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Abstract

This thesis reports on the enhancement of the stability of an accordion lattice dipole trap

by integrating an imaging setup and a feedback algorithm based on phase correction.

After precise alignment an extraction of the phase through the relative positions of the

middle interference fringe and the center of the Gaussian upper envelope was possible.

Passive-stability measurements revealed a long-term phase drift of 0.6π over a 12-hour

period. This would shift the 20 µm-sized fringe, planned to be used when loading the 3D

atomic cloud into the accordion trap, by 5.81 µm, thus inducing atom loss while loading,

as well as potential loading in two fringes. A piezo control setup successfully allowed

manipulation of the phase via voltage application. The developed feedback algorithm

automated the phase measurement and analysis, as well as the calculation and appli-

cation of the necessary voltage correction. The final configuration results in an aver-

age phase deviation of 0.085π, corresponding to a center fringe displacement of 0.83 µm

while loading and a reduction in the trap depth of 0.056%. Further limiting the phase

fluctuation leads to increasing instabilities due to a lack of correction accuracy. The cor-

responding standard deviation of 0.054π shows the limitation of the setup. Novel piezo

and mirror mounting as well as the transition to the main setup is expected to improve

the operation of the feedback algorithm and yield a reduction of the phase deviation.

Kurzfassung

Diese Arbeit berichtet von der Stabilitätsverbesserung einer Akkordeon-Gitter-

Dipolfalle durch die Integration eines bildgebenden Aufbaus und eines auf Phasenko-

rrektur basierenden Feedback-Algorithmus. Nach präziser Einstellung war eine Ex-

traktion der Phase durch die relativen Positionen des mittleren Interferenzstreifens und

des Zentrums der oberen Gaußschen Einhüllenden (erhalten durch einen Fit) möglich.

Passive Stabilitätsmessungen ergaben einen Phasendrift von 0,6π über einen Zeitraum

von 12 Stunden. Dies würde eine Verschiebung des 20 µm großen Streifens, der beim

Laden der 3D-Atomwolke in die Akkordeonfalle verwendet wird, um 5.81 µm bedeuten.

Dadurch kommt es zu Atomverlusten während des Ladens sowie zu einer poten-

ziellen Beladung in zwei Streifen. Ein Piezo-Kontrollsystem ermöglichte die erfolgre-

iche Manipulation der Phase durch Anlegen einer Spannung. Der entwickelte Feedback-

Algorithmus automatisiert die Phasenmessung und -analyse sowie die Berechnung und

Anwendung der erforderlichen Spannungskorrektur. Die endgültige Konfiguration

ergibt eine durchschnittliche Phasenabweichung von 0,085π, was einer Verschiebung

des mittleren Streifens um 0.83 µm während des Ladens und einer Verringerung der

Fallentiefe von 0,056% entspricht. Eine weitere Begrenzung der Phasenfluktuation

führt aufgrund mangelnder Korrekturgenauigkeit zu zunehmenden Instabilitäten. Die

entsprechende Standardabweichung von 0,054π zeigt die Grenzen dieses Aufbaus auf.

Es wird erwartet, dass eine neuartige Piezo- und Spiegelmontage sowie der Einbau in

das Hauptexperiment die Funktionsweise des Feedback-Algorithmus verbessern und

eine Verringerung der Phasenabweichung bewirken.
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1 Introduction

The discovery of quantum physics was a significant turning point in modern
physics history and has greatly influenced our current worldview. A significant
contribution to this was made by the indian physicist Satyendra Nath Bose, par-
ticularly through his work on the quantum statistics of photons. This work was
taken up by Albert Einstein, who further developed it by applying the derived
principles to atoms. In the course of this, he achieved the first theoretical pre-
diction of an ultracold quantum state of indistinguishable bosons, later known
as the Bose-Einstein condensate. Although the discoverer was initially sceptical
about this prediction, finding it paradoxical and seemingly impractical, the first
experimental realisations took place 70 years later at JILA [1] and MIT [2] and
were rewarded with the Nobel Prize in Physics. Since then, the exploration of
these BECs has paved the way for numerous significant contributions to the field
of quantum physics, enabling a multitude of discoveries.

The Quantum Fluids Group in Heidelberg, works with a Dysprosium BEC, which,
due to the large magnetic dipole moment of dysprosium, exhibits strong inter-
atomic dipole-dipole interactions. These long range interactions in combination
with the usual short range contact interaction, introduce intriguing new dynam-
ics into the realm of ultracold gases and have led to several interesting discov-
eries in recent years. In the setup an innovative combination of magneto-optical
traps and optical traps are used for probing atomic gases, allowing for precise
control in a compact design. To further investigate the dynamics of the quantum
system, the group is actively engaged in the development of an optical accordion
lattice trap, which is designed to facilitate controlled two-dimensional confine-
ment, thereby enhancing the ability to probe and analyze quantum gases.

The topic of this thesis is the stabilisation of the accordion lattice trap, by adding a
Kepler configuration telescope to image the interference pattern and implement-
ing a feedback loop controlling the phase via a piezo stack.
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1 Introduction

1.1 Bose-Einstein Condensate

The Bose-Einstein Condensate is a state of many indistinguishable bosons, in
which a macroscopic number occupies the groundstate. This is possible because
bosons follow the Bose-Einstein statistics. The average number of particles in the
i-th quantum state is accordingly given by:

ni =
1

e(
Ei−µ

kT ) − 1
(1.1)

The condensate develops below a temperature near absolute zero, when the ther-
mal deBroglie wavelength λdB becomes larger than the mean spacing between
the atoms, in other words the atomic wavepackets begin to “overlap”. This takes
place at a phase-space density of ρps = nλ3 ≃ 2.612 [3].
Reaching the so-called critical temperature, which at densities of ∼1018-1020 m−3

lies around 100-200 nK (there are some exceptions like Helium), led to the de-
velopment of several cooling techniques such as laser cooling and evaporative
cooling to reach this ultra cold regime. A fine spatial confinement implemented
with magnetic or optical traps is also required in order to achieve the correspond-
ing high phase-space density.
The introduction of innovative methodologies, exemplified by the optical dipole
trap, alongside strategies aimed at reducing the dimensionality of quantum gases,
has paved the way for the exploration of novel phenomena. Although Bose-
Einstein condensation (BEC) typically arises in non-interacting systems, the in-
tentional reduction of dimensionality seeks to amplify interactions and correla-
tions, thereby emphasizing the complex interplay of quantum phenomena.
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1.2 Dysprosium Quantum Gas

1.2 Dysprosium Quantum Gas

A species of BEC atoms with particularly intriguing properties is dysprosium,
the species that possesses the largest magnetic moment among all elements in
the periodic table. This implies, that in addition to the typically prevalent con-
tact interactions in ultracold gases, dipole-dipole interactions now play a crucial
role in shaping both the equilibrium properties and dynamics of the system.
Dysprosium belongs to the lanthanide family and was first identified in 1886 by
the french chemist Paul Émile Lecoq de Boisbaudran, who first achieved the dif-
ficult process of isolating it from Holmium. It has an atomic Number of Z = 66
and is naturally composed of its seven stable isotopes [4], which are listed in ta-
ble 1.1. The presence of four isotopes exhibiting comparable natural abundances
holds significant scientific merit within the realm of cold atoms. This character-
istic facilitates the examination of diverse systems, including Bose gases, Fermi
gases, mixtures, and others, employing a consistent experimental configuration.
In this experiment we will primarily concentrate on samples of 164Dy.

Isotope 156Dy 158Dy 160Dy 161Dy 162Dy 163Dy 164Dy

Natural Abundance 0.06% 0.1% 0.23% 18.9% 25.5% 24.9% 28.3%

Quantum Statistics boson boson boson fermion boson fermion boson

Table 1.1: Stable isotopes of Dysprosium

The elctronic configuration of Dysprosium in its groundstate is given by

[1s22s22p63s23p63d104s24p64d105s25p6]Xe4 f 106s2. (1.2)

Here we see that only the 4 f -shell is not fully occupied and its four unpaired
electrons are therefore the sole source of angular momentum. They result in an
orbital angular momentum of L = 6, a spin of S = 2 and due to LS-Coupling
a total angular momentum of J = L + S = 8. Accordingly, the ground state of
Dysprosium can be written as 5 I8. This also results in the large magnetic moment
of µ ∼ 10µB, which induces the dipolar interactions.
Surrounding this unfilled 4 f -shell is a filled 6s-shell, whose electrons are used to
cool and trap the Dysprosium atoms, the two electronic transitions are shown in
figure 1.1.
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Figure 1.1: Energy level diagram of dysprosium for the levels of total electronic
angular-momentum quantum number J = 8 and J = 9. The color of the energy
states indicate their parity, where red relates to even and blue to odd parity. The
used transitions are indicated with arrows, where the thickness of the arrows
corresponds to their linewidths. Taken from [5].

1.3 The Dylab

This section gives a short overview of the Dysprosium experiment in Heidelberg,
a schematic drawing of the setup is shown in figure 1.2. To first generate a ther-
mal gas of dysprosium atoms, solid dysprosium is heated to about 1000°C in an
high-temperature effusion oven. From there, the atoms exit with a mean velocity
of around 400 m/s, entering a vertically mounted two-dimensional magneto-
otical trap (2D MOT), designed to cool the gas and confine it in the x − z plane
[6]. Its octagonal chamber consists of six viewports for optical access. Four of
those are used by the 421nm trapping laser beams in a bow-tie σ+σ− retroflected
configuration [5]. Eight blocks of permanent magnets create the gradient mag-
netic field inducing the spatially-varying Zeeman shift.
After this first cooling stage, the slowed atoms are pushed in y-direction by a
push beam, entering the science chamber. The heart of this chamber forms a 3D
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1.3 The Dylab

MOT, comprised of one conventional and two orthogonal retro-reflected 626nm
laser beams, as well as a pair of magnetic coils in anti-Helmholtz configuration
along the z-axis, creating a quadrupole field. Additionally, the chamber contains
another pair of coils generating a homogeneous field along the z-axis, as well
as two pairs of rectangular coils surrounding it and producing a homogeneous
field in x- and y-direction. For further details see [7] and [8]. Subsequently, the
atoms are loaded into an optical dipole trap (ODT), since the MOT is not capa-
ble of reaching the required temperatures to form a BEC. The ODT consists of
two crossed laser beams with a wavelength of 1064nm, far away from resonance.
Here, the method of evaporative cooling is used, in which the most energetic
atoms are removed from the trap, by lowering the depth of the trapping poten-
tial step-by-step. After each step, a new reduced thermal equilibrium emerges,
due to inter-particle interactions, again forming an energy-distribution with a
high energetic tail which can escape in the next step. This reduces the overall
temperature of our system, enabling it to reach the BEC regime.
After achieving quantum degeneracy, the aim is to tightly confine the atomic
cloud in one dimension, creating a quasi 2D-gas. To realize that compression,
the implementation of an optical lattice trap with configurable periodicity, a so-
called accordion lattice, is planned. The stability optimization of this trap will
be the topic of this thesis. For a more detailed characterization of the design and
implementation of the accordion lattice refer to [9] and [10]. Additionally, a Dig-
ital Micromirror Device (DMD) for generating versatile trapping potentials is in
progress.
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SOLIDWORKS Lehrprodukt. Nur für Lehrzwecke.

Figure 1.2: Sketch of the experimental setup: Atoms emitted from the high-
temperature oven’s hot jet are first trapped in the 421 nm 2D-MOT (indicated
by blue arrows), then directed into the main chamber where they undergo cap-
ture once more in the 626 nm 3D-MOT (illustrated by red arrows). Subsequently,
the atoms are loaded into a 1064 nm optical dipole trap, initiating evaporative
cooling to achieve the BEC regime. Taken from [11].
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2 Fundamentals

This chapter introduces the main ideas and models necessary to understand
and describe the physics behind trapping with an accordion lattice. A short ex-
planation of the essential concepts of optical dipole trapping, as well as two-
dimensional trapping will be given, followed by a theoretic description of the
accordion lattice’s characteristics.

2.1 Optical Dipole Trapping

Optical dipole trapping is a powerful technique in the field of atomic and molec-
ular physics, as well as in quantum optics. This method is based on the concept
of dipole moments induced in neutral atoms or molecules by the presence of an
external electric field, such as that generated by laser beams. To explain the basic
theoretical principles the following section on the trapping of neutral atoms is
based on the 1999 Review by Grimm, Weidemüller and Ovchinnikov [12].

2.1.1 Trapping of Neutral Atoms

When an atom is situated in a monochromatic laser, it experiences an electric
field

E(r, t) = êẼ(r) exp(−iωt) + c.c. (2.1)

which induces a dipole moment

p(r, t) = ê p̃(r) exp(−iωt) + c.c. (2.2)

oscillating with the excitation frequency ω, ê being the unit polarization vector.
The amplitude p̃ of the dipole moment is proportional to the field amplitude Ẽ
by the factor α, which represents the complex polarizability.

p̃ = αẼ (2.3)

7



2 Fundamentals

The resulting atom-light interaction potential is then given by:

Vdip = −1
2

h̄⟨p · E⟩ = −1
2

h̄
ε0c

Re(α)I, (2.4)

with the field intensity I = 2ε0c|Ẽ|2 and taking into consideration that the dipole
moment is induced rather than permanent, the factor of 1/2 is introduced. The
gradient of this potential result in the conservative dipole force

Fdip(r) = −∇Udip(r) =
1

2ε0c
Re(α)∇I(r). (2.5)

The scattering rate Γsc is described as the ratio of power absorbed by the oscillator
from the driving field Pabs and the photon energy h̄ω:

Pabs = ⟨ṗE⟩ = ω

ε0c
Im(α)I (2.6)

Γsca =
Pabs

h̄ω
=

1
h̄ε0c

Im(α)I(r) (2.7)

To compute the polarizability α, an electron that is elastically bound to the core
with an oscillation eigenfrequency ω0 corresponding to the optical transition fre-
quency is considered. This gives the following expression for the polarizability

α = 6πε0c3 Γ/ω2
0

ω2
0 − ω2 − i

(
ω3

ω2
0

)
Γ

, (2.8)

which is valid for far-detuned, low saturated light with very low scattering rates
(Γsca ≪ Γ). Here Γ describes the on-resonance damping rate resulting from the
dipole radiation of the oscillating electron:

Γ =
(ω0

ω

)2 e2ω2

6πε0mec3 (2.9)

Using the rotating wave approximation, the dipole potential and scattering rate
simplify to:

Vdip(r) =
3πc2

2ω3
0

Γ
∆

I(r), (2.10)

Γsc(r) =
3πc2

2h̄ω3
0

(
Γ
∆

)2

I(r). (2.11)
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2.2 Two-Dimensional Trapping

with ∆ = ω−ω0. This implies that operating below an atomic resonance (∆ < 0),
called red detuning, the dipole potential becomes negative, leading to an attractive
interaction that draws atoms into the light field. Consequently, potential minima
are located at positions characterized by maximum intensity. Conversely, above
resonance (∆ > 0), called blue detuning, the dipole interaction repels atoms away
from the field, causing potential minima to align with intensity minima. Further-
more it is evident, that the scaling of the dipole potential involves a proportion-
ality to I/∆, while the scattering rate has a scaling of I/∆2, which is the reason
most optical dipole traps commonly employ significant detunings and high in-
tensities to minimize the scattering rate.

2.1.2 Polarizability of Dysprosium

As will be demonstrated in section 2.3, the complex polarizability is required to
determine the depth of our trap, necessitating a precise quantification. How-
ever, for dysprosium, equation 2.8 to calculate the scalar polarizability is insuffi-
cient, and both the vectorial and the tensorial polarizability must be additionally
taken into account. Theoretical simulations [13] and extensive experimental mea-
surements [14] were conducted for determination. For the chosen wavelength of
532 nm experimental results yield a range of (64-386) a.u. [15], as well as an esti-
mation of 10.5 a.u. [16]. The theoretical value which will be used for calculations
in this thesis is 350 a.u. [17].

2.2 Two-Dimensional Trapping

The physics of a quantum gas strongly depend on the dimensionality of the sys-
tem. By tightly trapping the atoms in one direction and therefore limiting the
motion of the gas, one can reduce its dimensions to a 2D-plane. Here we require
a very anisotropic potential with ωz ≫ wperp and a supression of thermal- and
interaction-induced excitations into the excited transverse modes [18]:

h̄ωz ≫ kBT, µ, (2.12)

with µ being the chemical potential induced by interatomic repulsive interac-
tions and T the temperature of the trapped particles. One frequently applied
technique to fulfill these requirements is the accordion lattice, which provides
precise control over the traps geometry and size.

9



2 Fundamentals

2.3 The Accordion Lattice

The idea of an optical lattice with variable periodicity to confine an atomic cloud
in one direction was first achieved in 2008 by Li, Kelkar, Medellin, and Raizen at
the University of Texas [13] and since then implemented in many experiments.
The general design is depicted in figure 2.1 and consists of two laser beams,
which intersect at an angle of 2θ, creating a one-dimensional interference pat-
tern. By adjusting the beam intersection angle, the fringe size of the pattern can
be controlled, allowing convenient atom loading at large periods, subsequently
compressing the cloud by decreasing the period.

Figure 2.1: Working principle of an accordion lattice. Two laser beams are made
to intersect at an angle, producing a one-dimensional interference pattern. Taken
from [9].

In most cases, the two intersecting beams have a Gaussian shape and should
ideally be identical. The electric field of a Gaussian beam propagating in the
x-direction is given by:

E(r, x) = E0x̂
w0

w(x)
exp

(
− r2

w(x)2

)
exp

(
−i
(

kx + k
r2

2R(x)
− ψ(x)

))
(2.13)

where:

10



2.3 The Accordion Lattice

E(r, x) is the electric field amplitude at position (r, x),

r is the radial distance from the center axis of the beam,

z is the axial distance from the beam waist,

E0 is the peak electric field amplitude,

w(x) is the beam waist radius at position x,

k is the wave number of the light,

R(x) is the radius of curvature of the wavefronts at position x,

ψ(x) is the Gouy phase shift at position x.

The beam waist w0 and Rayleigh range zR are related to the parameters of the
beam as follows:

w0 = w(0), (2.14)

zR =
πw2

0
λ

. (2.15)

If these beams are now deflected by ±θ from the x-axis, as seen in figure 2.1,
with corresponding electric fields Eθ and E−θ,the following equation describes
the intensity of the resulting interference pattern:

Itot(x, y, z) = |Eθ + E−θ|2 (2.16)

= |Eθ|2 + |E−θ|2 + E∗
θ E−θ + EθE∗

−θ (2.17)

For equal linear polarizations this yields [9]:

Itot(x, y, z) = Iθ + I−θ + 2
√

Iθ

√
I−θ · cos

(
2π

d
z + ∆φ

)
(2.18)

with I±θ being the intensities of the two individual Gaussian beams

11



2 Fundamentals

Iθ(x, y, z) =
2P

πwy(xθ)wz(xθ)
exp

(
− 2y2

w2
y(xθ)

− 2(z cos(θ) + x sin(θ))2

w2
z(xθ)

)
(2.19)

I−θ(x, y, z) =
2P

πwy(x−θ)wz(x−θ)
exp

(
− 2y2

w2
y(x−θ)

− 2(z cos(θ)− x sin(θ))2

w2
z(x−θ)

)
(2.20)

with ∆φ = φθ − φ−θ representing the phase difference between, the beam waists
wz and wy and the power P of each beam.

Generally speaking, for the plane transverse to the beams’ propagation, the shape
of the total intensity Itot is therefore defined by an interference sinusoid contained
within an upper and a lower envelope of approximate Gaussian shape (see fig-
ure 2.2). The exact solution of the two envelopes is given by the superposition
of the two Gaussian terms (equation 2.19 and 2.20). For perfectly overlapping
beam centers and equal amplitudes, this results in a single Gaussian upper enve-
lope, while the lower envelope cancels two zero, as depicted in figure 2.2a. For
unequal amplitudes, the lower envelope also takes the form of a Gaussian with
the magnitude depending on the amplitude difference. For slight misalignments
of the two beam centers, an additional shift of the lower envelope occurs. In this
case both envelopes still have the approximate shape of a single Gaussian distri-
bution, as shown in figure 2.2b. This is the scenario we use for fitting (see section
4.1.1).
For severe misalignments this approximation of single Gaussians is not valid
anymore and a superposition of the individual beams has to be calculated.
Figure 2.3 represents the ideal trapping potential, which, in this case of red detun-
ing, becomes minimal at the point of maximum intensity and can be described in
general by the following equation:

U(x, y, z) =
Itot(x, y, z)α

2cϵ0
. (2.21)

Also employed here is the following definition of the spacing between two min-
ima, so-called fringes:

d =
λ

2 sin(θ)
. (2.22)

For ∆φ = 0 the center of the envelope and the center of the middle fringe overlap,
for a phase difference ∆φ ̸= 0 the distance between these two centers amounts to

12



2.3 The Accordion Lattice

l =
∆φ

2π
d. (2.23)

To maximize the trapping potential, ideally, this distance should be zero. Achiev-
ing this consistently through active regulation of ∆φ is the aim of this work.

(a) Ideal Gaussian-sinusoid intensity distri-
bution.

(b) Intensity distribution for unequal am-
plitudes and misaligned center positions.

Figure 2.2: Intensity distributions for different scenarios (arbitrary units).

Figure 2.3: Trapping potential of the accordion lattice in the case of red detuning,
with a second-order polynomial fitted to an individual fringe marked in red.
Taken from [9].
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3 Experimental Setup

The experimental setup for the accordion lattice is based on a previously de-
signed configuration by Valentina Salazar Silva [9] and has been replicated in the
scope of this work, as the intention is to integrate the original into the main exper-
iment. Subsequently, the key features of this setup will be briefly elucidated, with
detailed attention given to the imaging and stabilization setups added within the
scope of this work.

3.1 Characterisation of the Accordion Lattice

3.1.1 Interference Pattern

To produce the above described interference pattern, a convex lens is used to
intersect two initially parallel laser beams in its focal plane, as shown in figure
3.1. In this configuration the angle θ is defined by

θ = arctan
(

D
2 f

)
, (3.1)

containing the focal length f and the distance between the parallel beams D. Due
to the size of the viewport into the science chamber, the maximal possible inter-
ference angle is θmax = 8.976◦. An angle close to this maximal value is needed
to achieve the high vertical trapping frequencies of around 15 kHz required to
reach the deep quasi 2D-regime. The minimal interference angle is determined
by the requirement to load the entire atomic cloud into one fringe, resulting in
a maximal fringe size of 20 µm and therefore a minimal angle of θmin = 0.76◦

[9]. To fulfill these specifications a custom made high-precision aspherical lens
with f = 150 mm was designed to minimize the aberrations in that range, which
would have led to shifts of the interfering point, causing instabilities. For align-
ment purposes it is placed on a four-axis alignment stage.
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3 Experimental Setup

Figure 3.1: Experimental realization of the interference pattern with a convex
lens. Taken from [9].

3.1.2 Beam-Separation Setup

The two laser beams entering the focusing lens should ideally be perfectly paral-
lel and exact copies of each others. There are multiple successfully implemented
methods that achieve this [13] [19] [20], the one used in this setup is depicted in
figure 3.2a.
First, one beam is split in its s- and p-polarized component via a polarizing beam-
splitter cube (PBS). The s-polarized part is reflected 90◦ away from the cube,
where it is reflected again by a mirror. On its way back and forth it passes a
quarter-wave plate twice, inducing a p-polarization. This allows the beam to
now be transmitted through the PBS in direction of the lens. The p-polarized
part is solely reflected by a 45◦ mirror directly towards the focusing lens, making
it parallel to the lower beam. The whole beam separation setup is located on the
upper part in a custom designed tower mount shown in figure 3.2b.
Due to misalignments in the polarization process the amplitude of the lower
beam is around seven times larger than the one of the upper beam, as shown
in figure 3.3.
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3.1 Characterisation of the Accordion Lattice

(a) Schematic overview of the beam-
splitting.

(b) Realisation of the beamsplitting
with a custom designed tower.

Figure 3.2: Beamsplitting procedure, adapted from [9].

Figure 3.3: Comparison of the beam amplitudes.

3.1.3 Fringe-size Control

One of the main features of the accordion lattice is its ability to dynamically ad-
just the fringe size. This can be realised by mounting the 45◦ mirror directing
the beam vertically to the tower mount on the upper level, on a linear horizontal
translation stage. In the setup that is planned to be integrated in the main setup,
this translation stage is motorized. Since a detailed analysis on the stability dur-
ing compression using this stage has already been conducted [10], the novel test
setup implemented here only uses a manual stage, which after a quick check for
proper functioning was set on a fixed point. The final parameter implemented
are shown in table 3.1.
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3 Experimental Setup

Beam Distance D Fringe Size d Fringe Size (imaging plane) Angle θ

17.5 mm 4.56 µm 201.76 µm 3.34◦

Table 3.1: Final accordion lattice parameters

3.1.4 Beam Properties

In order to achieve sufficiently high trapping frequencies in the vertical plane
while roughly maintaining symmetry in the residual plane as well as a large
fringe intensity ratio, a wavelength of λ = 532 nm and beam waists of wz =

56.5 µm and wy = 240 µm are used. They vary slightly from the chosen optimal
parameters, which were calculated in more detail by Valentina Salazar Silva [9].

To implement these parameters for an incoming beam with ω0 = 500 µm, a set
of two cylindrical lenses with f1 = 200 mm and f1 = 150 mm are used. Addi-
tionally, the setup consist of a half-wave plate and a PBS after the outcoupler for
cleaning the polarization, as well as another half-wave plate behind the second
lens, which controls the polarization of the beam and therefore the intensity ratio
of the two interfering beams.

3.2 Controlling the Fringe Position

As explained in section 2.3, the primary goal of this thesis is to overlap the center
position of the gaussian envelope with the middle fringe of the interference pat-
tern, in order to maximize the trapping potential. Previous tests showed that
significant phase drifts in the order of ∼7-12π can be observed [10], demon-
strating that additional stabilisation is needed. The position of the center fringe
is determined by the relative phase between the two interfering beams, which
arises from the difference in path length. So, in order to control the relative phase
and therefore the position of the center fringe, it is sufficient to manipulate the
length for one of the beams’ path. To achieve that, a piezoelectric transducer
(Piezomechanik HPCh 150) is glued to the back mirror in the mount, which re-
flects the lower beam. Due to the piezoelectric effect it expands over microscopic
distances when a voltage is applied, allowing for precise changes to the path
length by increasing or decreasing the voltage. To know how much voltage needs
to be applied, an imaging setup is required to extract the phase information and
convert it into an output signal. This setup is explained in the next sections.
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3.3 Fringe Imaging Setup

3.3 Fringe Imaging Setup

One of the main challenges for building the phase stabilisation setup, is the imag-
ing to extract the phase information. Since in the final setup the interference pat-
tern is located inside the high vacuum science chamber and populated by the
cloud of cold atoms, the imaging system can not be placed directly at the pat-
tern. Instead, two additional lenses are used as an optical Keplerian telescope to
recreate the interference pattern, as well as a ×20 objective lens for magnification.
For capturing the final image, a WinCamD Beam-profile camera is used during
the first part of this thesis, since its high resolution of 2048×2048 pixels with a
pixel size of 5.5 µm was advantageous for aligning and testing the setup. For the
final phase-stabilisation process, it is switched to a Mako G-234B CMOS camera
with a resolution of 1936×1216 pixels and a pixel size of 5.86 µm, which due to
the smaller sensor size had to be placed closer to the objective lens. The whole
imaging setup is shown in figure 3.4. The second lens, employed to render the
beams parallel again, is identical to the one used for focusing, thus also custom
made with f = 150 mm. It is placed on a five-axis alignment stage at a distance of
30 mm from the first lens. In order to accurately recreate the interference pattern,
the two lenses have to be aligned very precisely. The corresponding alignment
procedure to reproduce two parallel beams is described in detail in the following
section.

Figure 3.4: Telescope setup used to image the interference pattern. Adapted from
[9].
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3 Experimental Setup

3.3.1 Alignment Protocol

1. Bottom Setup
The alignment procedure begins by utilizing the beam profile camera alongside
retro-reflection to align all waveplates and cylindrical lenses at the bottom layer.
This initial step establishes a foundational alignment framework.

2. 45◦-Mirror on the Translation Stage
The tower structure is mounted, and the cube is inserted, ensuring precise align-
ment of the 45◦-mirror by utilizing the retro-reflection from the cube’s surface.
An alignment verification is conducted by examining the retro-reflection at the
reflection branch of the cube, immediately after the fiber connection.

3. Back Mirror
The back mirror for the bottom beam is installed within the tower assembly.
Without the presence of the quarter-waveplate, the beam is directed to reflect
back. This reflection spot is aligned with the one established in the previous
step, and their positions are denoted. Following this, a lens with a focal length
approximately around 150 mm is inserted between the two cylindrical lenses to
expand the beam size and facilitate observation of interference patterns. The po-
sition of the back mirror is adjusted to align the center of the interference rings
with the marked position.

4. Quarter Waveplate
The “interference-lens” is removed, and the quarter-waveplate is inserted be-
tween the back mirror and the cube. A power meter is utilized to orient the
quarter waveplate axis for minimal power in the transmitted portion following
the cube.

5. Reference Mirror
A mirror is configured to reflect the bottom beam, ensuring adequate space above
it to also reflect the upper beam post-installation of the top mirror. Ideally, the
mirror is positioned far enough apart so that two lenses with a focal length of
150 mm each can fit between them (minimum distance of 40 mm). The reference
mirror is aligned by superimposing the resulting interference rings at the reflec-
tion branch with the marked spot.

6. Top Mirror
The triangular top mirror is installed, and the center of the large interference ring
aligns with the others, ensuring parallelism between the bottom and top beams.
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3.3 Fringe Imaging Setup

7. Alignment of the Two Lenses

A) Test-Setup (Without Vacuum)
If not already completed, the reference mirror is relocated to allow space for both
lenses and realigned for future reference. Another mirror is placed on a trans-
lation stage approximately at the focal position of the first lens and aligned ac-
cordingly. The first lens is installed, and the mirror is adjusted to the focal point,
ensuring that the downward beam reflects upwards and vice versa. Alignment
is verified by ensuring the overlap of the lower and upper beams at both posi-
tions in front of the mount, considering various translation stage positions. For
increased precision, the lens between the two cylindrical lenses is employed to
ideally observe large horizontal fringes. The second lens is then installed approx-
imately 30 mm away from the first one and aligned by initially overlapping the
reflections of both beams before the mount, followed by fine-tuning to superim-
pose all interference patterns at the marked spot.

B) Main Experiment (With Vacuum)
Due to space constraints within the science chamber, alignment of the second
lens takes precedence. A mirror is placed on a translation stage at the approxi-
mate focal point of the second lens (around 45 mm from the position of the first
lens) and aligned accordingly for future reference. The second lens is installed,
and the translation stage is utilized to position the mirror precisely at the fo-
cal point, ensuring proper reflection of the downward beam upwards and vice
versa. Alignment is confirmed by verifying the overlap of the lower and upper
beams at both positions in front of the mount, considering various translation
stage positions. The lens between the two cylindrical lenses is employed to ob-
serve large horizontal fringes for increased precision. Subsequently, the first lens
is installed approximately 30 mm ahead of the second one and aligned by ini-
tially overlapping the reflections of both beams before the mount. Fine-tuning of
the alignment is then conducted to superimpose all interference patterns at the
marked spot.
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3 Experimental Setup

3.4 Test-setup for Phase Stabilisation

The setup build for this thesis is a preliminary concept for testing the phase sta-
bilisation process and feedback algorithm. Additional adjustments are necessary
before implementation into the main experiment, like the integration to the ex-
isting labscript and control hardware.

The data captured by the camera is transmitted to a laptop, which uses an analysing
script written in python to extract the distance between the middle fringe and the
center of the gaussian envelope. If the fringe position needs correction, the dis-
tance is used to calculate the corresponding voltage needed for correction with
the piezo-stack. Chapter 4 provides a detailed explanation of the extraction meth-
ods and feedback algorithm used. The laptop is connected to the wavefunction
generator Siglent SDG6022X, and its output is connected to the analogue power
amplifier, which is directly connected to the piezo-stack. The amplifier takes an
input voltage of up to ±5 V with additional options to set a fixed offset and an
amplification. It ensures that the applied voltage does not damage the piezo by
restricting the output voltage to a range of −30 V to 150 V. By applying the cal-
culated DC-offset to the function generator, the voltage is amplified and passed
to the piezo-stack, which induces a displacement of the fringes relative to the
envelope.
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4 Phase Stabilization

This chapter covers the realisation of the active phase stabilisation. A detailed
description of the data analysis, a characterization of the piezoelectric control
mechanism and a brief summary over the developed feedback algorithm will be
given.

4.1 Data Analysis

In order to extract the essential information from the raw data captured by the
camera, an analyzer script was written by Jianshun Gao, which will be briefly
discussed in this section.

4.1.1 Fitting the data

To fit the data, the first step is rectifying the slight angular misalignment present
in the captured images through straightforward rotation by eye, thereby enabling
a more accurate analysis. Subsequent to this correction, the data, initially orga-
nized in a two-dimensional array, is summed along the x-axis and cut at the edges
of the lattice, yielding a one-dimensional array whose shape is exemplified in fig-
ure 4.1.

As explained in more detail in section 2.3, a sinusoidal oscillation within a single
Gaussian envelope is ideally expected, as evident in equation 2.18. However, a
lower envelope with the shape of a Gaussian and a slight shift of its center rel-
ative to the upper envelope is observable. This is caused by the unequal beam
amplitudes shown in figure 3.3, as well as a misalignment of the respective beam
centers indicated by the center shift. Since both the shape of the lower and the
upper envelope maintain a Gaussian shape, the misalignment is minor.
This confirms the precise alignment discussed in section 3.3.1 and allows a good
approximation of the upper envelope using the fit of a single Gaussian. To fit
the envelope, the data is normalized to one and a peakfinder is used to select the
peaks maxima, with a minimum prominence of 0.05 to avoid noise-peaks. After
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4 Phase Stabilization

a predefined calculation of the starting parameters, the data is then fitted to the
resulting dataset containing only the peaks.
To calculate a fit of the sinusoidal pattern, it is necessary to eliminate the lower
envelope. This can be achieved by fitting the shape of the lower envelope, similar
to the upper, but now using the minima of the normalized data and the superpo-
sition of two Gaussians. It is important to note that the starting parameters for
this fit are very sensitive and need to be defined manually beforehand. Exem-
plerary fitting results are depicted in figure 4.2.
After subtracting the fitted curve from the dataset, a one-dimensional discrete
Fourier transformation is performed using the Fast Fourier Transform (FFT) al-
gorithm. The resulting frequency components are then filtered to remove low-
frequency noise. By identifying the maximum frequency, the frequency of the
interference peaks can be determined, which corresponds to the reciprocal of the
fringe distance.
Finally, a fit model based on equation 2.18 is defined. This model utilizes the pa-
rameters computed in the previous fits, as well as the fringe distance, to calculate
precise starting parameters. Since the model fits nine parameters, reliable start-
ing values and well-chosen fit bounds are essential. The result of a successful fit
will therefore be passed as starting parameters to the next fit. An exemplary fit,
together with the upper and lower envelope, is illustrated in figure 4.2.

It is also evident in figure 4.1, that the data captured with the Mako camera shows
noticeable discrepancies from the data captured with the WinCamD, as well as
from the approximated Gaussian shape. This makes the fit less reliable and in-
troduces a potential source of error. However, test measurements still show sat-
isfactory results for fits applied to the data.

4.1.2 Extracting the Phase of the Interference Pattern

As a result of the fit exemplified in figure 4.2, one of the parameters obtained is
the phase, which yields important information regarding the stability of the trap.
However, since fitting all the data is time-consuming, we sought an alternative
method to determine the phase. Equation 2.23 shows that it is also possible to
calculate the phase using the distance between the middle fringe and the upper
envelope or any other fixed point. A comparison between both methods is de-
picted in figure 4.3.
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4.1 Data Analysis

Figure 4.1: Example for data captured with the WinCamD (left) and the Mako
camera (right). Shot at the same alignment and a time interval of a few minutes.
The data from the Mako camera shows noticeable discrepencies from the ideal
Gaussian shape.

Figure 4.2: Example for fitcurves (black) applied to datapoints (purple) captured
with the WinCamD (left) and the Mako camera (right), as well as the respective
fits for the upper and lower envelope (orange). The data on the right corresponds
to figure 4.1, while the WinCam data originates from a previous alignment.
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4 Phase Stabilization

Although the evaluated peaks originate only from the raw data analysis using
the peakfinder, which is theoretically more error-prone than the fit, there is a
high level of agreement between both methods. As shown in Figure 5.1, the sec-
ond method has limited accuracy due to the pixel size of the camera, leading to a
resolution of 0.2π. After a three-week Christmas break, the setup had to be com-
pletely realigned, and the aforementioned camera change took place, resulting in
slight variations in these values. For the final setup, a fringe size of 202 µm in the
imaging plane and a pixel size of 5.86 µm give a resolution of 0.18π. As the goal
is to achieve a stabilization of about ±0.1π, this resolution is sufficient.
Consequently, the parameter selected for evaluation in the stabilization algo-
rithm is the distance between the upper envelope center and the middle fringe,
which only requires a fit of the envelope.

Figure 4.3: Comparison between the phase obtained by the fit (orange) and the
phase calculated with a relative distance of the middle fringe (purple). The data
originates from the measurement without stability in section 5.1.

4.2 Piezoelectric Feedback

Before the work on stabilization algorithm can begin, the response of the piezo
stack and the effect on the accordion lattice need to be quantified. This was done
for both configurations, before and after the camera switch.
The function-generator is set to a triangular signal with a peak to peak voltage of
0.4 V. As in all later measurements, the amplification of the analogue power am-
plifier is set to maximum, corresponding to a ×30 amplification. The measured
responses of the phase for both setups are depicted in figure 4.5, with identical
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4.2 Piezoelectric Feedback

Figure 4.4: Resolution of the phase calculated with the peaks. The data originates
from the measurement without stability in section 5.1.

parameters apart from a varied frequency.
Both measurements clearly reflect the applied triangular voltage, although the
data from the mako camera (figure 4.5b) again shows large inaccuracies.
For this setup, the information obtained from the peaks shows a phase shift of
∆φ = 1.05π, with a movement of the center fringe of 105.5 µm in the imag-
ing plane or 2.38 µm in the trapping plane. This results in a conversion rate of
263.7 µm/V or 2.61 π/V.
Using this information it is also possible to determine the fringe distance by cal-
culating the distance moved for a shift of ∆φ = 2π. This gives d = 200.9 µm,
which agrees excellently with the fringe distance of 201.8 µm determined through
fitting.

Although these values match very well, a movement of the upper envelope was
observed after a poorer match in the first setup. It is visible in figure 4.6 and was
also found identically in the final setup.
Ideally, the motion of the piezo should be exactly parallel to the beam propaga-
tion direction, thus only changing the path length and not the beams direction.
However, the stack was not optimally glued due to problems with the selected
adhesive [10], and due to observated deviations during the alignment procedure,
a slight bending of the mirror was considered to be probable.
This leads to errors in our assumption, and therefore to the observable undesired
movement.
As the stabilization of the accordion lattice relies on evaluating the relative posi-
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4 Phase Stabilization

(a) Piezo response in first setup. (b) Piezo response in final setup.

Figure 4.5: Response of the phase to a triangular voltage with Vpp = 0.4 V applied
to the piezo.

tion between the peak and the envelope, this motion inevitably impacts the per-
formance of the mechanism. Regarding the peak’s motion, the envelope shows a
relative shift of 19.9%, a margin considered tolerable for stabilization within the
experimental framework, given the minor nature of these adjustments.
Additionally, novel mounting of the piezo, planned in parallel to this thesis, is
expected to improve the performance.

Figure 4.6: Movement of the envelope center and the middle fringe as a reaction
to a triangular voltage applied to the piezo. One false measurement was removed
from the fringe data.
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4.3 Feedback Algorithm

4.3 Feedback Algorithm

The basic concept of the stabilization algorithm consists of taking an image in a
fixed time interval, checking if correction is required and if so, applying a voltage.

Taking Data

Because the images from the Mako camera show some noticeable fluctuations
(see figure 4.5b and section 4.1.1), and the acquired data must be very precise, the
data acquisition process involves taking more than a single image. A number of
around ten images (refer to section 5.2) are captured in succession, each of which
is analysed separately, resulting in multiple values for the relative distance.

Processing the Data

To process the aforementioned dataset, the first step is to fit the Gaussian en-
velope for each image and determine the distance of its center and the middle
fringe, as described in section 4.1.2. Subsequently, the calculated values are used
to inspect for spurious measurements through the calculation of the standard
deviation σ and subsequent removal of all measurements exhibiting deviations
from the mean exceeding 2σ. The mean and standard deviation of the remaining
values are then returned. Afterwards the resulting standard deviation is checked
and if it is above a limit of 1 µm, the measurement is repeated.

Correction

If the mean distance surpasses the predefined threshold (see section 5.2), the pro-
gram triggers a correction process. Utilizing the established conversion factor (as
discussed in section 4.2), the mean distance is employed to compute the neces-
sary voltage for its elimination. If the resulting voltage falls within the accepted
boundary, it is added to the current DC-offset of the function generator, else the
program rises an error message and shifts the lattice 2π in the opposite direction.
Since the limit lies at ±3 V, which would correspond to a phase shift of 7.83π,
this scenario is very improbable under a controlled environment.
Afterwards, a follow-up measurement is conducted to verify the success of the
correction. If necessary, up to ten additional corrections will be performed to at-
tain alignment within the designated threshold.
Upon successful correction, a fixed duration, called sleeptime, is waited before

29



4 Phase Stabilization

initiating the entire process anew. A detailed experimental characterization of
the stabilization loop and the involved parameters will be discussed in section 5.
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5 Results

The following section will present the results of the effort for phase stabilization
of the accordion lattice tap, including a brief overview over the chosen feedback
parameters and their impact, as well as a reference measurement to quantify the
long term drifts.

5.1 Initial Stability

In order to be able to precisely evaluate the stabilization, the phase drift of the
setup without optimized stability is first investigated. Since the path difference
of the beams is in the order of the light wavelength, the phase of the accordion
lattice is very sensitive and even minor external disturbances have a noticeable
effect on the stability. Therefore, a reliable measurement was not possible during
the day due to other people working on the lab bench. To assess the stability,
images were taken every minute over 12 hours during the night. The data can be
seen in figure 4.3.
A phase shift of ∼0.6π is observed here, which would result in a loss of trap
depth of 2,75% or 2.21 µK. Furthermore, the central fringe would experience a
displacement of 5.81 µm, which, given the fringe size of 20 µm, would lead to a
loss of atoms to the neighbouring fringe during the loading of the ∼ 15 µm sized
atom cloud.

Figure 5.1: Measured phase over 12 hours during the night without stabilization.
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5.2 Parameter Optimization Process

As discussed in section 4.3, the algorithmic feedback loop uses multiple prede-
fined parameters during the stabilization process, for which additional testing
and fine tuning is necessary.

Threshold

The threshold defines the trigger value of fringe displacement for initiating the
correction process, thereby only correcting distance measurements above the
threshold. This parameter thus determines the sensitivity of the stabilization.
In order to choose reasonable parameters here, the effect on the experimental
context must be considered. To achieve a maximal fringe displacement of 1 µm
during loading, a phase fluctuation of less than 0.1π is required. This would
result in a maximum trap depth loss of 0.08% or 0.06 µK, which is more than
sufficient for this experimental frame. After compression to the minimal fringe
distance of 1.7 µm, this corresponds to a fringe displacement of 0.09 µm and a
trap depth loss of 0.009% or 0.007 µK.
This shows, that the critical value is primarily the displacement while loading,
which would be sufficient at 1 µm, but an even lower value would be ideal to
minimize atom loss even further.
First, measurements were therefore carried out with a threshold of 0.04π, which
would limit the displacement to 0.39 µm. However, the measurement shown in
figure 5.2 reveals the problem of a too narrow threshold. Since the corrections
are not always ideal, which might be due to inconsistencies in the response of
the piezo to the applied voltage (see section 5.2), a small threshold often requires
a re-correction. As observed at around 18:30 during the measurement of figure
5.2, this can lead to jumping back and forth around the correction limits in the
case of successive overcorrections (too much voltage applied).
In order to keep the number of required corrections low and to avoid these in-
stabilities, it was ultimately decided to discard a more precise restriction and to
select a threshold of 0.1π.

Voltage Conversion Factor

The relationship between the voltage applied to the piezo stack and the achieved
shift of the center fringe is described by the voltage conversion factor. In section
4.2 a factor of 263.7 µm/V was measured.
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Figure 5.2: Exemplary stabilization measurement with a threshold of 0.04π. Plot-
ted here is the measured phase, where the purple points represent standard mea-
surements and the orange points the measurements to verify a conducted correc-
tion. The other parameters were: voltage conversion factor - 280 µm/V, sleep-
time - 5 min, number of images - 10.

However, the first stabilization measurements showed that the values corrected
with this factor often missed the target of an eliminated displacement. At times,
they overshoot the envelope center, while at other times, they fall short of it.
The calculated values for the conversion factor, derived from these responses to
the applied voltage, differ significantly from the previously measured one. As
shown in 5.3, very large fluctuations can be observed in both directions, lead-
ing to a standard deviation of 173.1 µm/V. Also observable here are multiple
negative values, which would indicate a fringe movement opposite to the antic-
ipated direction. These could originate from a massive overcorrection, inducing
a phase more than π, which would lead to a change of reference fringe, since the
neighbouring fringe is now closer to the envelope center. The algorithm is not ca-
pable of detecting this scenario, therefore making it a potential error source and
emphasizing the importance of a well-isolated environment. As another possible
reason of the negative values is simply an externally induced shift in between the
correction and the follow-up measurement, a reliable correction of the thereby
potentially falsified values is difficult. Compared to these fluctuations, the mean
of 286.8 µm/V still agrees quite well with the expected value of 263.7 µm/V.
This implies that the problem is not a misestimation of the factor, but rather other
irregularities like the reactions of the piezo. That inconsistency is a major source
of error and often leads to the necessity for several corrections.
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Figure 5.3: Calculated conversion factors using the measured distance before and
after the correction as well as the applied voltage. The different colours indicate
four different stabilization cycles with slightly different parameters, which are
not relevant for the calculation.

One attempt to minimize these deviations consisted of selecting a fixed position
instead of the center of the envelope as a reference for stabilization. The unde-
sired movement of the envelope identified in section 4.2 thus no longer plays a
role. Since the result shown in figure 5.4 with a standard deviation of 229.2 µm/V
does not show any improvements, this can be eliminated as a potential cause.

Figure 5.4: Calculated conversion factor as in figure 5.3 during stabilization to a
fixed reference point.

A more application-oriented investigation of the piezo reaction is then conducted.
The relative distance directly before and directly after a voltage jump of 0.03 V is
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measured ten times in total with ten measurements in between at a constant volt-
age. The result can be seen in 5.5 and confirms the volatility of the piezo response
and shows that the measurements are very jumpy overall.

In order to deal with these fluctuations in the best possible way, it was decided to
set the factor to 300 µm/V, moderately above the measured value. This prevents
the observed effect of bouncing back and forth around the correction limit due to
overreaction. The more frequent error is then undercorrection, often necessitat-
ing only one additional corrective adjustment.

Figure 5.5: Measurement of the fringe displacement (purple) during ten voltage
jumps of 0.03 V (blue) for piezo response characterization.

Sleeptime

The sleeptime defines the interval between two measurements, therefore deter-
mining the measurement frequency. Since the setup is highly sensitive and mea-
surements have shown minor abrupt jumps, a value of a few minutes seems
appropriate. A comparison of measurements with sleeptime durations of 5 min-
utes and 2 minutes reveals slight advantages of the shorter duration. However,
as the differences are marginal and the primary task of stabilization is to prevent
long-term drifts on the order of hours, further reduction is not particularly bene-
ficial. Therefore, a value between 2 and 5 minutes is recommended. For the final
parameterization of this work, a sleeptime of 2 minutes was chosen, considering
the limited duration of measurements confined to nighttime.
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Number of Images

In order to account for the imprecisions observed in the data from the Mako cam-
era, each measurement consist of multiple images. A large number of images per
measurement increases the precision, as the extracted mean is more accurate and
the identification of false measurements is more reliable. However, each image
must be fitted and calculated individually, which results in a significantly longer
measurement time.
The compromise chosen is to take 10 images per measurement, as a reliable cal-
culation of the average and the standard deviation is still possible and the mea-
surement time remains in the lower second range. The average error per mea-
surement in this case is ∼ 0.005π or ∼ 0.5 µm.
Stabilization with 20 images per measurement also show hardly any visible im-
provements during the process compared to the 10-image case, the calculated
improvement of the error is in the order of 0.0001π and therefore likely only
noise fluctuation.

Overview

An overview of the final parameter choices is depicted in table 5.1.

Threshold Conversion Factor Sleeptime Number of Images

10 µm 300 µm/V 2 min 10

Table 5.1: Final parameters for the phase stabilization feedback loop.

5.3 Final Stabilization

Utilizing the final parameters outlined in section 5.2, this section focuses on a
comprehensive performance analysis of the phase stabilization mechanism ap-
plied to the accordion lattice. Two measurements conducted during nighttime
employing these parameters are illustrated in figure 5.6 and 5.7, serving as the
foundation for subsequent analysis and discussion of the obtained results.

First, the maximal phase deviation that can be observed is 0.56π at around mid-
night in figure 5.6.
The corresponding voltage applied to the piezo during this measurement also
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shows a sudden decline of ∼0.6π at that time. As the voltage afterwards stays
at that level, a change of evaluated reference fringe (see section 5.2) due to some
measurement error or external influence, is strongly indicated.
In the future application a much more controlled and protected environment will
most likely minimize external influences and therefore those occurrences.
Apart from this outlier, both voltage curves reflect good responses to the long
term phase drifts. Especially in figure 5.6, a clean suppression of a long term
drift is visible after midnight.

Overall, the standard deviation of the measured points across both measure-
ments amounts to 0.085π and is therefore slightly below the threshold 0.1π. This
corresponds to an average center fringe displacement of 0.83 µm during the load-
ing process. With the atom cloud size of ∼ 15 µm and the fringe distance of
20 µm, this movement is tolerable given a precisely aligned loading setup. The
loss of trap depth amounts to only 0.056% or 0.045 µK.
For the corrected values, the standard deviation amounts to 0.054π, which is as
expected quite high, considering the conversion factor analysis in section 5.2.
It also shows, that a stabilization with a confinement below 0.05π is difficult to
realise. While using a finer threshold allows averaging lower displacements, the
risk of causing successive overcorrections increasing.
For later implementation, the advantages of a precise average confinement have
to be weighed against the potential of short term instabilities. A threshold be-
tween 0.1-0.05π is advised.
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Figure 5.6: First measurement of the phase (top) and the applied voltage (bottom)
during stabilization using the final parameters.

Figure 5.7: Second measurement of the phase (top) and the applied voltage (bot-
tom) during stabilization using the final parameters.
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6 Conclusion and Outlook

In this thesis, the stability of an accordion lattice dipole trap was improved by im-
plementing an imaging setup in combination with a phase correction feedback
algorithm.
The first step was reconstructing the existing accordion lattice design, serving as
a test setup. Subsequent advancements included the incorporation of an imaging
setup, necessitating the addition of two lenses and the development of an align-
ment procedure, as well as an objective lens and a camera. Despite encountering
challenges such as inaccuracies after a camera switch and errors during measure-
ments with the new camera, the captured images showed precise alignment and
allowed to reliably extract the phase. The phase extraction was conducted by
determining the relative shift of the captured middle fringe to the fitted center of
the upper envelope.

After verifying the need for stabilization through the measurement of long-term
passive phase drifts of ∼0.6π, a piezo control setup was implemented, comprised
of a piezoelectric conductor mounted to a reflecting mirror, a function generator
and an analogue power amplifier. To manipulate the phase and thereby the po-
sition of the center fringe relative to the envelope center, a voltage was applied
to the piezo, which by its movement manipulates the path difference between
the interfering beams. Response measurements demonstrated the functionality
and yielded a voltage to fringe movement conversion factor of 263.7 µm/V in the
imaging plane of the test setup.
During the final stage, a feedback algorithm was developed to automate the
phase measurement as well as the check for necessary correction voltages and
subsequent application. Parameters such as threshold and voltage conversion
factor were analyzed and optimized to achieve optimal system performance. The
culmination of these efforts resulted in an average phase deviation of 0.085π,
corresponding to a center fringe displacement of 0.83 µm and a trap depth loss of
0.045 µK (compared to a total trap depth of 80.2 nK). The crucial value of fringe
displacement during loading is thus below the minimum target of 1 µm and sig-
nificantly reduces the shift induced by the long term drifts of ∼ 5.8 µm.
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6 Conclusion and Outlook

Room for improvement lies in the accuracy of the conducted corrections. The
corresponding standard deviation of 0.054π shows the limitation of this setup,
since further reduced threshold values, attempting increased precision, can lead
to instabilities. One reason for those fluctuations could be the measured irregu-
larities in the piezo response, but also measurement errors or external influences,
which are also reflected by a few large outliers.

However, it is anticipated that the transition to the better isolated main setup
will mitigate such occurrences and together with the planned implementation of
a new piezo mounting system, which is expected to enhance the consistency in
piezo response, the developed system promises an achievement of even higher
precision for correction and stabilization in the future.
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