) is reached at around 8MHz.
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5. Dual Tone AOM

In our imaging setup, the imaging laser pulses are generated by an acusto-optic modu-

lator (AOM). This is done by only using the first order diffracted beam. Pulses can then

be generated by switching the radio-frequency (RF) power, driving the AOM, on and

off. Figure 5.1 illustrates the integration of the AOM into the optical setup.

Figure 5.1.: Optical setup of the AOM within the experiment. For the z-imaging fibre,
a fibre with an integrated photodiode is employed, enabling tracking of
power during the imaging pulses. It’s worth noting that the photodiode
Ch2 is exclusively utilised for testing purposes and is removed afterwards.

Having constant optical power during imaging pulses and also over longer time scales

is crucial to take reliable absorption images but thermal effects inside the AOM’s crys-

tal, due to changing the power in the crystal, lead to beam pointing instability up to
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1mrad [26]. Because the beam after the AOM is coupled into a fibre, this pointing insta-

bility results in a bad coupling efficiency and fluctuating optical power. This chapter

therefore addresses this problem and presents a scheme, which aims to compensate

these thermal effects.

5.1. Setup for driving the AOM

The approach described in [26] for an AOM driver aims to mitigate thermal effects

within the AOM’s crystal by maintaining constant RF power within the AOM. To achieve

this, the AOM is driven with two frequencies. The primary frequency f1, utilised for

generating pulses, directs only the first-order diffracted beam into a fibre. The sec-

ondary frequency f2 is adjusted in tandem with the primary frequency to ensure that

the RF power remains constant. This ensures, that the AOM remains thermally sta-

bilised. It’s worth noting that beams diffracted by the secondary frequency are blocked

since its purpose is solely to maintain constant power, and the resulting beams are not

utilised.

When driving the AOM with two frequencies, we expect various differently diffracted

beams. In contrast to an AOM driven with a single frequency, where one expects beams

of the 0th, first, second, and so forth orders, employing two frequencies introduces ad-

ditional beams arising from the beating frequencies of the two RF signals. For instance,

beams corresponding to frequencies f2 − f1 or 2 f1 − f2 are expected to emerge. Figure

5.2 illustrates a few of these beams around the 0th and first order beams.

Figure 5.2.: Diffracted beams by an AOM driven by two RF frequencies. This figure is
taken and adapted from [26]. The authors used a TeO2 AOM with approx-
imately the same power for both frequencies to create the image shown
on the right-hand side. While multiple beams are generated, all will be
dumped except the first order beam of f1, which is coupled into a fibre.
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In our experiment, only the first order beam of f1 will be coupled into a fibre and used

for the imaging pulses. This means we need to ensure, that this first order beam is spa-

tially separated and does not overlap with any of the other beams, which is done by

having enough space, in our case 45cm, between the AOM and the fibrecoupler and

choosing the RF frequencies far enough from each other. Since the diffracted beams

displacement is approximately proportional to the corresponding RF frequency, we

aim to separate f1 and f2 as far from each other as possible. This ensures maximal

separation between the two first-order beams. On the other hand, both frequencies

should be well within the AOM’s bandwidth, otherwise, most of the RF power would

be reflected by the AOM, which could potentially damage the electronic setup of the

AOM driver. The AOM’s bandwidth was determined by measuring the reflected sig-

nal with the help of a R&S ZVL Network Analyser (see appendix A.4 for details). In the

end, choosing the two frequencies is always a trade-off between separating the beams

far enough and keeping the RF frequencies within the AOM’s bandwidth. Addition-

ally we had some trouble with oscillating optical pulse power for some frequencies,

which will be discussed in section 5.3. Ultimately we decided the two frequencies to

be f1 = 110 MHz and f2 = 77.7 MHz.

Let us now discuss the AOM driver’s setup, schematically illustrated in figure 5.3. The

optical pulse’s power is regulated through an external voltage ranging from 0V to 5V

applied to an Arduino. The Arduino then uses a lookup table for the output power

and a function approximating the AOM’s resonance curve to calculate the power ra-

tio of the two frequencies and outputs 3 voltages controlling the RF power. One for the

main frequency, corresponding to the desired optical power and two for the second fre-

quency, from which one is used during the pulses, while the other remains active out-

side the pulses. Since the Arduino lacks a built-in digital-analog converter, it can only

output a pulse width modulated signal, which is why a low pass filter for each output is

needed. After the low pass filters, the signal passes through a universal driver for each

frequency, that adjusts the dynamic range to match the subsequent component, the

variable gain amplifiers. Here the output signals of the VCOs are amplified/attenuated

before being sent to a combiner, that combines the two signals. Finally the signal is

amplified and sent to the AOM. Controlling the pulses is done with an external TTL

signal, which switches the main frequency on and off and switches between the two

power control voltages of the second frequency. As a result, when switching the TTL

signal from low to high, the main frequency is switched on and the power of the second

frequency is adjusted to maintain constant power. Most of the components are e-lego

components manufactured by the workshop of the institute, but a full list of all parts is

given in appendix A.3.
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Figure 5.3.: Setup for driving an AOM with two frequencies. To keep the power inside
the AOM’s crystal constant, additional to the main RF frequency a second
frequency is applied, which compensates for changes in the power of the
main frequency. Each RF signal is separately generated by a VCO, on which
the frequency is set by a constant control voltage. The power is controlled
by an Arduino and set by two variable gain amplifiers. Finally, the two sig-
nals are combined, amplified and sent to the AOM.

5.2. Stability of long pulses

As a proof of concept, the first measurements we did were 20s pulses with and with-

out the secondary frequency, to compare the thermalisation process. The results are

shown in figure 5.4.

One sees, that without the second frequency (blue) it takes at least 20s until a steady

state is reached. In comparison, with the second frequency reaching the steady state

is much faster and the pulse’s power starts closer to it. This indicates, that the two-

frequency method works as intended and the AOM is constantly thermalised when

using the second frequency. However, still with the two frequencies a small thermali-

sation effect can be seen, which can have multiple reasons. Firstly, the calibration of

the RF power could have a systematic error, which would lead to a small change in the

power, when switching pulses. Due to this, the AOM’s crystal would have to thermalise

to the new power again leading to the slight increase in optical power we observe. Sec-

ondly the measurement of the AOM’s bandwidth could have a systematic error leading

to the Arduino calculating the RF power wrong. This would have the same effect as an

error in the calibration. Lastly, the timing between switching the main RF signal and

the second one could be slightly off. Although we use the same TTL signal for both,
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there is still a small difference in the time the change reaches the AOM, because the

TTL signal is applied at different parts of the circuit, as can be seen in figure 5.3. How-

ever, this time difference is estimated to be on the order of 10 ns and can therefore be

neglected.

Figure 5.4.: Optical power monitored behind the AOM (Ch1 in Fig. 5.1) during a 20s
pulse (green section). The blue curve was measured without the second
frequency and it shows an increase of the power by 400% across 20 seconds
due to thermal effects. With the second frequency, this increase is reduced
to 7%.

An additional improvement to the setup could involve monitoring both the RF power

at the amplifier’s output as well as the reflected part. This approach would enable the

active stabilisation of RF power within the AOM’s crystal, further enhancing the pulse’s

stability.

5.3. Stability of short pulses

In this section, I’m going to present results from measuring the optical power of short

pulses at half of the maximum power. This means the RF power inside the AOM’s crys-

tal is equally distributed among the two frequencies. Figure 5.5 shows such a pulse for

two different second frequencies, where the power was measured behind the imaging

fibre (Ch2 in figure 5.1).
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Figure 5.5.: 10µs pulses at half the maximum power for different second AOM frequen-
cies recorded behind the z-imaging fibre (Ch2 in figure 5.1). Both pulses
were generated with the main AOM frequency at f1 = 110MHz but with dif-
ferent second frequencies. The pulse generated with f2 = 82.0MHz (red)
clearly shows oscillatory behaviour with a frequency of 1.8MHz, while the
one with f2 = 77.7MHz (blue) does not.

As can be seen the optical power during the pulse oscillates with a frequency of approx-

imately 1.8MHz, when setting the second frequency to f2 = 82.0MHz. Initially potential

overlapping of the two first order beams were suspected to be the source of this oscil-

lation, but this could be ruled out by increasing the distance between the AOM and

the fibre coupler to ensure the two first order beams do not overlap. Unfortunately the

exact source remains unclear, but we suspect the harmonics of the two RF frequencies

to generate this beating phenomenon.

Since maintaining constant optical power throughout the pulse is crucial for reliable

imaging signals, a practical workaround solution was implemented by changing the

second frequency to f2 = 77.7MHz. While this does not completely resolve the issue, it

shifts the frequency at which the power oscillates to be slow enough for it not to affect

pulses on short timescales (on the order of 10µs), as demonstrated in figure 5.5.
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5.4. Long-term drifts

Finally, we sought to observe any potential long-term drifts of the pulse’s optical power.

To accomplish this, we conducted 10µs pulses every 10s over a duration of 16 hours and

measured the optical power at various points along the beam path. Therefore a pellicle

beamsplitter was introduced into the beam path before the AOM, which reflects about

30% of the beam onto a photodiode, making it possible to observe the optical power

before the AOM as a reference. Furthermore, we recorded the power between the AOM

and the z-imaging fibre, inside the z-imaging fibre and behind it. Behind the fibre we

additionally placed a polarising beam splitter and a photodiode in each of the two re-

sulting beams to also track potential drifts in the polarisation. The results are shown in

A.5

Firstly, we observe drifts of the power of approximately 10% regardless of the measure-

ment point along the beam path. Thus these drifts are not an issue of the AOM but

rather of the laser and laser locking. Secondly, we noted contrary fluctuations in the

two photodiodes behind the fibre, indicating drifts in the polarisation. This stems from

misalignment between the polarisation before the fibre and the fibre axis. After a care-

ful alignment, the power fluctuations due to this could be mitigated to a level of about

5%. Lastly we find, that the power measured by the built-in photodiode inside the fi-

bre and the one behind the fibre are very well correlated, as expected. This allows for

an active stabilisation of the pulses using the signal of the fibre photodiode. Although

the implementation of this stabilisation method falls beyond the scope of this thesis, it

represents a crucial step towards improving power stability in future endeavours.
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6. Experimental results

From chapter 3 we have gained a theoretical understanding of the signal-to-noise ratio

as a function of the imaging parameters, the saturation parameter s and the exposure

time τ. We additionally found a range of parameter configurations which optimise

the SNR while satisfying certain limits. In this Chapter we aim to experimentally ver-

ify these theoretical findings. We therefore vary the imaging parameters, take multi-

ple images of a thermal 6Li cloud for every parameter configuration and calculate the

signal-to-noise ratio. The chapter will proceed as follows: Firstly, a description of the

measured data will be provided. Secondly, the methodology for calibrating the imaging

intensity will be elucidated. Subsequently, I will present a scheme for calculating the

signal-to-noise ratio and lastly, the obtained results will be showcased and compared

to the theoretical expectation.

Before any images were taken we performed a rough calibration of the saturation pa-

rameter. Later this is done much more precisely using the images but as a first esti-

mate, it’s enough to measure the total beam power P using a powermeter for various

input voltages on the Arduino of the two frequency AOM, which sets the pulse’s optical

power. The saturation s is then given by [27]

s = 2P

πw 2Isat
(6.1)

where Isat is the saturation intensity and w the beam waist, which was approximately

determined using a beam profiler to be w ≈ 900µm. Subsequently, we could start tak-

ing images. We scanned through 10 values of the exposure time ranging from 3µs to

12µs and for every exposure time we scanned through 11 values for the intensity. For

each parameter configuration, we took 8 sets of absorption, division and background

images.

6.1. Intensity calibration

Because we are reaching saturation values up to s ≈ 2 during our scan, we need to take

the linear correction term in eq. 2.15 into account. This requires to calibrate the counts
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per second at the saturation intensity χsat , which can be done through various meth-

ods. For example, one can do this calibration by measuring the momentum transferred

to the atoms by the imaging light while varying its intensity [28]. In this work, we in-

stead follow the approach by [17], which will be discussed in this section.

We start by defining C1 = − log
(

Cout
Ci n

)
and C2 = Ci n−Cout

τ . Then solving eq. 2.15 for C1,

neglecting the detuning δ results in

C1 =OD − C2

χsat
(6.2)

Since the OD is independent of the imaging parameters, C1 must be proportional to

C2 with a factor of − 1
χsat

. So finding χsat can be done by measuring C1 and C2, plotting

them against each other and fitting a line to the data points. Subsequently, with the

fitted χsat we can calibrate the saturation parameter again

s = Ci n

χsatτ
(6.3)

The whole calibration is performed only with the images, for which the imaging pa-

rameters satisfy both the Doppler limit and the random walk limit, described in Chap-

ter 3. Now with these newly calibrated saturation parameters the images that satisfy

these limits might change, which is why we repeat this calibration process until the

saturation values don’t vary anymore and χsat reaches a constant value.

In practice, C1 and C2 are calculated pixel-wise for every image, that satisfies the two

limits. Then a small region of 300 pixels within the cloud’s peak is selected, over which

we average C1 and C2 for each image. Afterwards, we plot the averaged C1 against C2

and perform a linear fit. Iterating this process 3 times we obtain the fit displayed in

figure 6.1 (red line) and χsat = (215±23) µs−1, resulting in the saturation parameter

ranging from 0.02 to 2 across all images. Finally, we are able to compute the OD ac-

cording to eq. 2.15 for every image and analyse the signal-to-noise ratio, which will be

discussed in the following section.
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Figure 6.1.: Calibrating χsat from a linear fit. Each cross corresponds to one image that
satisfies the Doppler- and random walk limit with the error bars being the
standard deviation of C1 and C2 across the 300 pixels they where averaged
over. The fit (red line) excludes every image with C2 < 2 counts

µs (blue), be-
cause this indicates a low and unreliable signal.

6.2. Signal-to-noise ratio and comparison

Now that we have a set of OD images for every parameter configuration we can cal-

culate the signal-to-noise ratio simply by taking the mean and the standard deviation

across all images, with the same imaging parameters. Consequently, each pixel is as-

signed a SNR, as the ratio between the mean OD value and the standard deviation.

Afterwards we plot the SNR against the mean OD for every pixel, resulting in a plot,

similar to the theory in figure 3.4. For example, figure 6.2 shows the result for the pa-

rameters s = 0.28 and τ = 5µs. The relatively large spread in the SNR unfortunately

stems from the fact, that we calculate the standard deviation with only 8 images.
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Figure 6.2.: Pixel-wise signal-to-noise ratio as a function of the OD determined exper-
imentally for the parameters s = 0.28 and τ = 5µs. The pixels within the
green area are used to compare different parameter configurations in fig-
ure 6.3 by taking the mean SNR in this region.

Nevertheless, to compare different parameter configurations against each other and

also against the theoretical results from chapter 3, we focus on a small region between

OD = 0.09 and OD = 0.11 and calculate the mean SNR in that region. The results for

all tested parameter configurations are shown in figure 6.3. Note that this comparison

includes all imaging parameters, also the ones, that are forbidden according to the two

limitations.

Despite the rather large errors, we observe a saturation of the SNR at around s = 0.75.

This suggests increasing the intensity to s = 0.75 would be beneficial in terms of a better

SNR, but higher than that would not increase the SNR further. This agrees very well

with the predictions from Chapter 3, where we concluded an intensity ranging between

s = 0.42 and s = 0.76 would optimise the SNR. We furthermore observe an increasing

SNR for increasing exposure time which also qualitatively agrees with our theoretical

model.
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Figure 6.3.: SNR comparison of all parameter configurations. Here the SNR is the mean
over all pixels within a small region around a mean OD value of 0.1. As
expected the SNR saturates at an intensity of around s = 0.75.

Let us now only consider the exposure times 4µs, 5µs and 6µs and focus on the satu-

ration parameters, that obey both the Doppler and random walk limit. We again plot

the SNR for these exposure times in figure 6.4. For higher exposure times the inten-

sity is limited due to the Doppler- and random walk limit to values below s = 0.2 or

even lower and since the mean SNR gets increasingly more noisy in this regime, we

will only focus on the three exposure times mentioned above. The left-hand side of fig-

ure 6.4 shows the experimental results, while the right-hand side displays the theory.

Our theory qualitatively aligns with the experimental results, but the measured SNR is

unexpectedly larger than predicted by the theory by a factor of 3.3. It’s unclear what

exactly causes this discrepancy. One possible explanation is the fact, that we are not

considering an effective absorption cross-section σe f f
abs but rather the theoretical value

σ0
abs = 3λ2

2π . Typically, the effective cross-section is smaller than the expected theoreti-

cal value, due to factors such as slight deviations in the probe’s polarisation. Therefore

one usually introduces a correction factor α, which is the ratio between the effective

and the theoretical cross-section [17, 11]. It is necessary to calibrate this correction

factor, which can be done using the local number density of an ideal non-interacting
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Fermi gas as a reference, but is beyond the scope of this thesis. Hence without this cal-

ibration our measurement underestimates the OD and given that the SNR is approxi-

mately linear for small ODs (see figure 3.4), this would lead to an underestimation of

the SNR by our theory.
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Figure 6.4.: Comparison of the experimentally determined SNR on the left-hand side
and the theoretically calculated expectation on the right-hand side. Note
that the y-axis scale is different for each diagram. For each exposure time,
the saturation parameter is eventually too high for it to fulfil the Doppler
and random walk limit. This is indicated by marking the configurations
that satisfy both limits with an x and the ones that don’t with a dot.

Although we find the experimentally determined SNR to be larger by a factor of ∼ 3.3

than the theory, similar to the results from the theory we find the optimal imaging pa-

rameters, that maximise the SNR to be the ones closest to the two limits. So in the case

of the exposure times 4µs, 5µs and 6µs we find the saturation parameters 0.29, 0.44

and 0.73 respectively to maximise the SNR.

This implies using a saturation parameter in the range between 0.29 and 0.73, cou-

pled with an exposure time spanning from 4µs to 6µs, leads to the highest possible

SNR. Given the large errors, the measured SNR doesn’t differ significantly within these

ranges. Hence an exact optimal parameter setting cannot be provided, based only on
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the experimental data, but instead I suggest using a configuration within these ranges.

Furthermore, several techniques could potentially enhance the SNR further. For ex-

ample, since the division image is captured without the presence of atoms, there are

no constraints on the exposure time. Therefore, it is feasible to increase the exposure

time for the division image substantially beyond that used for the absorption image.

This adjustment would result in a reduction of noise on the division image. Another

approach involves creating bins of pixels either directly using the functionality of the

Andor camera or by averaging the measured counts over bins of a certain size. While

this approach may lead to a decrease in resolution, it offers a potential gain in the SNR.
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7. Conclusion and Outlook

In the first part of this thesis we discussed the method of absorption imaging and

looked at the imaging transition for 6Li in detail. We found that for two of the three

used 6Li ground states the imaging transition isn’t closed and we therefore lose atoms

to dark states, that do not contribute to the imaging signal. The loss probability for an

atom to decay to such a state highly depends on the magnetic field. For typically used

magnetic fields around 890G these probabilities are p |1〉
loss = 0.17% and p |2〉

loss = 0.20%,

depending on the ground state. Based on the number of photons scattered per atom

of around 20, we concluded the loss to be negligible.

We then constructed a theoretical model for the SNR of our absorption imaging setup,

which takes the two most dominant noise sources into account: photon shot noise and

read out noise. Furthermore we considered limitations to the imaging parameters due

to the Doppler effect and a random walk. Together with the noise model we found the

imaging parameters ranging from s = 0.42 to s = 0.76 with the exposure time between

τ= 4.4µs and τ= 5.8µs maximise the SNR, while also satisfying both limits.

Furthermore we implemented two improvements to the setup. A power monitoring

system, that uses a fibre with a built-in photodiode to track the imaging laser pulse’s

power and a two-frequency AOM driver, that reduces thermal effects in the AOM’s

crystal. With the power monitoring fibre it’s possible to explain possible drifts over

long time scales, that might occur during measurements. The two-frequency AOM

driver stabilises the laser pulse’s power by keeping the power inside the AOM constant.

We conducted several measurements to characterise the driver. From measuring 20s

pulses we showed that the AOM is indeed constantly thermalised. Moreover we un-

expectedly observed the pulse’s power to be oscillating for a second RF frequency of

f2 = 82.0MHz. This unwanted effect could be reduced by changing to f2 = 77.7MHz.

In addition we examined long-term drifts of the laser power and found them to be ap-

proximately 10%. In the future one could implement an active stabilisation of the laser

power using the signal of the monitoring fibre, which could eliminate these long-term

drifts.

In the last part we performed a scan over the imaging parameters and determined the

signal-to-noise ratio for a set of parameter configurations with the aim of comparing it
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to the theory constructed previously. At first we calibrated the CCD counts at the satu-

ration intensity to be χsat = 215±23 µs−1, which is necessary due to the high intensity

correction. Afterwards we calculated the SNR for each configuration and compared

them against each other and against the theory. As anticipated by the theory we discov-

ered that the SNR saturates for s > 0.75, indicating that higher intensities are therefore

not worth pursuing. Upon comparing the results to our theory, we observed qualitative

agreement, but the exact values differ by a factor of ∼ 3.3. A possible explanation for

this discrepancy is the fact, that we aren’t accounting for an effective absorption cross-

section. Typically one has to independently calibrate a correction factor α, to account

for this.

Concluding from both, the theory and the experimental data, we suggest a saturation

parameter between s = 0.29 and s = 0.76, with the appropriate exposure time between

4µs and 6µs. This ensures the highest possible SNR, while satisfying the Doppler and

random walk limit.
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A. Appendix

A.1. Number of scattered photons

The time evolution of the number of scattered photons by one atom in a cloud of atoms

illuminated by a laser tuned to a specific imaging transition is described by the differ-

ential eq. 3.4. Solving this under the assumption of no initial detuning (δ(t = 0) = 0) is

done by means of separation of the variables. Doing so, one finds the real solution eq.

A.1.

Nsc (t ) =
(
324δ4

DΓst +
√

104976δ8
DΓ

2s2t 2 +186624δ6
D (s +1)3

) 1
3

6 ·2
1
3δ2

D

− 6 ·2
1
3 (s +1)(

324δ4
DΓst +

√
104976δ8

DΓ
2s2t 2 +186624δ6

D (s +1)3
) 1

3

(A.1)

I show this solution for a set of different saturation parameters s in figure 3.1.

A.2. Experimental parameters

The following table summarises relevant experimental parameters for lithium imaging

with an Andor iKon camera

proberty symbol value source

quantum efficiency QE 0.93 [22]

effective pixel size Lpi x [µm] 1.86x1.86 [19]

imaging laser wavelenth λ [nm] 671 [19]

saturation intensity of 6Li Isat [W m−2] 25.4 [13]

linewidth of imaging transition Γ [MHz] 5.87 [13]

background PE’s Nback 30 [29]

read out noise σ2
r on[e−pi x−1] 19.3 Andor camera manual

Table A.1.: Experimental parameters
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A.3. AOM driver components

For the dual tone AOM driver the following components were used.

Amount Description Model

1 AOM G&H 3100-125

2 VCO Mini circuits ZOS-150

1 Arduino Micro

1 E-lego power supply DL800

3 Resistor for low pass filter R = 33,3kΩ

3 Capacitor for low pass filter C = 22µF

3 E-lego op amp board SU805

1 E-lego BNC board SU802

5 E-lego universal driver SU804

2 E-lego VGA SU812

1 Combiner Mini circuits ZSC-2-1

1 Attenuator -5dB

1 Amplifier ZHL-1-2W

1 Power supply for Amplifier EA-PS-404

Table A.2.: List of AOM driver components
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A.4. AOM bandwidth

Every AOM inherently has a bandwidth, which leads to a reflection of the RF signal

dependent on its frequency. This effect needs to be taken into account when designing

the dual tone AOM driver. More precisely the Arduino controlling the RF powers needs

to consider a factor for each frequency when calculating the RF powers. The Arduino

controls the power of both RF signals, that reach the AOM. But relevant is only the part

that is not reflected by the crystal, which highly depends on the RF frequency, as can

be seen in figure A.1. Hence a calibration of the AOM’s bandwidth is necessary.

This calibration is simply done by measuring the reflected power using the R&S ZVL

Network Analyser. The results are presented in figure A.1. For the two frequencies

employed by our dual tone AOM driver, we find the ratios of the power absorbed by the

AOM P AOM and the total RF power Ptot al to be

f1 = 110MHz :
P AOM

Ptot al
= 96%

f2 = 77.7MHz :
P AOM

Ptot al
= 80%

(A.2)
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Figure A.1.: Relative power inside the AOM’s crystal as a function of the RF frequency.
The two red dashed lines mark the two frequencies used by our dual tone
AOM driver.
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A.5. Long-term drifts

We conducted a measurement concerning long-term drifts as described in section 5.4.

The results are presented in figure A.2.
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Figure A.2.: Long-term drifts of the pulse’s optical power measured at various points
along the beam path. From top to bottom, the graphs show the power be-
fore the AOM, between the AOM and the fibre, inside the monitoring fibre,
transmitted by a polarising beam splitter after the fibre and the reflection
of the beam splitter after the fibre. The red dots are the sum of the trans-
mission and reflection after the fibre, combining both polarisations.
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