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Abstract

Heavy quarks, i.e. charm and bottom quarks, are unique probes to study the properties
of the hot and dense QCD medium produced in heavy-ion collisions, the quark-gluon
plasma (QGP). Due to their large masses, heavy quarks are produced at the initial stage
of the collision almost exclusively via hard partonic scattering processes. As a result,
heavy quarks experience the entire collision history: they propagate through the QCD
medium and interact with its constituents, potentially leading to their thermalization
within the QGP. While various evidences supporting the thermalization of charm quarks
at the LHC have been collected in recent years, the thermalization process highly de-
pends on the colliding system and energy. The present study focuses on the possible
thermalization of charm quarks at RHIC in Au−Au collisions at a center-of-mass en-
ergy of

√
sNN = 200 GeV. The local thermalization of charm quarks is examined using a

recently developed fluid-dynamic approach. The output of our analysis is fit to the avail-
able experimental data of the STAR collaboration. The heavy-quark spatial diffusion
coefficient multiplied by the temperature DsT is estimated using a Bayesian framework
that employs an ensemble of neural networks as emulator and Markov chain Monte Carlo
simulations.
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Zusammenfassung

Schweren Quarks, also Charme- und Bottom-Quarks, sind einzigartige Sonden zur Un-
tersuchung der Eigenschaften des heißen und dichten QCD-Mediums, das bei Schw-
erionenkollisionen entsteht, dem Quark-Gluon-Plasma (QGP). Aufgrund ihrer großen
Massen werden schwere Quarks fast ausschließlich durch harte partonische Streuprozesse
erzeugt im Anfangsstadium der Kollision. Infolgedessen erleben schwere Quarks die
gesamte Kollisionsgeschichte: sie propagieren durch das QCD-Medium und interagieren
mit dessen Bestandteilen, was möglicherweise zu ihrer Thermalisierung innerhalb des
QGP führt. Während in den letzten Jahren verschiedene Belege für die Thermalisierung
von Charm-Quarks am LHC gesammelt wurden, hängt der Thermalisierungsprozess stark
vom kollidierenden System und der Energie ab. Die vorliegende Arbeit konzentriert sich
auf die mögliche Thermalisierung von Charm-Quarks am RHIC bei Au−Au-Kollisionen
bei einer Schwerpunktsenergie von

√
sNN = 200 GeV. Die lokale Thermalisierung von

Charm-Quarks wird mit einem kürzlich entwickelten fluid-dynamischen Ansatz unter-
sucht. Die Ergebnisse unserer Analyse passen zu den verfügbaren experimentellen Daten
der STAR-Kollaboration. Der räumliche Diffusionskoeffizient der schweren Quarks mul-
tipliziert mit der Temperatur DsT wird mit Hilfe eines Bayesschen Systems geschätzt,
das ein neuronales Netzwerk-Ensemble-Emulatormodell und Markov-Ketten Monte Carlo
Simulationen verwendet.
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1 Introduction

Units and conventions

Throughout this thesis, all the calculations will be expressed using the natural units
system, which is widely used in particle physics. Here, the speed of light, the Plank’s
constant divided by 2π, and the Boltzmann constant are set as unit-less constants equal
to one: c = ℏ = kB = 1. Therefore, energy, momentum, and mass quantities will be
expressed in eV units, or its multiples.
Greek indexes will refer to four-vector components µ = 0, 1, 2, 3, while Latin indexes
will be used to indicate spatial coordinates i = 1, 2, 3. Moreover, Einstein summation
convention will be adopted: according to this notation, when an index variable appears
twice in a single term, this implies a summation of that term over all the values of the
index:

∑3
µ=0 cµx

µ ≡ cµx
µ = c0x

0 + c1x
1 + c2x

2 + c3x
3.

1.1 The Standard Model of Particle Physics

The Standard Model of particle physics (SM) is a gauge theory that classifies all known
elementary particles and describes three of the four fundamental interactions in the Uni-
verse: the electromagnetic, the weak, and the strong force.
The dynamics of SM’s particles, as well as the interactions between them, are described
by the Standard Model Lagrangian, which obeys U(1)× SU(2)× SU(3) symmetry.
Each symmetry of the SM is associated with a gauge field that mediates the corre-
sponding force. The electromagnetic interaction, mediated by the photon, is for instance
associated with the U(1) gauge symmetry. Similarly, the weak force is associated with
SU(2) symmetry, and the strong force with SU(3).
In the SM, the charges of particles determine the types of interactions they can partic-
ipate in. If a particle is electrically charged, it can interact via electromagnetic force,
while weak isospin and color charge are the charges associated with weak and strong
force, respectively.
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1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

Within the SM, particles are classified according to their properties and interactions, as
schematically depicted in Fig. 1.1.
The SM includes twelve spin-1/2 particles called fermions, which obey Fermi-Dirac statis-
tics [1]. These particles are considered as the building blocks of matter, and all of them
interact via weak interaction. Fermions are usually classified into six leptons and six
quarks. Three of six leptons possess electric charge (electron, muon, and tau particles)
and can interact via electromagnetic force. On the other hand, the corresponding three
neutrinos are neutrally charged and carry only weak isospin charge.
The six quarks carry color charge, and can therefore interact via the strong interaction.
These particles possess non-integer electric charges, which can be +2/3 (up, charm, and
top quark), or -1/3 (down, strange, and bottom quark).
Depending on their mass, fermions can also be classified into three different generations:
the lightest particles make up the first generation, while the heavier ones belong to the
second and third generations. All stable matter in the Universe is made of particles be-
longing to the first generation; the particles of the second and third generations quickly
decay into more stable ones.
In the SM fermions interact with each other by exchanging force-carrier particles, called
bosons. There are twelve spin-1 gauge bosons, obeying Bose-Einstein statistics [2].
Bosons mediate the three forces of the SM: as mentioned before, the photon mediates
the electromagnetic interaction, while three massive bosons (W+, W−, and Z0) are re-
sponsible for the weak interaction, and eight gluons mediate the strong interaction.
Moreover, the SM offers a good description of the mechanism responsible for the gener-
ation of the masses of fermions and of massive gauge bosons. The gauge symmetry of
the SM Lagrangian is preserved only if all particles of the SM are massless, in clear dis-
agreement with experimental results. This problem is overcome by introducing a spin-0
neutral boson, known as the Higgs boson [3, 4]. The interaction between the Higgs boson
and initially massless particles allows the latter to acquire mass, through a mechanism
known as symmetry breaking. The discovery in 2012 of the Higgs boson at the Large
Hadron Collider is regarded as one of the best achievements of the SM.
Even if the SM represents the best-known theory describing particle interactions, it is
important to point out that the model is not able to account for several experimental
observations, such as the neutrino’s masses [5], and the presence of dark matter [6]. For
this reason, further experimental and theoretical studies will be needed to shed light on
these unsolved questions.
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1.2. QUANTUM CHROMODYNAMICS

Figure 1.1: The elementary particles of Standard Model.

1.2 Quantum chromodynamics

Quantum chromodynamics (QCD) is the quantum field theory that describes the strong
interaction between quarks mediated by gluons. As introduced in Sec. 1.1, the underlying
symmetry of QCD is the invariance under SU(3) local gauge transformations. This sym-
metry translates into requiring that the Lagrangian of the strong force, LQCD, remains
invariant under the transformation Ψ(x) → Ψ′(x) = UΨ(x), where Ψ(x) represents the
quark wavefunction, and U ∈ SU(3) is the transformation matrix.
The group SU(3) is defined as the group of 3× 3 unitary matrices, having the determi-
nant equal to one. Since a general 3×3 matrix depends on nine complex numbers, it can
be described by eighteen real parameters. However, the unitarity condition U †U = 1 im-
poses nine constraints; therefore a 3×3 unitary matrix can be expressed in terms of nine
real parameters or, equivalently, nine linearly independent 3 × 3 matrices representing
the group’s generators. One of these generators can be identified as,

U =


1 0 0

0 1 0

0 0 1

 ei
ϕ
. (1.1)

Applying this transformation to Ψ corresponds to multiplying the wavefunction by a
complex phase and is therefore not physically relevant. The remaining eight matrices
form the generators of the SU(3) group, linearly independent from the identity and
therefore traceless. A suitable choice for these eight traceless generators is the Gell-
Mann matrices λa [7], which naturally generalize the Pauli matrices σi from SU(2) to
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1.2. QUANTUM CHROMODYNAMICS

SU(3). It can be easily proven that the λa matrices do not commute: thus, since its
generators do not commute, SU(3) represents a non-Abelian theory. Instead of working
directly with Gell-Mann matrices, in particle physics it is usually preferable to use Ta
matrices defined as,

Ta =
1

2
λa a = 1, 2, ..., 8. (1.2)

Knowing the generators of SU(3) group, every general matrix U ∈ SU(3) can be repre-
sented as,

U = eigsα(x)·T, (1.3)

where α(x) are spacetime functions that depend on U , and gs is the coupling strength
of the strong force. Similarly to QED, gs can be expressed in terms of the fine structure
constant of the strong interaction,

αs =
g2s
4π
. (1.4)

Knowing the mathematical representation of U , it is now possible to study how the quark
wavefunction Ψ behaves under SU(3) local gauge transformation,

Ψ(x) → Ψ′(x) = UΨ(x) = eigsα(x)·T Ψ(x). (1.5)

Since U is a 3 × 3 matrix, Ψ must include three degrees of freedom, which can be
represented by a three-component vector. This new degree of freedom, as mentioned in
Sec. 1.1 is termed color, and SU(3) local phase transformation corresponds to a rotation
of states in the color space.
Following the same QED formalism, the eight SU(3) generators can be associated with
eight massless bosons mediating the strong force, known as gluons. Mathematically, each
gluon can be represented by a gauge field Ga

µ, where a = 1, 2...8. Moreover, generalizing
the concept of electromagnetic field strength tensor, it is possible to introduce a QCD
field strength tensor Ga

µν [8], defined as,

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsfabcG

b
µG

c
ν . (1.6)

The last term of this expression arises due to the non-Abelian nature of QCD and must be
added to preserve the gauge invariance. Here, fabc is the structure constant of the SU(3)

group, defined as [λa, λb] = fabcλc. To preserve the invariance under the local gauge
transformation in Eq. 1.5, it is necessary to introduce a covariant derivative, obtained
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1.2. QUANTUM CHROMODYNAMICS

through the minimal substitution principle [9],

∂µ → Dµ = ∂µ − igs
λa
2
Ga

µ (1.7)

The covariant derivative encodes the interaction between the quark field q and the gluon
field Ga

µ, through a coupling strength gs.
Knowing the explicit expression of Dµ, the full dynamics of the strong force is expressed
by the QCD Lagrangian density [8],

LQCD = −1

4
Ga

µνG
aµν +

∑
f

q̄fb (i /Dab − δabMf )q
f
a , (1.8)

where /Dab = γµD
µ
ab, Mf represents the mass of quark with flavor f , and a and b are the

color degrees of freedom.
The first term of the LQCD not only represents the kinematics of gluons but also their
self-interaction. Mathematically the gluon self-interaction is encoded in the Gb

µG
c
ν ·Gdµ

and Gb
µG

c
ν · GdµGeν terms, representing respectively triple and quartic gluon vertices.

Thus, gluons both mediate color charge -as the photon mediates electric charge-, and
carry color charge themselves. The self-interaction of gluons has fundamental physical
implications, such as asymptotic freedom and color confinement.

1.2.1 Asymptotic freedom

Asymptotic freedom, discovered independently by Politzer [10] and Wilczek and Gross
[11], is a fundamental property of QCD. According to this property, the interactions
between quarks become asymptotically weaker as the momentum exchanged in the in-
teraction q2 increases, or, equivalently, when the distance decreases. In other words, if
q2 → +∞, then αs → 0. Asymptotic freedom can be explained considering the vacuum
polarization of QCD.
In QED, the fine structure constant αQED decreases with the distance. In the presence of
an electromagnetic charge, virtual e+−e− pairs are constantly created and annihilated in
the vacuum [12]: thus, the electric field induced by the virtual pairs leads to a screening
effect of the original electric charge at large distances.
Vacuum polarization also occurs in the case of QCD, where virtual quark-antiquark pairs
and virtual gluons are created in the presence of a color charge particle. However, gluons
self-interact, leading to an anti-screening effect at large distances, and overcoming the
screening effects of quarks [13]. From a mathematical point of view, the behavior of αs
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1.2. QUANTUM CHROMODYNAMICS

as a function of q2 can be described by the renormalization theory [14],

αs(q
2) =

αs(µ
2)

1 +
33−2Nf

12π αs(µ2)ln
(

q2

µ2

) , (1.9)

where µ2 is an arbitrary momentum reference scale and Nf is the number of quark fla-
vors. Since Nf = 6, the quantity 33 − 2Nf is always greater than zero and it is thus
immediate to verify that the value of αs decreases with q2.
The value of αs has been calculated by many of experiments, such as studies of τ lep-
ton decaying into hadrons, measurements of deep inelastic scattering, and studies on jet
productions [15]. In Fig. 1.2 the experimental values of αs as a function of q2 are shown.
These results fully agree with the predicted QCD asymptotic freedom, representing one
of the major successes of quantum chromodynamics.
Since quarks behave as quasi-free particles at high values of q2 (∼ 100 GeV), perturbative
QCD (pQCD) was developed to study physical processes in this regime. When αs ≪ 1,
the equations can be expanded in powers of the coupling constant, and a finite number
of the leading terms is sufficient to obtain an approximate solution.
However, perturbative QCD cannot be applied for small q2 processes, since αs ∼ O(1).
Thus, lattice QCD (lQCD) [16] techniques need to be exploited. lQCD has been de-
veloped to treat the processes with low momentum transfer: here, the calculations are
performed on a discrete lattice of space-time points, where quarks are placed in each
discrete site of the lattice, and gluons connect each site. Even if computationally in-
tensive, lQCD calculations represent a fundamental test of the validity of QCD in the
non-perturbative regime.

1.2.2 Color confinement

Color confinement is the phenomenon according to which color-charged particles cannot
be observed as free particles. Thus, quarks exist only in neutral-color objects: they com-
bine in quark-antiquark pairs or in triplets of quarks, forming respectively mesons and
baryons -generally called hadrons-.
Quarks interact by exchanging virtual gluons, which self-interact themselves. The inter-
action between quark and antiquark can be phenomenologically expressed by the effective
Cornell potential [18],

V (r) = −4

3

αs

r
+ κ · r, (1.10)
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1.3. THE QUARK-GLUON PLASMA

Figure 1.2: Measurement of αs at different values of the momentum exchanged q2.
Figure taken from [17].

where r is the distance between the quark and antiquark, and κ, called the string ten-
sion, is experimentally ∼ 1 GeV/fm [9]. Therefore, the quark potential comprises two
different contributions: the first term, the Coulomb-like term, dominates at small radii
and is repulsive, whereas the attractive strong force contribution κ · r manifests itself at
large distances. Since the potential increases with the distance between two quarks, it
would require an infinite amount of energy to pull two quarks one away from the other.
Therefore, with the increase of the distance r, at some point it becomes more energet-
ically favorable to create a new quark and antiquark pair, resulting in a color-neutral
state again.

1.3 The quark-gluon plasma

Given a thermodynamic system composed of a particle species, the chemical potential is
a physical quantity that represents the change in the free energy of the system due to
the change of the particle species number. In the case of QCD, it is useful to define the
baryon chemical potential µB, which quantifies the net baryon content of the system.
At high-temperature values or high baryon chemical potentials, quarks interact very
weakly due to asymptotic freedom. Therefore at extreme energy conditions, color-charged
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1.3. THE QUARK-GLUON PLASMA

particles can exist as deconfined, forming a state called quark-gluon plasma, QGP. While
at first it was expected that the QGP would behave as an electromagnetic plasma, by
now it is well established that the QGP is more similar to a strongly interacting fluid [19],
and it is thus described using relativistic hydrodynamics. While it is currently believed
that the QGP filled the Universe from the first few ms after the Big Bang [20], nowadays
the quark-gluon plasma can be created by high-energy heavy-ion collisions at the Large
Hadron Collider (LHC) at CERN and at the Relativistic Heavy Ion Collider (RHIC) at
BNL.
Studying the QGP is therefore crucial not only for our understanding of the early stage of
the Universe but also for assessing the behavior of QCD matter under extreme conditions.

1.3.1 The QCD phase diagram

Depending on the system’s temperature and energy density, color-charged particles can
be found either confined into hadrons or deconfined in the QGP. Due to the existence
of these two different phases, it is possible to build a QCD phase diagram, where the
different phases depend on the value of the temperature of the medium T and on the
baryon chemical potential µB. A possible QCD phase diagram is given in Fig. 1.3, where
it is shown that ordinary nuclear matter occurs at low-temperature values T ≲ 100 MeV,
and for µB < 1 GeV.
According to lQCD calculations, the transition between hadrons and the QGP is a smooth
crossover for vanishing values of µB [21, 22]. In a crossover, the thermodynamic properties
as pressure and energy density change continuously during the transition. For µB = 0,
lQCD calculations predict that the transition occurs at a pseudo-critical temperature
Tc ∼ 155 MeV [23]. The LHC center of mass energy exceeds the baryon mass by a factor
of 103: for this reason, it is expected that at LHC collisions µB ∼ 0. The experimental
results are in excellent agreement with this expectation [24]. Since it is also generally
believed that the QGP created immediately after the Big Bang was characterized by
µB = 0, the region at vanishing baryon chemical potential represents a fundamental tool
to study the early Universe.
The prediction of the phase diagram behavior for non-negligible values of µB is, on the
other hand, more involved, and it is currently not clear if a smooth transition between
the two phases occurs for every value of µB , or if the crossover changes to a first-order
phase transition at a critical point [25]. Collisions at future heavy-ion collision facilities
like Fair and NICA, which take place far away from µB = 0, will be able to help shed
light on this unsolved issue.
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1.3. THE QUARK-GLUON PLASMA

Figure 1.3: The QCD phase diagram as a function of the baryon density and of the medium
temperature. Figure taken from [27].

Finally, for µB ≫ 1 GeV and temperatures of T ≲ 100 MeV, QCD matter is predicted
to enter a color superconductive phase [26]. The understanding and modeling of this
region of the QCD phase diagram is not of less importance than the others, since it is
believed that these physical conditions correspond to the ones present in the cores of
neutron stars [26].

1.3.2 Heavy-ion collisions

Heavy-ion collisions (HIC) are collisions between beams of ions characterized by a high
atomic number (Pb, Au, Xe). In the case of LHC and RHIC highest energies, where the
energy at the center of mass is of the order of O(TeV) and of O(102 GeV) respectively,
these collisions are ultra-relativistic. If not stated otherwise, the following description
will focus on HIC occurring in such energy systems.
In the HIC coordinate system, the z-axis usually represents the longitudinal direction,
parallel to the initial beam. Moreover, due to the relativistic speed of the collision, when
studying the behavior of particles created in HIC, it is necessary to define a longitudi-
nal proper time τ =

√
t2 − z2, which represents a Lorentz boost-invariant quantity. A

schematic of heavy-ion collision evolution in the [z, t] plane is given in Fig. 1.4.
Since the QGP phase exists only for τ ∼ 10 fm = 10−23 s, all the properties of the plasma
can be inferred only from indirect observations. It is thus of fundamental importance to
understand the dynamics of heavy-ion collisions, which can be schematically described
as follows:
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1.3. THE QUARK-GLUON PLASMA

• Initial state. The collision of two nuclei occurs. Due to the high relativistic
energy, the ions are Lorentz contracted in the longitudinal direction, and, at first
approximation, the collision happens at a single instant of time t = 0, and in a
single longitudinal position z = 0. Due to the high energy of the beams, inelastic
scattering is the dominant interaction between particles.

• Pre-equilibrium phase. For 0 < τ < 1 fm, a non-thermalized state with strongly
interacting fields is formed. During this state, partons interact mainly through
hard scattering, leading to the production of high momenta particles and of heavy
quarks, i.e. charm and bottom quarks. However, the precise dynamic of this state
is still to be understood.

• QGP phase. After the pre-equilibrium phase, the system approaches local thermal
equilibrium: partons start interacting via soft scattering and the QGP is formed.
Due to thermal equilibrium, this state, which exists for 1 < τ < 10 fm [28], can
be described by relativistic hydrodynamics equations. This significantly simplifies
simulating the collective dynamics of the system.

• Hadronization. The QGP expands due to pressure gradients, and it cools down.
Eventually, the system reaches the pseudo-critical temperature Tc: here, a smooth
phase transition occurs and partons get confined into hadrons. Inelastic collisions
still happen among hadrons, so that chemical and kinetic equilibrium are main-
tained.

• Chemical freeze-out. As the system further expands, the rate of inelastic colli-
sions among hadrons decreases: when the system reaches the chemical freeze-out
temperature Tch, the rate becomes too small to maintain chemical equilibrium. Af-
ter this point, the chemical composition of the hadron gas is fixed and does not
change anymore, except for the presence of resonance decays.

• Kinetic freeze-out. As the density drops even further, the elastic collision rate
decreases, so that kinetic equilibrium cannot be maintained. When the system
reaches the kinetic freeze-out temperature, Tkin, particles do not exchange momen-
tum anymore, and they freely stream toward the detectors.

10



1.4. EXPERIMENTAL OBSERVABLES OF THE QGP

Figure 1.4: Space-time diagram of a heavy-ion collision of two nuclei colliding at time t=0 and
longitudinal position z=0. Figure taken from [24].

1.4 Experimental observables of the QGP

Many experimental results show that the QGP can be effectively described as a strong
interacting fluid: this translates into saying that the QGP exhibits collective behaviors,
and cannot be considered as the simple superposition of individual particles.
As underlined in the previous section, the QGP is not directly observable: the only
possible measurements involve hadrons or their decay products, which carry precious
information from the early hot stage. On one hand, low-momentum (pT ≲ 3 GeV) light
partons, known as soft probes, are strongly coupled to the medium, and their mean-free
path is very small with respect to the size of the system. Light hadrons are produced in
the late stage of the fireball and carry information about the collective behavior of the
QGP: soft probes are thus best suited to study the hydrodynamics of the plasma. On the
other hand, heavy quarks and high-momentum partons, called hard probes, are produced
at the beginning of the collision via hard scattering and do not necessarily reach full
thermalization with the rest of the medium. Therefore, these particles carry information
about all the evolution stages of the fireball, making them essential probes to infer the
properties of the QGP.
In order to characterize the particles produced from the QGP at the freeze-out, it is
useful to define some kinematic quantities, such as the transverse momentum and the
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rapidity, respectively defined as,

pT =
√
p2x + p2y , (1.11)

y =
1

2
ln

(
E + pz
E − pz

)
, (1.12)

where E represents the particle energy, and p⃗ = (px, py, pz) its momentum.
Having defined the transverse momentum and the rapidity, it is now possible to introduce
one of the most important experimental observables used to infer the properties of the
particles produced at the freeze-out, namely the differential transverse momentum yield,

E
d3N

dp3
=

1

2π

d2N

pTdpTdy
. (1.13)

The pT spectrum, which is a Lorentz invariant quantity, will be used in the present work
as the main observable to compare the developed model with the experimental data.
Moreover, by studying the pT invariant spectrum, information on the collective transverse
expansion of the QGP, the so-called radial flow, can be inferred. The partons in the QGP
experience an isotropic boost due to the radial flow: this effect will thus translate into
an increase of the average pT of the produced hadrons. Since the radial flow causes
the hadrons to acquire a common radial velocity, the push at larger values of transverse
momentum is more pronounced for heavier particles [29].

1.4.1 Anisotropic flow

As it will be discussed in Sec. 2.1, ions do not always collide head-on. In the case of
semi-central collisions, the overlap region of the two colliding ions in the [xy] plane is not
azimuthally symmetric, but approximately almond-shaped, as shown in Fig. 1.5. Thus, it
is possible to define a reaction plane as the symmetry plane of the overlap region, where
the beam direction and the vector connecting the center of the two ions lie.
When the system thermalizes, the initial spatial anisotropy of the overlap zone translates
into an initial energy density anisotropy. Therefore, pressure gradients between the fire-
ball and the surrounding vacuum will be larger in the reaction plane, leading after some
time to a larger fluid velocity in the same direction. This means that after hadronization
more particles will fly in the reaction plane direction. In other words, an anisotropy in the
angular distribution of the produced hadrons will be observed. A Fourier decomposition
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1.4. EXPERIMENTAL OBSERVABLES OF THE QGP

Figure 1.5: Semi-central heavy-ion collision, with impact parameter b, and overlap region
marked in red, in the [xy] plane (left panel) and in 3D (right panel). Arrows
illustrate the elliptic flow which results from the initial pressure gradients. Figures
taken from [30] and [31].

of the azimuthal dependence of the particle spectrum can quantify this anisotropy,

dN

dϕ
=
N

2π

[
1 + 2

∑
m

vm cos(m(ϕ− ψm))

]
, (1.14)

where ϕ represents the azimuthal angle of the produced particle in the transverse plane to
the beam, ψm is the reaction plane angle, and vn are generally called flow coefficients. The
second flow coefficient v2, known as the elliptic flow, reflects the azimuthal anisotropy
of particle distribution caused by the almond-like initial geometry. The elliptic flow
v2 represents the largest contribution to the particle distribution anisotropy in non-
central collisions, whereas the higher-order coefficients are mostly related to initial state
fluctuations. If QGP was an ideal gas of non-interacting partons, the initial overlap
anisotropy would not translate into pressure gradients, and the fireball would expand
isotropically in all directions. Measurements at RHIC and at LHC showed a positive
azimuthal anisotropy of the final particle spectra, quantified by elliptic flow measurements
[32]. This experimental result represents one of the most compelling evidences that the
QGP is indeed created in heavy-ion collisions, and can be treated as a strong interacting
fluid.
Moreover, due to the presence of the radial flow, a characteristic mass ordering at low pT

is observed when studying the elliptic flow. As underlined in the previous section, radial
flow leads to a depletion in the momentum spectrum by pushing the hadrons towards
larger momenta, and since the radial flow depends on the particle mass, this depletion
is more pronounced for heavier particles. As a result, for a given value of pT, heavier
particles have smaller v2 values compared to lighter ones [33].
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2 Heavy-ion-collision modeling

2.1 Initial state of heavy-ion collisions

Colliding ions are extended objects that are Lorentz contacted in the beam direction:
the number of particles produced by each heavy-ion collision depends therefore on the
geometry of the collision itself. Most of the time not all the nucleons participate in the
collision: the interacting nucleons are usually referred to as participants, while nucleons
almost unaffected by the collision are called spectators, as shown in Fig. 2.1.
Every heavy-ion collision is characterized by an impact parameter b, defined as the dis-
tance between the center of the two colliding nuclei. The value of b cannot be measured
experimentally: thus, HIC are classified according to their centrality class. The basic
assumption underlying centrality classes is that the impact parameter b is monotonically
related to the number of produced particles, the so-called multiplicity. Thus, events with
a small impact parameter (central collisions) will produce a large amount of charged
particles, in contrast to large-b collisions (peripheral collisions), characterized by a large
number of spectators.
To quantify the centrality classes of an ensemble of events, it is first possible to measure
the multiplicity of charged particles dNch for each event. Ordering the events according
to their multiplicity, a distribution of dNevt/dNch as a function of Nch can then be built.
From here, centrality classes are defined by binning the distribution on a fraction of its
total integral [35]: in other words, the centrality class 0 − 5% corresponds to the 5% of
collisions with the largest multiplicity, the 5 − 10% class to the second 5% with largest
multiplicity, and so on. Alternatively, centrality classes can be determined using the
distribution of the hadronic cross-section dσ/dNch, as shown in Fig. 2.2. However, since
the cross-section is not directly measurable, for practical implementations it is easier to
use measurable observables directly correlated with it.
Moreover, by modeling the geometry of each HIC event (for instance with a Glauber
model), it is possible to associate the impact parameter, or the number of participants
Npart, to each centrality class.
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Figure 2.1: Left: Two heavy ions before the collision, characterized by an impact parameter b.
Right: The spectators continue their path unaffected, while in the participant zone
particle production takes place. Figure from [34].

Figure 2.2: Example of the distribution dσ/dNch as a function of Nch. The plotted distribution
and values represent only an example and do not correspond to an actual measure-
ment. Figure from [35].
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2.1.1 The Glauber model

The Glauber model (GM) is a semiclassical model [36] developed to address the prob-
lem of high energy scattering with composite particles. The GM is based on the optical
eikonal approximation, which assumes that projectile nucleons travel along straight lines
and undergo multiple independent sub-collisions with nucleons in the target. This ap-
proximation is justified since at very high energy, the longitudinal momentum of the
nucleon exceeds the transverse component by several orders of magnitude. Thus, nucle-
ons will be essentially undeflected as the nuclei pass through each other, and the nucleon
trajectory can be described as a sum of all the phase shifts received at the scattering
centers inside the target.
The GM neglects that the nucleons are quantum mechanical objects, but allows for
the implementation of all the geometric aspects of the multiple scattering process. The
hypothesis of independent linear trajectories of the nucleons allows to develop simple
analytic expressions for the nucleus-nucleus interaction cross-section in terms of nucleon-
nucleon inelastic cross-section σinNN.
Nowadays, the Glauber Monte Carlo (GMC) approach is widely used in heavy-ion col-
lision. The GMC models the nucleus as made of uncorrelated nucleons, sampling the
position of each nucleon as randomly generated according to the nuclear density func-
tion. The nuclear charge density, which represents the input for the Glauber model, is
usually parameterized by a Woods-Saxon distribution [37],

ρ(r) =
ρ0

1 + e(r−R)/a0
, (2.1)

where ρ0 represents the nucleon density in the center of the nucleus, a0 is the skin depth,
and R referred to as nuclear radius, is the distance from the nucleus center after which
the density is halved.
After defining their nuclear density, two nuclei can then be arranged with impact pa-
rameter b and projected onto the [xy] plane. The value of b is usually sampled from a
given probability distribution P (b)db, whose explicit form depends on the specific GM
simulation. Knowing σinNN, the interaction probability between the two nuclei can then
be calculated.
Despite its relative simplicity, the Glauber model has qualitatively fit many experimental
results [35] and inspired many similar models.
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2.1.2 The TRENTo model

TRENTo is an initial condition model [38] for high-energy nucleus-nucleus collisions,
which generates initial entropy profiles without assuming specific physical mechanisms
for entropy production, pre-equilibrium dynamics, or thermalization.
Within this model, the position of each nucleon inside a given nucleus is sampled from
the Wood-Saxon distribution given in 2.1. Since in the GM the nucleons are the relevant
degrees of freedom of the collision, a nucleon density ρnucleon(x, y, z) must also be defined,
which physically represents the probability per unit of volume to find a given nucleon
inside a given nucleus in the position (x, y, z).
Due to the Lorentz contraction, in its first version TRENTo describes nuclei as 2-
dimensional objects, which collide at the center of the reference frame. Supposing the
beam travels along the z-axis, the probability per unit of transverse area of finding the
nucleon located in (x, y), the so-called thickness function, is given by integrating the
nucleon density with respect to z [38]. In TRENTo the thickness function is described
as a Gaussian distribution with width w,

Tnucleon(x, y) =

∫
dzρnucleon(x, y, z) =

1

2πw2
exp

(
−x

2 + y2

2w2

)
. (2.2)

However, to account for the experimentally observed proton-proton multiplicity fluctua-
tions [39], a fluctuated thickness function is often used instead,

Tnucleon(x, y) = m

∫
dzρnucleon(x, y, z), (2.3)

where the factor m represents an independent random weight sampled from a gamma
distribution with unit mean,

Pk(m) =
kk

Γ(k)
mk−1e−km. (2.4)

The value of k, called the shape parameter, can be tuned according to the experimental
data: small values of k (0 < k < 1) correspond to large multiplicity fluctuations, while
large values of k translate into a suppression of fluctuations.
Let us now consider two nucleons a and b, which belong to the two different colliding
nuclei A and B respectively. The probability of collision between these two nucleons can
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be calculated as [40],

Pcoll = 1− exp

[
−σgg

∫
dxdy

∫
dzρa

∫
dzρb

]
, (2.5)

where σgg represents an effective parton-parton cross-section, while the integral in the
exponential represents the overlap integral of the two nucleons’ thickness functions.
First, in TRENTo the probability of collision of a and b is calculated to determine if the
two nucleons collide: if so, a and b are labeled as “participants”. To compute the total
number of participant nucleons, the same procedure is repeated for each nucleon-nucleon
pair. Knowing the number of participants Npart of the nucleus A, its fluctuated thickness
function will be given by summing the participants’ contribution,

TA(x, y) =

Npart∑
i=1

mi

∫
dzρnucleon(x− xi, y − yi, z − zi). (2.6)

One of the main assumptions of TRENTo is that there exists a scalar function f(TA, TB)
that connects the thickness functions of the two colliding nuclei with the entropy depo-
sition. Moreover, the function f is proportional to the entropy created at mid-rapidity
at the initial time τ = τ0,

f ∝ dS/dy|τ=τ0 . (2.7)

There are several possibilities on how to build f as a function of TA and TB. Taking into
account recent experimental constraints [38, 41], TRENTo identifies f with the reduced
thickness function, defined as,

f ≡ TR(p;TA, TB) =

(
T p
A + T p

B

2

)1/p

. (2.8)

Different values of p correspond to different physical mechanisms for entropy production.
For p = 1, the reduced thickness corresponds to the arithmetic average of TA and TB,
and each nucleon deposits the same amount of entropy. On the other hand for p = 0,
TR =

√
TATB, and a single symmetric amount of entropy is deposited at the mid-point

of the collision.
After fixing p and calculating the reduced thickness function TR, it is thus possible to
infer the value of dS/dy from 2.7, up to a normalization constant. Moreover, it is worth
noting that to a good approximation [42], the average charged-particle multiplicity ⟨Nch⟩
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is proportional to the total initial entropy,

⟨Nch⟩ ∝
∫
dxdyTR(x, y). (2.9)

In this work, the entropy profile dS/dy will be used as the initial condition, from where
it is possible to evolve the system through hydrodynamics equations.

2.2 Hydrodynamic description of QGP

Fluid dynamics describes the collective behavior of microscopic degrees of freedom of a
system making use of its macroscopic quantities, such as transport properties and equa-
tions of state.
The QGP behaves as a strong-interacting fluid, and can thus be modeled by relativis-
tic fluid-dynamic equations. While first principle calculations of the macroscopic fluid
properties of the QGP are still challenging, phenomenological and theoretical studies are
motivated by an increasing amount of experimental results.
The equations of motion of a relativistic fluid are usually obtained by imposing the con-
servation of some physical quantities, which, in the case of heavy-ion collisions, are the
energy, the momentum, and the number of charges of the system. The conservation of
energy and momentum is summarized by the energy-momentum tensor Tµν , which de-
scribes the density and flux of energy and momentum in (t, x, y, z) space. On the other
hand, the conservation of the charges’ number can be imposed by introducing a current
Nµ for each conserved charge. The explicit formulation of these quantities depends on
the characteristics of the fluid studied and will be addressed in the following two sections.

2.2.1 Ideal fluid dynamics

A fluid can be defined as ideal if it is characterized by three properties: it is incompress-
ible, it moves in a laminar regime, and it does not show any internal resistance to flow,
or, in other words, it has zero viscosity. Even if no such fluid exists in practice, ideal
fluid dynamics provides a simplified model description of real fluid dynamics.
For an ideal fluid, the energy-momentum tensor Tµν can be expressed as a function of
the fluid energy density ϵ(x), and of its pressure P (x). In the system rest frame, where
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the fluid is at rest, it can be shown [43] that Tµν is given by,

Tµν =


ϵ(x) 0 0 0

0 P (x) 0 0

0 0 P (x) 0

0 0 0 P (x)

 . (2.10)

Supposing for simplicity that the system is characterized by only one conserved charge
Q with density n, the current associated with Q in the fluid rest frame can be expressed
as,

Nµ = (n, 0, 0, 0). (2.11)

To obtain the energy-momentum tensor and the conserved current in a general frame, it
is first necessary to introduce the fluid 4-velocity uµ(x), which is defined as the rate of
change of the four-position xµ = (t, x⃗) with respect to the proper time τ ,

uµ(x) =
dxµ

dτ
=

(
dt

dτ
,
dx⃗

dτ

)
= γ · (1, v⃗), (2.12)

where γ = 1√
1−v2

is the Lorentz factor, τ the proper time, and v⃗ the fluid velocity. Of
course in the reference frame where the fluid is at rest, uµ = (1, 0, 0, 0).
One of the most important characteristics of the 4-velocity is the unitarity of its norm,

u2 = gµνu
µ(x)uν(x) = γ2(−1 + v2) =

1

1− v2
(−1 + v2) = −1, (2.13)

where gµν = diag(−1,+1,+1,+1) is the metric in Minkowski space. Since its norm is
fixed, uµ depends only on 3 independent components.
Starting from Eq. 2.10 and 2.11, it is possible to apply a Lorentz boost to Tµν and to
Nµ in the local rest frame with respect to the 4-velocity field uµ(x), leading to [43],

Tµν = ϵ uµuν + P (gµν + uµuν) = ϵ uµuν + P ∆µν , (2.14)

Nµ = nuµ, (2.15)

where ∆µν is the projector tensor orthogonal to the fluid velocity, ∆µν ≡ gµν + uµuν .
Knowing the explicit form of Tµν and of Nµ it is now possible to ask for energy-
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momentum and charge conservation,

∂µT
µν = 0, (2.16)

∂µN
µ = 0, (2.17)

which lead to the following equations of motion,

uµ∂µϵ+ (ϵ+ P )∇µu
µ = 0, (2.18)

(ϵ+ P )uµ∇µu
ν + (gµν + uνuµ)∂µP = 0, (2.19)

∂µ(u
µn) = 0 (2.20)

This system represents 5 equations in 6 variables: P , ϵ, uµ, and n. For this reason,
additionally an Equation of State (EoS) P (T ) has to be introduced to form a closed
system of equations. The Equation of State is a thermodynamic relation between state
variables, usually expressed by the pressure as a function of temperature.
Ideal fluid dynamics cannot explain the observed momentum anisotropies that develop
in the QGP lifetime, introduced in Sec. 1.4.1. Thus, in order to correctly describe
the QGP, it is necessary to introduce dissipative corrections, which take into account
non-zero viscosity contributions.

2.2.2 Viscous fluid dynamics

In fluid dynamics, viscosity is a physical quantity that measures the internal frictional
resistance of a fluid to deformation or flow. In general, viscosity depends on the fluid
state, such as its temperature, pressure, and rate of deformation. Zero viscosity can
be observed only at very low temperatures in superfluids; otherwise, the second law of
thermodynamics requires all real fluids to have positive viscosity.
In general, it is possible to distinguish between two different types of viscosity: the shear
viscosity η and the bulk viscosity ζ. The shear viscosity is a measure of the fluid re-
sistance to flow under the action of a force parallel to the fluid cross-section, usually
referred to as shear stress. The shear viscosity quantifies the internal friction between
adjacent layers of fluid as they move relative to each other. On the other hand, bulk
viscosity represents the fluid resistance to changes in volume, describing its response to
compression or expansion.
The viscosities η and ζ are usually called transport coefficients since they describe the mi-
croscopic momentum exchange and therefore the dissipation of energy. Usually, strongly
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interacting quantum field theories compute the value of the diffusion coefficients divided
by the entropy density s [44]. Thus, for the sake of consistency, the dimensionless quan-
tities η/s and ζ/s will also used throughout this thesis to characterize shear and bulk
viscosity contributions.
To account for the presence of both types of viscosity, the ideal Tµν in Eq. 2.14 has to
be modified as follows,

Tµν = Tµν
ideal +Πµν = ϵ uµuν + (P + πbulk)∆

µν + πµν , (2.21)

where πµν is a symmetric tensor having as entries the shear-stress components and or-
thogonal to the fluid velocity (πµνuµν = 0), while πbulk is the bulk viscous pressure,
measuring the deviation of the isotropic pressure.
The presence of dissipative effects in a fluid can cause a non-uniform concentration of
the charges, leading to the emergence of the diffusion current, defined as the flow of
charges caused by variation in their concentration. The diffusion current is described by
the 4-vector νµ, and, in analogy to the case of bulk and shear viscosity, it is related to a
transport coefficient, the charge-diffusion coefficient κn.
Taking into account the effect of the diffusion, the conserved charge current in the dissi-
pative case can be expressed as,

Nµ = Nµ
ideal + νµ = nuµ + νµ. (2.22)

Analogously to the ideal case, the equations of motion can be derived from the conser-
vation laws in Eq. 2.16 and in 2.17, leading to,

uµ∂µϵ+ (ϵ+ P + πbulk)∇µu
µ + πµν∇µuν = 0, (2.23)

(ϵ+ P + πbulk)u
µ∇µu

ν +∆µν∂µ(P + πbulk) + ∆µ
ν∇ρπ

ρν = 0, (2.24)

∂µ(nu
µ + νµ) = 0. (2.25)

In this form, this system of equations is not closed and needs additional information on
πµν , πbulk and νµ. The first-order hydrodynamics bases its equations on imposing the
validity of the second thermodynamic principle, ∇µ(su

µ) ≥ 0, where s is the entropy
density [43, 45]. This formulation leads to an expression of the dissipative currents in
terms of first-order derivatives with respect to the fluid velocity, the temperature, and the
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ratio between chemical potential corresponding to the conserved charge and temperature,

πµν = −2η

(
1

2
∆µα∆νβ +

1

2
∆µβ∆να − 1

3
∆µν∆αβ

)
∇αuβ = −2ησµν , (2.26)

πbulk = −ζ∇µu
µ, (2.27)

νµ = κn∆
µ
ν∇ν

(µ
T

)
. (2.28)

These equations represent the relativistic generalization of the Navier-Stokes theory [43].
Even if it is the most straightforward procedure, this formulation violates the causality
principle and it is linearly unstable [46].
A viable candidate for a relativistic formulation of dissipative fluid dynamics, which does
not show causality problems, is the so-called second-order hydrodynamics developed by
Müller, Israel and Stewart [47, 48]. The main idea behind this theory is to provide
dynamical equations for the shear-stress tensor πµν , for the bulk viscous pressure πbulk
and for the diffusion current νµ which evolve according to an equation of motion,

π̇µν = − 1

τshear
[πµν − 2ησµν ] , (2.29)

π̇bulk = − 1

τbulk
[πbulk + ζ∇µu

µ] , (2.30)

ν̇µ = − 1

τn

[
νµ − κn∆

µ
ν∇ν

(µ
T

)]
. (2.31)

Using this approach, the equations of motion depend on additional second-order transport
coefficients, the relaxation times τshear, τbulk, and τn which represent the relaxation of
πµν , πbulk, and νµ respectively towards their Navier-Stokes values. Relaxation times are
of fundamental importance in ensuring that causality is preserved.
The Müller-Israel-Stewart equations of motions form a closed system of first-order, quasi-
linear partial differential equations for the energy density ϵ, the independent components
of fluid velocity, for the shear-stress tensor components, and for bulk viscous pressure.
However, these equations cannot be solved analytically: therefore, in order to describe
the QGP dynamics, numerical methods need to be developed.

2.2.3 FluiduM package

To describe the dynamics of heavy-ion collisions, it is of fundamental importance to
choose a suitable coordinate system. As a matter of fact, to discuss the experimentally
observed symmetries of HIC, the Cartesian coordinates (t, x, y, z) are not well suited.
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A natural choice for the center of the system is at the center of the collision (x = y =

z = 0), at the initial laboratory time t = 0. The time t and the longitudinal coordinate
z can be expressed as a function of the proper time, also called Bjorken time τ , and of
the pseudorapidity η respectively defined as,τ =

√
t2 − z2

η = arctanh(z/t).
(2.32)

When the particle energy is much larger than its mass, the pseudorapidity η coincides
with the rapidity defined in Eq. 1.12. For this reason, throughout this thesis, we will use
these two terms interchangeably.
On the other hand, in the transverse plane, it is convenient to use cylindrical coordinates
such that the radial coordinate r and the azimuthal angle ϕ are written as,r =

√
x2 + y2

ϕ = arctan(y/x).
(2.33)

The equations in 2.32 and in 2.33 allow the transformation from the Cartesian coordinate
system to a new system of coordinates (τ, η, r, ϕ). The latter is particularly suited to
discuss two important symmetry transformations: the approximate azimuthal rotation
symmetry ϕ→ ϕ+∆ϕ and the approximate longitudinal rapidity boost symmetry η →
η +∆η. Using this coordinate system, every space-time point can be described in terms
of τ , η, r, and ϕ.
In this thesis we will employ the recently developed package FluiduM [49], which evolves
the fluid fields numerically according to their equations of motions, starting from the
provided initial conditions. One of the most important assumptions of FluiduM is the
possibility of describing the system in terms of a vector, called Nambu spinor Φ(τ, r, ϕ, η)

characterized by N independent components, such as the temperature of the fluid T ,
its 4-velocity uµ, the shear stress tensor, the bulk viscous pressure and any other field
necessary for the local description. Moreover, it is assumed that the evolution of the
system is determined by a set of hyperbolic, quasi-linear partial differential equations,
written as,

A∂τΦ+B∂rΦ+C∂ϕΦ+D∂ηΦ− S = 0, (2.34)

where A, B, C, and D are N ×N coefficient matrices, while S, called the source term,
is an N -component vector. Both the coefficient matrices and the source term depend on
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Φ, r, and τ , and the explicit dependence on the last two terms originates from the choice
of coordinates.
A further assumption made in FluiduM is that Φ can be written as the summation of
a background field spinor Φ0(τ, r) symmetric under azimuthal rotations and boosts in
the z direction, and a symmetry-breaking spinor Φ1(τ, r, ϕ, η) accounting for deviations
from the background,

Φ(τ, r, ϕ, η) = Φ0(τ, r) + ϵΦ1(τ, r, ϕ, η), (2.35)

where ϵ is a formal expansion parameter and can be set equal to 1.
After decomposing Φ into two contributions, it is now possible to insert Eq. 2.35 into
2.34. Taking into account only terms of zeroth-order terms in ϵ, the evolution equation
for the background spinor reads as,

A0(Φ0, τ, r)∂τΦ0(τ, r) +B0(Φ0, τ, r)∂rΦ0(τ, r)− S0(Φ0, τ, r) = 0, (2.36)

where A0 and B0 correspond to the projections of A and B to the reduced parameter
space of independent components, evaluated on the background configuration Φ0 [49] .
Therefore, the equations of motion for Φ0 are now partial differential equations in 1 + 1

dimensions. Due to the symmetry constraints, Φ0 depends on less independent com-
ponents: Φ0 = Φ0(T, u

r, πϕϕ, π
η
η , πbulk). Even if Eq. 2.36 are still non-linear partial

differential equations, solving them is easier than solving the set in 2.34 in 3 + 1 dimen-
sions: for this reason, this analysis will be limited to the study of zeroth-order terms in
ϵ, exploiting the approximate symmetry in ϕ and η coordinates.
It was shown in [50] that the dissipative equations introduced in Eq. 2.23 and 2.24 are
actually hyperbolic equations and can be cast into the form of Eq. 2.36: therefore, this
represents the set of equations evolved within FluiduM. It is important to notice that
this formalism can also be used when the set of equations is extended to further fields,
as long as such extensions lead to quasi-linear, hyperbolic equations.

2.2.4 Equation of State

As already introduced in Sec. 2.2.1, the Equation of State (EoS) is an equation relat-
ing thermodynamic variables, usually expressed by the pressure or the energy density
as a function of temperature. The EoS is usually obtained from the system partition
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function Z,

P =
T

V

(
∂lnZ

∂V

)
T

. (2.37)

In the case of the QGP, assuming that the net baryon chemical potential is approximately
zero, the EoS can be computed by using lQCD techniques [51].
However, it is necessary to take into account that at lower temperatures, quarks and
gluons recombine into hadrons: therefore, in this stage of the fireball evolution, the
Equation of State becomes that of hadron resonance gas (HRG) [52]. Here, the single
partition function Zi for each hadron can be calculated using the gran canonical ensemble
(GCE) formalism [53], where energy, momentum and charge number are not conserved
locally. The hadron resonance gas EoS turns out to be very successful in describing
particle abundances produced in heavy-ion collisions [54], as well as in estimating QCD
transport coefficients [55].
Fig. 2.3 shows the behavior of the pressure, energy density, and entropy density as
a function of temperature predicted by lQCD (bands) and by the HRG model (lines).
The yellow vertical band represents the temperature at which lQCD predicts that the
crossover occurs, at Tc = 154 ± 9 MeV. At low temperatures, the two models coincide,
and HRG can be used as the Equation of State of the system. For higher temperature
values, however, when quarks and gluons are the relevant degrees of freedom, the HRG
approximation is no longer valid, and it is necessary to employ lQCD to infer the EoS of
the system.

2.3 Hadronization and freeze-out

2.3.1 The Cooper-Frye procedure

If in the plasma the system is described using fluid fields degrees of freedom, after freeze-
out the system must be described via particle distributions. This conversion is made
possible via the Cooper-Frye procedure [56]. One of the main assumptions of the Cooper-
Frye procedure is that the hadronization occurs fast enough to allow for the definition of a
four-dimensional freeze-out hyper-surface Σµ, which is assumed to be a surface of constant
temperature, equal to the freeze-out temperature [56]. Moreover, the total momentum
distribution is given by the summation of free independent particle distributions, which
are still close to thermal equilibrium. Under these assumptions, the spectrum of hadron
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Figure 2.3: Pressure, energy density, and entropy density as a function of the temperature,
predicted by lQCD (bands) and by the HRG (lines). The yellow vertical band
represents the temperature at which the crossover occurs, at Tc = 154 ± 9 MeV.
Figure taken from [51].

species a on the freeze-out hypersurface Σµ can be expressed by,

Ep
dNa

d3p
=

νa
(2π)3

∫
Σ
fap

µdΣµ, (2.38)

where fa = fa(p
µ, T (x), uµ(x), πµν(x), πbulk(x)) is the particle distribution function, and

νa the degeneracy factor of spin or polarization states.
On the freeze-out surface, fa is given by an equilibrium contribution fa,eq, which in the
case of dissipative fluid dynamics must be corrected by additional corrections due to
shear and bulk viscosity,

fa = fa,eq + δfbulka + δf sheara . (2.39)

Depending on the particle species, the equilibrium distribution function will be given
either by a Bose-Einstein or by a Fermi-Dirac distribution,

fa,eq =
1

e−
pνuν+µa

T ± 1
. (2.40)
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On the other hand, for δfbulka and δf sheara , it is possible to use the common parametriza-
tion[57, 58],

δfbulka = fa,eq(1± fa,eq)

[
Ēp

T

(
1

3
− c2s

)
− m2

3TĒp

]
πbulk
ζ/τbulk

, (2.41)

δf sheara = fa,eq(1± fa,eq)
πρνp

ρpν

2(ϵ+ p)T 2
, (2.42)

where cs(T ) is the speed of sound of the medium at the freeze-out, m is the mass of the
primary resonance and Ēp is the energy in the reference frame moving with velocity uµ.
In the Cooper-Frye procedure, it is also necessary to calculate the freeze-out surface
Σµ, which in general depends on all four coordinates (τ, r, ϕ, η). However, due to the
symmetries of the background fields, Σµ can be expressed as dependent on a single
parameter in the τ − r plane [59],

τ = τ(α), r = r(α), (2.43)

where without loss of generality α ∈ [0, 1]. Starting from Eq. 2.32 and 2.33, it is possible
to express the Cartesian coordinates as a function of α,

t = τ(α)cosh(η)

x = r(α)cos(ϕ)

y = r(α)sin(ϕ)

z = τ(α)sinh(η).

(2.44)

From this expression, the infinitesimal element of hypersurface can be calculated as,

dΣµ = (−dt, dx, dy, dz) = τ(α)r(α)

(
∂r

∂α
coshη,

∂τ

∂α
cosϕ,

∂τ

∂α
sinϕ,

∂r

∂α
sinhη

)
dαdϕdη.

(2.45)
Similarly to what is done for the fields’ evolution in FluiduM, the hadron spectrum after
freeze-out can also be split into a background contribution, which is invariant under
azimuthal and boost symmetries, and a non-symmetric part. For the background case,
the freeze-out surface will be a 1D curve in the τ − r plane, which can be parametrized
as [60],

dΣµ = τ(α)r(α)

(
∂r

∂α
,−∂τ

∂α
, 0, 0

)
dαdϕdη. (2.46)
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Based on the same symmetry considerations, the background fluid 4-velocity is also given
by the first two components only and can be written in terms of a radial fluid rapidity χ̄:

uµ = (cosh(χ̄), sinh(χ̄), 0, 0) . (2.47)

The particle momentum pµ at the freeze-out on the other hand will be expressed as a
function of the momentum azimuthal angle ϕP and of the momentum rapidity ηP,

pµ = (−E, px, py, pz) = (mTcoshηP, pTcosϕP, pTsinϕP,mTsinhηP) , (2.48)

where mT represents the transverse mass mT =
√
m2 + p2T, and pT =

√
p2x + p2y the

transverse momentum.
The explicit expression of dΣµ, of uµ, and of pµ are of fundamental importance to evaluate
the particles’ freeze-out spectra, as shown in the next section.

2.3.2 Resonance decays

After the hadronization, unstable particles can decay into lighter products before being
detected. As a matter of fact, from about 300 species of hadronic resonances produced in
HIC, only a few long-lived hadrons, such as pions, kaons, and protons, reach the particle
detectors and are directly observed. A particle decay is a probabilistic process, and the
resultant particle spectrum from a decay cascade will fluctuate event by event. However,
for a large number of initial resonances, it is possible to compute the spectrum of the
final particle b by summing the spectra of each primary particle a which decays in b:

Ep
dNb

d3p
=
∑
a

∫
d3q

(2π)32Eq
Da

b (p,q)Eq
dNa

d3q
, (2.49)

where Da
b (p,q), is the linear decay map, the probability of particle a with momentum q

to decay to the particle b with momentum p. In general Da
b (p,q) is usually calculated

via Monte-Carlo generators [61, 62] or semi-analytic treatments [63]. Even if these cal-
culations can be performed explicitly, due to large cascades of decays they are usually
computationally expensive. For this reason, in this work, the publicly available code Fas-
tReso [60], which precomputes the decay maps, will be used to treat resonance decays.
As shown in the previous section, the freeze-out surface can be expressed as a function
of α, ϕ and η. Exploiting the explicit formulation of the freeze-out surface, of the fluid
4-velocity and of the 4-momentum in 2.46 2.47 and 2.48 respectively, it can be shown
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that the integral over the freeze-out surface reduces to,

Ep
dNb

d3p
=

dNb

2πpTdpTdη
=

νb
(2π)3

∫ 1

0
dα τ(α)r(α)

×
{
∂r

∂α

[
Keq

1 +
πηη

2(ϵ+ p)T 2
Kshear

1 +
πϕϕ

2(ϵ+ p)T 2
Kshear

3 − πbulk
ζ/τbulk

Kbulk
1

]

−∂τ
∂α

[
Keq

2 +
πηη

2(ϵ+ p)T 2
Kshear

2 +
πϕϕ

2(ϵ+ p)T 2
Kshear

4 − πbulk
ζ/τbulk

Kbulk
2

]}
,

(2.50)

where Keq
i (pT, ur), Kshear

i (pT, ur), and Kbulk
i (pT, ur) are rapidity and azimuthal angle in-

tegrated decay kernels. For an explicit expression of the integrated decay kernels, see [60].
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3 Heavy-quark dynamics

The quark-gluon plasma created in heavy-ion collisions consists essentially of up, down,
and strange quarks -the so-called light quarks -, of their respective antiquarks and of
gluons. Even if these partons represent the majority of particles in the QGP, a minority
of charm and bottom quarks exist in the medium as well. If on one hand light quarks
have a mass of the order of MeV, on the other hand, the mass of the charm and bottom
is 1.5 and 4.2 GeV respectively: as will be pointed out below, such mass values make
heavy quarks (HQ) excellent probes of the interaction strength in the QGP, as well as of
its transport properties.
First of all the heavy-quark mass is well above the typical temperature of the QGP,
mHQ ≫ T : thus, HQ thermal production within the quark-gluon plasma is strongly sup-
pressed [64], and charm and bottom quarks get predominantly produced via hard scat-
tering at the very early stages of the collision. Moreover, due to their scarce abundance
in the medium, the heavy-quark annihilation rate can be considered negligible within the
QGP lifetime [65]. Therefore, the number of HQs is fixed by the initial production, and
the particles undergo all the evolution stages of the QGP, from the pre-equilibrium phase
to the hadronization. As it will be pointed out in Sec. 3.2.2, the conservation of the HQ
number can be mathematically expressed by introducing a current Nµ that is conserved
throughout the evolution of the QGP.
The mass of heavy quarks exceeds the QCD scale ΛQCD as well: therefore, the initial
heavy-quark production can be described using perturbative QCD schemes, which unveil
the non-thermal production of HQs, as discussed in Sec. 3.2.1.

3.1 Heavy quarks and transport models

3.1.1 The Boltzmann equation

In a system constituted of many classical particles, the distribution function f(x,p, t)

represents the probability of finding a particle in the infinitesimal volume d3x centered
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in x space coordinate, and in the volume d3p centered in p momentum space, at a given
time t. In thermal equilibrium, the distribution function is represented by the Fermi-
Dirac or by the Bose-Einstein distribution, depending on the statistical nature of the
system. However, in the presence of a perturbation such as external forces or multiple
collisions, the distribution function can deviate from its thermal equilibrium expression.
Low-momentum heavy quarks (3–4 GeV) mainly interact via elastic scatterings, and the
typical momentum exchange in the interactions of HQs with the medium is small com-
pared to their mass. Therefore, heavy quarks undergo Brownian motion in the medium
characterized by many small-momentum kicks. The evolution in phase space of the
heavy-quark distribution function fQ(x,p, t) accounting for this collision effect, can be
expressed by exploiting the Boltzmann equation [66, 67],(

∂

∂t
+ v

∂

∂x
+ F

∂

∂p

)
fQ(x,p, t) =

(
∂fQ
∂t

)
collision

, (3.1)

where F represents external forces acting on the heavy quarks, such as the interaction
with large concentrations of color charge. Neglecting all interactions with other heavy
quarks and with background color fields, it is possible to set F = O. Moreover, assuming
that the plasma is uniform, the distribution function is x-independent, thus Eq. 3.1
reduces to,

∂fQ(p, t)

∂t
=

(
∂fQ
∂t

)
collision

= C [fQ] , (3.2)

where C [fQ] represents the collision integral, which accounts for sudden momentum
exchanges due to scattering processes. Considering the scattering between a light parton
i with initial and final momentum respectively pi and p′

i, and a heavy quark Q with final
and initial momentum pQ and p′

Q, neglecting quantum effects, the collision integral can
be expressed as,

C [fQ] =

∫
dp′

Qdpidp
′
i

[
w(p′

Q,p
′
i|pQ,pi)fQ(p

′
Q)fi(p

′
i)− w(pQ,pi|p′

Q,p
′
i)fQ(pQ)fi(pi)

]
,

(3.3)
where w represents the scattering rate. The first term of the integral accounts for pro-
cesses in which the heavy quark gains momentum, while the second one for momentum
losses.
Assuming that the scattering processes are symmetric under time-reversal transforma-
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tions, w(p′
Q,p

′
i|pQ,pi) = w(pQ,pi|p′

Q,p
′
i), the collision integral simplifies to,

C [fQ] =

∫
dp′

Qdpidp
′
iw(p

′
Q,p

′
i|pQ,pi)

[
fQ(p

′
Q)fi(p

′
i)− fQ(pQ)fi(pi)

]
. (3.4)

The stationary solutions for heavy quarks are found when their distribution function is
constant in time, or in other words when its time derivative is equal to zero. From Eq.
3.2, this condition translates into asking that the collision integral cancels out, thus,

fQ(p
′
Q)fi(p

′
i) = fQ(pQ)fi(pi). (3.5)

This relation between final and initial momentum distributions entails that both fQ and
fi must be expressed in terms of exponential,

fQ(pQ) = exp

(
−EpQ

T

)
fi(pi) = exp

(
−Epi

T

)
. (3.6)

Thus, the Boltzmann transport equation implies that the heavy-quarks distribution func-
tion relaxes to a thermal distribution at temperature T , which is the same temperature
as the surrounding medium.

3.1.2 The Fokker-Planck equation

The Fokker-Planck equation is an approximation of the Boltzmann equation in the case of
multiple soft scatterings. An elastic collision involves a momentum exchange k between
the two colliding particles. It is possible to work under the assumption that the HQ gains
in momentum, k = p′

Q−pQ, while the light parton loses the same amount of momentum,
thus k = pi − p′

i. Expressing the collision integral as a function of the momentum
exchange k, the collision integral in Eq. 3.4 can be re-written in the simplified form,

C [fQ] =

∫
dk w(p+ k|p) [fQ(p+ k)− fQ(p)] , (3.7)

where for simplicity of notation pQ ≡ p, and w encodes also the dependence on the
distribution of light partons. In the approximation of small momentum exchange, it is
possible to Taylor-expand the product w(p+ k|p)fQ(p+ k),

w(p+ k|p)fQ(p+ k) ∼ w(p|p)fQ(p) + ki
∂

∂pi
(wfQ) +

1

2
kikj

∂2

∂pi∂pj
(wfQ). (3.8)
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Thus, using this approximation to calculate the collision integral, and substituting it into
Eq. 3.2, the final expression of the Fokker-Planck equation reads,

∂fQ(t,p)

∂t
=

∂

∂pi

[
Ai(p)fQ(t,p) +

∂

∂pj
BijfQ(t,p)

]
, (3.9)

where the two tensors Ai and Bij , referred to as kernels, describe the interaction between
heavy quarks and the medium, and are defined as,

Ai(p) =

∫
dk kiw(p+ k|p), (3.10)

Bij(p) =
1

2

∫
dk kikjw(p+ k|p). (3.11)

Assuming an isotropic medium, the kernels can be further simplified [67],

Ai(p) = A(p)pi, (3.12)

Bij(p) = (δij − p̂ip̂j)B0(p) + p̂ip̂jB1(p), (3.13)

where p̂i ≡ pi

|p| represents a unit vector in pi direction. The coefficient A(p) is called
the friction coefficient whereas B0(p) and B1(p) represent the momentum diffusion co-
efficients along the directions perpendicular and parallel to the heavy-quark velocity,
respectively.
As done in the case of the Boltzmann equation, it is now possible to look for stationary
solutions, which translates into assuming that heavy quarks relax to a thermal distribu-
tion. To satisfy this condition, the right-hand side of Eq. 3.9 must vanish, thus,

Ai(p)fQ(t,p) = − ∂

∂pj
[
BijfQ(t,p)

]
. (3.14)

Since the heavy quarks are assumed to be in thermal equilibrium, their distribution
function is expressed as the exponential distribution in Eq. 3.6. Therefore, plugging
fQ(pQ) in 3.14 and exploiting the tensor structure of the transport coefficients,

A(p)pi =
B1(p)

TEp
pi − ∂

∂pj
[
δijB0(p) + p̂ip̂j(B1(p)−B0(p))

]
. (3.15)
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This equation entails a unique relation between the three transport coefficients, the so-
called Einstein fluctuation-dissipation (EFD) relation [68],

A =
B1

TE
− 1

p2

[
2(B1 −B0) + p

∂B1

∂p

]
. (3.16)

It is important to underline that both Boltzmann and Fokker-Planck equations were
presented here using classical mechanics. A more accurate estimate for the transport
coefficients can be provided by implementing quantum corrections -as Pauli blocking- in
the Boltzmann equation and in the subsequent Fokker-Planck equation [69].

3.1.3 The spatial diffusion coefficient

To better understand the physical meaning of the transport coefficients, it is possible
to start neglecting their momentum dependence, and consider them as two constant
quantities,

A(p) ≡ γ, (3.17)

B0(p) = B1(p) ≡ D. (3.18)

In this simplified scenario, the Fokker-Planck equation in 3.9 will depend only on the
constant γ and D, reducing to,

∂fQ(t,p)

∂t
= γ

∂

∂pi
[
pifQ(t,p)

]
+Dδij

∂2fQ(t,p)

∂pi∂pj
. (3.19)

Setting as an initial condition that the heavy-quark distribution function is given by a
delta function centered on the initial momentum p0, fQ(t,p) = δ(p − p0), it can be
shown [67] that the solution of 3.19 is given in terms of an exponential,

fQ(t,p) ∝ exp

(
− γ

2D

(p− p0e
−γt)2

1− e−2γt

)
, (3.20)

which, in the limit of infinite time t→ ∞, reduces to,

fQ(t,p) ∝ exp
(
− γ

2D
p2
)
= exp

(
−γM
D

p2

2M

)
, (3.21)

where M is the mass of the heavy quark. Thus, for asymptotic values of t, fQ(t,p) does
not depend on the initial momentum and relaxes to a thermal distribution.

35



3.1. HEAVY QUARKS AND TRANSPORT MODELS

Moreover, comparing Eq. 3.21 with the Boltzmann expression in Eq. 3.6, and knowing
that EpQ = p2

2M , a relation between γ and D can be found,

D = γMT, (3.22)

which represents the non-relativistic Einstein fluctuation-dissipation relation [68].
From Eq. 3.21, it is also possible to calculate the first moment of the equilibrium distri-
bution,

⟨p(t)⟩ = p0e
−γt, (3.23)

meaning that with the increase of time, γ leads the average momentum of the heavy
quark to vanish: for this reason, as stated before, A(p) ≡ γ is referred to as the friction
coefficient. Similarly, it is possible to calculate the second moment of the momentum
distribution,

⟨p2(t)⟩ − ⟨p(t)⟩2 = 3D

γ
(1− e−2γt). (3.24)

Therefore, the diffusion coefficient is responsible for the momentum broadening of the
distribution.
Under certain reasonable assumptions about the diffusion process [70], the diffusion in
momentum space leads to diffusion in position, which can be expressed as,

⟨x2⟩ − ⟨x⟩2 = 6D t

M2γ2
≡ 6Dst. (3.25)

The coefficient Ds, usually referred to as the spatial diffusion coefficient, is identified
as the asymptotic mean squared displacement of an ensemble of heavy quarks initially
placed at the origin of the fireball. In particular, the diffusion coefficient characterizes the
long-wavelength properties of the transport of the heavy quark quantum number through
QCD matter, and, as long as the dynamics is non-relativistic, can also be expressed
through the zeroth-momentum value of the drag coefficient,

Ds =
T

A(p = 0)M
. (3.26)

Being able to summarize the heavy-quark coupling with the medium, the spatial diffusion
coefficient is of particular interest in phenomenological studies.
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3.2 The hydrodynamic approach to heavy quarks

3.2.1 Heavy-flavour elliptic flow

A particle species is defined to be in chemical equilibrium when its multiplicity can be
described by a distribution function dependent on a local chemical potential µ(x). Per-
turbative calculations [71] demonstrate that in the hard scattering heavy quarks are not
produced in chemical equilibrium. Moreover, since their number density is much smaller
with respect to the one of the light quarks, they presumably remain out of chemical
equilibrium for the entire evolution of the fireball. As a matter of fact, it was shown in
[65] that, to reach chemical equilibrium with the fireball, heavy quarks would need to
interact with the medium for about 60 fm: this time is well above the 10 fm average
lifetime of the QGP [28].
On the other hand, a particle species is said to be in kinetic equilibrium when a Boltzmann-
like distribution can describe its distribution function in the classical case, thus dependent
on a local temperature T (x). Since heavy quarks are produced via hard scattering, their
initial distribution function is expected to be far from local kinetic equilibrium [71].
Notice that, if not explicitly stated otherwise, the terms thermal and kinetic equilibrium
will be used as synonyms in this thesis.
As stated in Sec. 1.4.1, one of the most striking evidence that QGP behaves as a strong
interacting fluid comes from the observation of the elliptic flow v2. In particular, the
measurement of v2 in heavy-flavor hadrons at low pT can help quantify if and to which
extent heavy quarks participate in the collective motion of the medium. Precise mea-
surements of heavy-flavor vn coefficients can serve as a tool to constrain the values of
transport coefficients as Ds. Studies on the heavy-hadron elliptic flow were performed in
the past decade at the LHC [72] at TeV energies. The plot presented in Fig. 3.1 shows
that D mesons and J/ψ exhibit a non-negligible elliptic flow, which, for the case of D
mesons, is even comparable with the v2 of pions. This result translates into saying that
the charm quarks composing the charmed hadrons participate in the collective behavior
of the medium and thus presumably reach kinetic equilibrium within the QGP.
Heavy-quark propagation within quark-gluon plasma is traditionally described using a

Brownian approach [73]. However, the presence of the elliptic flow represents a strong
hint that charm quarks can be considered as a part of the medium itself: thus, a new
fluid-dynamic approach to study their dynamics in the QGP, introduced for the first time
in [69], will be summarized in the next sections.
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Figure 3.1: Elliptic flow of D mesons and J/ψ as a function of pT, measured at the LHC by
ALICE. For comparison, the elliptic flow of pions is shown as well. Figure taken
from [72].

3.2.2 Heavy-quark conserved current

As already introduced in the present chapter, the number of charm and bottom quarks
is conserved throughout the evolution of the QGP. Even if the conservation of the sum
of heavy quark and antiquark pairs QQ̄ does not represent an exact symmetry of QCD,
it is possible to associate to it a conserved current,

Nµ
+ ≡

Nµ
Q +Nµ

Q̄

2
. (3.27)

In general, quarks can interact both via strong and electroweak interaction. However,
due to the longer time scale, electroweak processes can be considered negligible within the
QGP lifetime. The only relevant interaction within the fireball is thus strong interaction,
which conserves the quark’s flavor. For this reason, the net number of HQ gets conserved
as well in the QGP,

Nµ
− ≡ Nµ

Q −Nµ
Q̄
. (3.28)

Thus, Nµ
+ is conserved effectively, whereasNµ

−, which is associated with a QCD symmetry,
is conserved exactly. Since the initial hard scattering produces the same number of

38



3.2. THE HYDRODYNAMIC APPROACH TO HEAVY QUARKS

quarks and antiquarks, it is at first approximation possible to neglect any local imbalance
between quark and antiquark developing during the QGP evolution: for this reason, in
this analysis Nµ

− = 0.
Following the work in [74], it is possible to express a general particle conserved current
in terms of the fluid 4-velocity of the system. In the case of the heavy-quark current Nµ

Q,
this relation reads as,

Nµ
Q = nQu

µ + νµQ, (3.29)

where uµ represents the fluid 4-velocity, nQ is the heavy-quark density, and νµQ is the
diffusion current, which is orthogonal to the fluid velocity: uµν

µ
Q = 0. It is important to

notice that Eq. 3.29, as well as all the relations shown in this discussion also hold for the
case of heavy antiquarks. Asking for the conservation of the number of HQ during the
evolution of the QGP thus translates into asking that the 4-derivative of the conserved
current vanishes,

∂µN
µ
Q = ∂µ(nQu

µ + νµQ) = 0. (3.30)

3.2.3 Relation between hydrodynamics and distribution function

As introduced before, heavy quarks are not produced in chemical equilibrium. Therefore,
an additional chemical potential µaveQ (x) = µQ(x)+µQ̄(x), associated with the HQ average
number, must be included in the distribution function to account for the deviation of the
HQ from full chemical equilibrium. Since µaveQ (x) is the same for quarks and antiquarks,

µQ =
µave
Q (x)

2 . Thus, at local kinetic equilibrium, the distribution function of heavy quarks
fQk can be expressed as a Boltzmann distribution with chemical potential µQ(x),

fQk = exp

(−E + µQ(x)

T (x)

)
= γQ · exp

(
− E

T (x)

)
, (3.31)

where the fugacity factor γQ = eµQ(x)/T (x) is introduced. It is important to underline
that this expression for fQk is valid when the baryon chemical potential of the system
is negligible µB(x) ∼ 0, as it is at LHC energies. Otherwise, an additional term µB(x)

should be added to µQ(x) in the exponential.
In kinetic theory, the energy-momentum tensor Tµν and the conserved particle current
can be expressed as moments of the single-particle distribution function. In the specific
case of this analysis, the particle-conserved current corresponds to the heavy-quark cur-
rent Nµ

Q, and the distribution function represents the heavy-quark distribution function
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fQk . Being kµ the heavy-quark 4-momentum, it is possible to write [74],

Tµν = ⟨kµkν⟩, (3.32)

Nµ
Q = ⟨kµ⟩, (3.33)

where the angle brackets operator is defined as,

⟨...⟩ ≡
∫
dK(...)fQk . (3.34)

Here,
∫
dK ≡

∫
ν d3k
(2π)3k0

represents the Lorentz-invariant momentum-space volume, with
ν the degeneracy factor accounting for internal degrees of freedom.
It is now possible to decompose Tµν and Nµ

Q as a function of the fluid 4-velocity uµ.
To do so, the 4-velocity can be defined within the Landau frame [43] where uµ is the
time-like eigenvector of the energy-momentum tensor, with eigenvalue the energy density
of the system ϵ,

Tµνuµ = ϵuν . (3.35)

After defining uµ in this specific reference frame, the momentum of the particle kµ can
be split into two contributions, one parallel and one orthogonal to uµ,

kµ = Eku
µ + k⟨µ⟩, (3.36)

where by definition Ek ≡ uµk
µ and we use the notation A⟨µ⟩ ≡ ∆µ

νAν , with ∆µ
ν =

gµν − uµuν the projection operator onto the 3-space orthogonal to uµ.
Thus, plugging this momentum decomposition into Eq. 3.32 and into 3.33 the energy-
momentum tensor and the HQ conserved current can be expressed as,

Tµν = ⟨E2
k⟩ uµuν −

1

3
⟨∆µνkµkν⟩∆µν + ⟨k⟨µkν⟩⟩, (3.37)

Nµ
Q = ⟨Ek⟩uµ + ⟨k⟨µ⟩⟩. (3.38)

Comparing these equations with the general expression of Tµν and of Nµ in 2.21 and in
2.22 respectively, several relations between the heavy-quark density nQ, the HQ diffusion
current νµQ, the medium energy density ϵ, the shear-stress tensor πµν , and the sum of
thermodynamic and viscous pressure P + πbulk, with the distribution function can be
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inferred,

nQ ≡ ⟨Ek⟩, νµQ ≡ ⟨k⟨µ⟩⟩, ϵ ≡ ⟨E2
k⟩, πµν ≡ ⟨k⟨µkν⟩⟩, P + πbulk ≡ −1

3
⟨∆µνkµkν⟩,

(3.39)
where we employ the notationA⟨µν⟩ ≡ ∆µν

αβA
αβ and ∆µν

αβ ≡ 1
2

[
∆µ

α∆ν
β +∆ν

α∆
µ
β − 2

3∆
µν∆αβ

]
is a projector onto that part of a rank-2 tensor, which is symmetric, orthogonal to uµ,
and traceless. Thus, the equations in 3.39 encode the relation between fluid-dynamics
quantities and the heavy-quark distribution function.

3.2.4 Heavy-quark transport coefficients

Since the total number of heavy quark-antiquark pairs is conserved, it is possible to define
a density related to them n+ ≡ nQ+nQ̄

2 as well as a diffusion current ν+ ≡ νQ+νQ̄
2 . Taking

as a reference the Israel-Stewart theory introduced in Sec. 2.2.2, the equation of motion
for the diffusion current of heavy quark-antiquark pairs can be written using the same
mathematical expression of Eq. 2.31,

τn∆
µ
ρu

σ∂σν
ρ
+ + νµ+ = κn∆

µν∇ν

(µQ
T

)
, (3.40)

This is a relaxation-type equation in which terms of higher order in the gradients are
neglected, and it is tuned by the heavy-quark diffusion coefficient κn and the heavy-quark
relaxation time τn, which represents the time scale needed by the HQ to relax to at least
kinetic equilibrium. When τ ≫ τn, the diffusion current νµ+ relaxes to its Navier-Stokes
limit νµ+ = κn∇µ (µQ/T ) as in Eq. 2.28.
In order to understand the role of the heavy-quark transport coefficients, it is possible to
start from the Fokker-Planck equation for the HQ distribution function fQk , and integrate
subsequent moments of it. For simplicity, we consider the Fokker-Planck equation for a
homogeneous fluid at rest,

kµ∂µf
Q
k = k0

∂

∂ki

{
AifQk +

∂

∂kj

[
BijfQk

]}
. (3.41)

Knowing the relation between the fluid dynamic quantities and fQk in 3.39, it is possible
to verify that the zeroth moment of Eq. 3.41 reduces to the continuity equation, which
in the fluid rest frame can be expressed as,

∂tn+ + ∂iν
i
+ = 0. (3.42)
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On the other hand, the first moment of the Fokker-Planck equation reduces to,

∂t

∫
dKk0klfQk + ∂i

∫
dKklkifQk =

∫
dKklk0

∂

∂ki

{
AifQk +

∂

∂kj

[
BijfQk

]}
. (3.43)

It can be shown that Eq. 3.43 leads to an equation of motion for νµ+ in the fluid rest
frame. The full calculation is reported in [69], where the method of irreducible moments
[74] is exploited. Moreover in the calculation, the moments with a rank higher than
2 are neglected, considering as only relevant quantities the heavy-quark bulk pressure,
diffusion current, and shear-stress tensor. The equation of motion for the diffusion current
obtained from this method reads,

TI31
DP0

∂tν
µ
+ + νµ+ =

T 2n+
D

∂µ

(µQ
T

)
, (3.44)

where I31 = 1
3⟨k0k2⟩, P0 represents the heavy-quark contribution to the pressure [69] and

T the temperature of the system.
Comparing Eq. 3.40 with 3.44 it is possible to identify the relaxation time and diffusion
coefficient as,

τn =
TI31
DP0

, (3.45)

κn =
T 2n+
D

≡ Dsn+. (3.46)

Thus, the heavy-quark transport coefficient τn and κn are both directly proportional to
the spatial diffusion coefficient Ds: this is a fundamental result and will be exploited
later on in the analysis.
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4 Heavy quarks at RHIC

4.1 Motivation

The non-negligible value of the elliptic flow measured at the LHC strongly supports
that, at TeV energies, charm quarks can be considered part of the QGP medium, and
therefore described via a hydrodynamic model. Recent studies showed that this approach
accurately describes the charmed-hadron yields and the pT-differential spectra measured
in Pb− Pb collisions at

√
sNN = 5.02 TeV [75].

However, one wonders if the hydrodynamic description of heavy quarks still holds for
lower-energy systems, which produce a lower-temperature QGP state. Being colder,
the fireball requires less time to reach the freeze-out temperature, meaning that heavy
quarks have less time to interact with the medium, and to possibly reach thermalization.
Moreover, due to the smaller number of binary nucleon-nucleon collisions and the smaller
value of heavy-quark production cross-section, the number of HQ pairs in the QGP
decreases significantly.
Several measurements on heavy-flavor elliptic flow have been performed at RHIC [76,
77], in Au−Au collisions at

√
sNN = 200 GeV. In Fig. 4.1, the trend of the elliptic

flow as a function of pT for D0 meson and for several light hadrons is reported. Here, a
clear mass ordering for pT < 2 GeV including D0 mesons is observed. For pT > 2 GeV,
the D0 meson v2 follows that of other light mesons indicating a significant charm quark
flow. Since D0 meson contains a charm and an anti-up quark, one may argue that this
result is due to the presence of the light quark which took part in the collective motion
of the QGP and thus gained flow. However, the non-zero elliptic flow of D0 still raises
the question about the possible heavy-quark thermalization at RHIC.
Studies at RHIC [77] demonstrated that J/ψ elliptic flow is consistent with zero within
statistical errors (Figure 4.2). However, it is necessary to consider that J/ψ meson can
be either produced from direct pQCD processes (the so-called primordial J/ψ) or from
cc̄ recombination. In the first mechanism process, J/ψ meson experiences the whole
evolution of a heavy-ion collision in a colorless stage: it does not participate in the
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Figure 4.1: Elliptic flow of D0 meson as a function of pT, measured at RHIC, STAR. For
comparison, the elliptic flow of other light-flavor hadrons is shown as well. Figure
taken from [76].

collective motion of the QGP, thus gaining limited azimuthal anisotropy. On the other
hand, the J/ψ produced from the recombination of thermalized charm quarks inherits
the flow of charm quarks, exhibiting considerable v2. Since the number of J/ψ mesons
produced at RHIC top energies is very small [78], this result can be explained assuming
that the measured J/ψ are mostly coming from direct pQCD processes. Moreover, due
to the limited precision of the experimental results, it is difficult to draw any strong
conclusion and exclude that charm quarks are thermalized in the medium.
Heavy-flavor dynamics at RHIC still leaves many open questions, serving as a starting
point for the present work and motivating us to a phenomenological study of heavy-quark
thermalization at lower collision energies. This work focuses mainly on the dynamics of
charm quarks: thus, if not stated otherwise, in the next sections the terms charm quark
and heavy quark will be used interchangeably.

4.2 Initial condition modeling

The HQ hydrodynamic approach was already successfully applied at LHC energies [75]: it
is now possible to try to extend the same formalism at RHIC collision energies. To do so,
it is essential to first model the initial state of the QGP using TRENTo model. TRENTo
takes as input several parameters, whose values are not estimated in the present analysis,
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Figure 4.2: Elliptic flow of J/ψ meson as a function of pT, measured at RHIC, STAR, compared
to charged hardons v2. Figure taken from [77].

but rather taken from the literature [79]. In particular, the reduced thickness parameter
is set to p = 0, the nucleon width to w = 0.5 fm, and the fluctuation parameter to k = 1.
Moreover, in TRENTo it is possible to tune the number of constituents m inside the
nucleons. Thus, the nucleon is considered as divided into m Gaussians, each of width v.
In this analysis, the number of constituents and their width are m = 4 and v = 0.4 fm

respectively.
The Au ions are sampled using a Woods–Saxon distribution, with nuclear radius R =

6.38 fm, and skin depth a0 = 0.535 fm. For Woods-Saxon nuclei, TRENTo sets a
minimum nucleon-nucleon distance, which in the current analysis is d = 0.75 fm.
The inelastic nucleon-nucleon cross-section σNN

inel at
√
sNN = 200 GeV is taken from the

PHENIX collaboration [80], σNN
inel = 4.23 fm2.

In Table 4.1 an overview of the TRENTo parameters used to generate 106 collision events
is reported.

4.2.1 Initial temperature

As introduced in 2.1.2, TRENTo output TR(x, y) can be considered as an entropy density
profile up to a normalization constant. Moreover, the integral of TR(x, y) is approxima-
tively proportional to the multiplicity of each collision: since the centrality class is also

45



4.2. INITIAL CONDITION MODELING

Parameter Value
Reduced thickness parameter p 0

Nucleon width w 0.5 fm
Fluctuation parameter k 1
Constituents number m 4
Constituents width v 0.4 fm

Nucleon minimum distance d 0.75 fm
Nucleon-nucleon cross-section σNN

inel 4.23 fm2

Table 4.1: TRENTo parameters used as input of the current analysis.

monotonically related to the multiplicity, the value of
∫
TR(x, y)dxdy is first used to di-

vide the events into centrality classes. Afterward, all the profiles belonging to a given
centrality class are centered on their center of mass and then averaged to ⟨TR(x, y)⟩. This
averaging procedure is possible because FluiduM is not an event-by-event simulation, but
rather evolves the mean fields of the system.
For a large number of events, the average entropy densities are azimuthally symmetric:
thus, a coordinate transformation is performed ⟨TR(x, y)⟩ → ⟨TR(r, ϕ)⟩ and the polar co-
ordinate ϕ is integrated out. Via this procedure, the averaged transverse density profile
is thus computed ⟨TR(r)⟩.
The ⟨TR(r)⟩ profile and the entropy density profile s(r) are equal up to a normalization
constant Norm. Defining τ0 as the starting time at which the fluid dynamic description
becomes valid, it is possible to write,

s(r) =
Norm

τ0
⟨TR(r)⟩. (4.1)

To account for the longitudinal expansion at early times, it is necessary to divide the
normalization constant by τ0. The value of Norm is inferred from the pion multiplicity
measured by the PHENIX collaboration [81]. Fig. 4.3 shows the trend of ⟨TR(r)⟩ as a
function of the radius r for five different centrality classes. Since ⟨TR(r)⟩ and s(r) are
directly proportional, the plot can be physically interpreted in terms of entropy deposi-
tion. The entropy deposit results maximum at the center of the fireball and smoothly
decreases to zero with r. Moreover, as intuitively expected, more central collisions entail
a larger entropy deposition.

With the initial entropy profile s(r), it is now possible to initialize the temperature
of the QGP. The pressure of a system and its temperature are related via an Equation
of State P (T ), which in the present analysis is taken from [49]. Moreover, the pressure

46



4.2. INITIAL CONDITION MODELING

0 2 4 6 8 10
r [fm]

0.0

0.5

1.0

1.5

2.0

〈T
R

(r
)〉

[f
m
−

2
]

0−10%

10−20%

20−30%

30−40%

40−50%

Figure 4.3: Averaged transverse density profiles ⟨TR(r)⟩ as a function of r for five different
centrality classes in Au−Au collisions at

√
sNN = 200 GeV.

and the entropy density of a system are related by the thermodynamic relation P = ds
dT .

Therefore, by inverting the EoS and using the aforementioned thermodynamic equation,
one can obtain the temperature profile by knowing s(r). A decreasing exponential tail
with an asymptotic value of 10 MeV is attached to the obtained temperature profile at
r = 8 fm, in order to describe the temperature behavior at large radii. In Fig. 4.4 the
initial temperature profile T (τ0, r) as a function of r is shown for the 0− 10% centrality
class. The initial temperature at the center of the fireball is T (τ0, 0) = 430 MeV: this
value is well below the initial LHC temperature of ∼ 600 MeV extracted using the same
procedure [75]. This result is consistent with the expectations that lower energy systems
produce a colder QGP state.

4.2.2 Heavy-quark density

Heavy quarks are produced almost exclusively during the initial hard scattering of nucle-
ons, and their number is conserved throughout the entire evolution of the QGP. Following
the work in [69], the density of heavy quarks-antiquarks pairs per unit of rapidity pro-
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duced in the hard partonic scattering process at the initial time τ0 can be expressed as,

nQQ̄
hard(τ0, r, y = 0) =

1

τ0

d3NQQ̄

drdy

∣∣∣∣∣
y=0

, (4.2)

where d3NQQ̄

dydr is the QQ̄ rapidity distribution in nucleus-nucleus collisions and can be
fixed from pQCD cross-section,

d3NQQ̄

dydr
= ncoll(r)σ

NN
inel

dσQQ̄

dy
. (4.3)

As already mentioned in Sec. 4.2 the value of the nucleon-nucleon inelastic cross-section
is set to σNN

inel = 4.23 fm2. On the other hand, dσQQ̄

dy is the QQ̄ cross-section, whose value
is taken from analytical calculations at fixed perturbative order (FONLL) [82]. Focusing
on charm quarks, dσQQ̄

dy = 0.0597 mb. Finally, ncoll(r), represents the density of binary
nucleon-nucleon collisions. Plugging Eq. 4.3 into 4.2, the initial QQ̄ density can be
expressed as,

nQQ̄
hard(τ0, r, y = 0) =

1

τ0
ncoll(r)

1

σNN
inel

dσQQ̄

dy
. (4.4)

In order to compute the value of nQQ̄
hard we discuss in the next section how to estimate the

nucleon-nucleon collision density ncoll(r).

4.2.3 Binary nucleon-nucleon collisions

As underlined in Sec. 2.1.2, Ta(x, y) represents the probability per unit area of finding
a nucleon of the nucleus A located in (x, y). Thus, the product Ta(x, y) · Tb(x − bx, y −
by)dxdy gives the joint probability per unit of area to find a nucleon of the nucleus A
and a nucleon of the nucleus B located in the same differential transverse area dxdy.
In order to study the probability of collision between two nucleons, it is useful to introduce
the nuclear overlap function, defined as [35],

Tab(⃗b) =

∫
Ta(x, y) · Tb(x− bx, y − by)dxdy. (4.5)

Where (bx, by) represents the Cartesian components of the impact parameter.
Thus, Tab(⃗b) can be interpreted as an effective overlap area for which a specific nucleon
in A can interact with a given nucleon in B. Knowing the probability of being located
in the same unit of area, the probability of interaction between the two nucleons is then
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Figure 4.4: Initial temperature profile as a function of r for 0− 10% centrality class.

given by,
P (⃗b) = Tab(⃗b) · σNN

inel. (4.6)

Elastic processes lead to very little energy loss and are therefore neglected in this calcu-
lation.
Once the probability of a single nucleon-nucleon interaction is calculated, the probably
of having n interactions between nucleus A (with nA nucleons) and B (with nB nucleons)
is expressed using the binomial distribution,

Pn(⃗b) =

(
nA · nB

n

)[
Tab(⃗b)σ

NN
inel

]n [
1− Tab(⃗b)σ

NN
inel

]nAnB−n
, (4.7)

where the first term represents the number of combinations for n collisions out of nA · nB
possible nucleon-nucleon interactions, the second term is the probability for having ex-
actly n collisions, and the last term is the probability of having nA · nB − n missed
collisions. Moreover, if the nuclei are not polarized, the vector impact parameter b⃗ can
be replaced by a scalar distance b: all the following quantities will be therefore expressed
as dependent only on the modulus of the impact parameter.
The average number of binary collisions when A and B collide with impact parameter b
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can be obtained using the binomial distribution’s properties. In particular, the average
number µ of the binomial distribution is µ =

∑
n n · Pn. Therefore, the total number of

nucleon-nucleon binary collisions is given by,

⟨Ncoll(b)⟩ =
nAnB∑
n=1

nPn(b) = nA · nB · Tab(b)σNN
inel. (4.8)

The average number of binary collisions can also be expressed by integrating the density
of binary collisions in [x, y] plane:

⟨Ncoll(b)⟩ =
∫
ncoll(x, y, b)dxdy. (4.9)

Since the nuclear overlap function is also given by an integral in x and y in 4.5, it is now
possible to equate the arguments of the two integrals:

ncoll(x, y, b) = nA · nB · Ta(x, y) · Tb(x− bx, y − by)σ
NN
inel. (4.10)

Similarly to the entropy density profile, the density of binary collision is then averaged
for different centrality classes, and a coordinate transformation is performed to obtain
ncoll(r, b). Knowing the density of binary nucleon-nucleon collision, nQQ̄

hard(τ0, r, y = 0) can
then be obtained from Eq. 4.4. Figure 4.5 depicts the density of QQ̄ as a function of the
radius for 0− 10% centrality class. Here it is shown that the heavy quark production is
maximum at the center of the fireball (where more nucleon-nucleon collisions are expected
to occur) and smoothly decreases with r. Moreover, for r > 7 fm the number of produced
HQ becomes negligible.
From the knowledge of nQQ̄

hard(τ0, r, y = 0) the number of charm pairs produced per each
event per unity of rapidity at RHIC is inferred,

dNQQ̄

dy
= 2πτ0

∫
nQQ̄
hard(τ0, r, y = 0) · rdr ∼ 1.5, (4.11)

resulting compatible with the value computed by statistical models [78], which pre-
dict dNQQ̄

dy = 1.6 charm pairs produced in most central collisions. This result is an
order of magnitude less than the number of charm quarks produced at the LHC, where
dNQQ̄

dy ∼ 30 [69].
By integrating the density of binary collisions, we obtain that ⟨Ncoll⟩ ∼ 950. Amongst
other parameters, the TRENTo model gives as output the average number of binary
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Figure 4.5: Initial density profile as a function of r for 0− 10% centrality class.

nucleon-nucleon collisions ⟨Ncoll⟩ per event. The average number ⟨Ncoll⟩ calculated by
TRENTo is compatible with the integrated density of binary collisions, supporting the
validity of our calculations.

4.2.4 Initial fugacity

The fugacity factor γQ = eµQ(x)/T (x) introduced in Sec. 3.2.2 is a fundamental quantity
in heavy-quark dynamics, since it provides an indication of how far from chemical equi-
librium HQs are.
The density of heavy quarks created by hard collisions is related to the density of heavy
quarks in thermal equilibrium via the Landau matching conditions.

nQQ̄
hard(τ0, r, y = 0) ≡ nequilibrium(T, α), (4.12)

where α ≡ µQ(x)
T (x) = lnγQ. Following [75], it is possible to express the thermal equilibrium

charm-quark density using the hadron-resonance gas equation for charm quarks (HRGc),

nequilibrium(T, α) =
T

2π2

∑
i∈HRGc

q1M
2
i e

qαK2(Mi/T ), (4.13)
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where Mi represents the mass of charmed hadrons and qi the charm charge. The HRGc
equation is the EoS for charm quarks at temperatures close to the pseudo-critical tem-
perature Tc, obtained using a grand canonical ensemble. For the temperature reached
in most central collisions, the HRGc estimates larger multiplicities (of about a factor of
five) than the ones obtained from the density of the free charm quarks. Nevertheless, in
the absence of EoS models at QGP temperatures, the HRGc relation is assumed to also
be valid at higher T .
In order to calculate the density in the case of full chemical equilibrium of the heavy
quarks, it is sufficient to set α = 0 in Eq. 4.13, or in other words γQ = 1. Thus, the
fugacity at the initial time τ0 is estimated as,

γQ =
nQQ̄
hard(τ0)

nQQ̄
chemical equil.(τ0)

≈ 0.018. (4.14)

Since γQ < 1, at RHIC the charm quarks are initially underpopulated with respect to
their chemical-equilibrium abundance, similarly to what is observed at the LHC [69].
Once the initial fugacity and initial temperature are fixed, the heavy-quark density can
be evolved using Eq. 4.13.

4.3 Applicability of the hydrodynamic approach

4.3.1 Heavy quarks in FluiduM

The FluiduM framework introduced in Sec. 2.2.3 evolves five independent fields related
to the properties of the QGP medium. The initialization of the temperature was already
addressed in 4.2.1; except for the temperature, FluiduM sets all the remaining back-
ground fields to zero: ur = πϕϕ = πηη = πbulk = 0, respecting relativistic causality [50].
In order to model the heavy-quark dynamics in the QGP, it is necessary to extend the
framework to heavy-quark fields. One of the base assumptions to do this is to assume
that HQs do not significantly influence the energy density, the pressure, the velocity,
and the shear stress of the medium: therefore the background fields are determined by
the thermodynamics of light quarks and of gluons. To fully describe HQ dynamics in
1+1 dimensions it is sufficient to consider two independent fields: the logarithm of the
fugacity α and the radial component of the diffusion current νr. The equations for α
and νr, Eq. 3.30 and 3.40 respectively, can again be reduced to hyperbolic equations.
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Therefore, a heavy-quark Nambu spinor is built: ΦHQ = ΦHQ(α, ν
r), and the equation

of motion of heavy quarks and background reads,

AHQ∂τΦHQ +BHQ∂rΦHQ + CHQ∂τΦbg +DHQ∂rΦHQ = SHQ, (4.15)

where AHQ, BHQ, CHQ and DHQ are 2× 2 matrices whose elements are non-linear func-
tions of the background Φbg and heavy-quark ΦHQ fields. The fugacity field is initialized
as described in 4.2.4, whereas, in the absence of an initial state model, the radial diffusion
current νr is initially set to zero.
At the freeze-out, heavy-quark pT spectra are obtained by employing a Cooper-Frye
prescription. Following Eq. 2.38 the freeze-out spectra are calculated by integrat-
ing the particle distribution function f = feq + δf , where δf is the term account-
ing for the out-of-equilibrium corrections. In the case of heavy-quark dynamics, δf =

δf shear + δfbulk + δfdiffusion. However, none of the current models provide an estimation
of the out-of-equilibrium corrections for HQ, which are thus neglected in the present
analysis.
The multiplicity of heavy quarks is given by integrating the zeroth component of the HQ
current Nµ

Q, which depends on the diffusion current as in Eq. 3.29: thus, the value of
δfdiffusion at freeze-out is of fundamental importance to correctly calculate the number of
HQ. The heavy-quark spatial diffusion coefficient Ds tunes the diffusion current: there-
fore, a large value of Ds translates into large corrections δfdiffusion. Setting δfdiffusion = 0

hence entails a non-physical dependence of HQ multiplicity on the value of Ds: since Ds

is a fundamental parameter for the description of heavy-quark dynamics in the QGP,
this issue needs to be addressed in the near future.
With the described framework, it is now possible to study heavy-quark dynamics in the
QGP. However, before going into the details of the model results, it is important to verify
if the use of a hydrodynamic approach for HQ at RHIC energies is justified.

4.3.2 Bjorken Flow

The Bjorken flow, as described in [83], characterizes the motion of a system that is
invariant under longitudinal Lorentz boosts and exhibits azimuthal symmetry. This
flow entails a purely longitudinal expansion along the transverse axis z, and, thus, the
transverse components of the fluid velocity are equal to zero,

uµ =
(
ut, 0, 0,

z

t

)
. (4.16)
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Even if this model represents a simplification, it can be considered a good approxima-
tion for the QGP expansion until the transverse distances become comparable to the
nuclear radii. As a matter of fact, the transverse flow takes some time to develop after
the collision. Natural variables for describing Bjorken flow are the rapidity y and the
longitudinal proper time τ . As already mentioned in Sec. 2.2, a fluid is characterized by a
local energy density ϵ(x), a pressure p(x), a temperature T (x), and a four-velocity uµ(x),
and its equation of motion is found imposing the conservation of the energy-momentum
∂µT

µν = 0. Considering an ideal fluid, the energy-momentum tensor is expressed as in
Eq. 2.14. In the case of Bjorken flow, all the local variables depend on τ and y only, and
the initial condition at τ = τ0 imposes that,

ϵ(τ0, y) = ϵ0, p(τ0, y) = p0, T (τ0, y) = T0, uµ(τ0, y) =
1

τ0
(t, 0, 0, z) . (4.17)

These conditions are longitudinally boost invariant, and this symmetry is conserved
through the evolution of a system: thus, if there is no dependence of thermodynamics
variables on the rapidity, there will be no such dependence at later times either.
With this simplification, the conservation of the energy-momentum tensor reduces to,

dϵ

dτ
= −ϵ+ p

τ
. (4.18)

In an ideal gas, the energy density and the pressure are related via a linear equation
ϵ = 3p. Plugging this expression in Eq. 4.18 entails,

dϵ

dτ
= −4/3ϵ

τ
→ ϵ

ϵ0
=

(
τ

τ0

)4/3

. (4.19)

It is now possible to use the EoS of an ideal gas: ϵ ∝ T 4. Thus, the temperature evolution
in Bjorken flow can be expressed as,

T (τ) = T0

(τ0
τ

)1/3
. (4.20)

Moreover, for a fluid undergoing Bjorken expansion, it can be shown [83] that the ex-
pansion rate is given by,

θ = ∂µu
µ =

1

τ
. (4.21)
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The expansion time scale on the other hand is defined as the inverse of the expansion
rate, and thus in this simplified scenario coincides with τ ,

τexp ≡ 1

θ
= τ. (4.22)

Equations 4.20 and 4.22 will be employed to study the relation between the HQ relaxation
time and the expansion time of the fireball in the next section.

4.3.3 Charm relaxation time

The heavy-quark relaxation time τn represents the time scale needed by the HQs to relax
to kinetic equilibrium. Thus, for the charm quarks to be described by fluid-dynamic
equations it is necessary that τn ≪ τexp. In Fig. 4.6 the comparison between τn and
τexp as functions of the longitudinal proper time is reported. In the simplified picture
of Bjorken flow the expansion time is equal to the longitudinal proper time: thus the
expansion time is represented as the bisector of the τn−τ plane. The initial temperature
is set to 430 MeV as found in Sec. 4.2.1, and the initial time to τ0 = 0.4 fm following [75].
As for the case of LHC studies [75], DsT ranges are taken from lQCD calculations [84,
85], and from fits to experimental measurements of the ALICE collaboration [86]. In
the case of [85], a dependence of DsT on the temperature is shown. However, as a first
approximation, we assume here that DsT remains constant throughout the evolution of
the fireball, and we take the value of DsT at T = Tc ∼ 155 MeV. In the future, it will be
possible to consider a linear dependence of DsT with the temperature, in order to mimic
the trend observed by lQCD calculations. Moreover, it is important to remark that at
RHIC top energies, the pseudo-critical temperature is comparable to the one of LHC
[27]: therefore the values of DsTc used for LHC studies, can be applied in the present
analysis as well.
Recalling Eq. 3.45, the relaxation time is directly proportional to the HQ spatial diffusion
coefficient Ds: thus exploring different regions of DsT translates into exploring different
values of τn. In the case of the most recent lQCD calculations (yellow band), τn results
well below the expansion time of the fireball: even if Bjorken flow does not accurately
describe the full evolution of the plasma, this result strongly supports the applicability
of the hydrodynamic approach to charm quark at RHIC top energies.
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Figure 4.6: Relaxation time and expansion time of charm quarks as a function of the longitu-
dinal proper time, in the case of Bjorken flow.

4.4 Charmed hadron spectra

It is now possible to study the transverse momentum spectra of charmed hadrons and
compare them to the available experimental data measured by STAR collaboration in
Au−Au collisions at

√
sNN = 200 GeV. In the current work, we will focus on D0, D+

s

mesons in the centrality class 0 − 10% and on J/ψ in the centrality class 0 − 20% [87,
88, 89].
At RHIC top energies the baryon chemical potential at freezeout is µB ∼ 20 MeV [90].
Thus, the distribution function of heavy quarks fQk at local kinetic equilibrium should
also take into account the µB(x) contribution in its exponential. To do so, µB(x) needs
in principle to be considered as an additional independent field of FluiduM, and evolved
via fluid-dynamic equations. However, knowing the initial fugacity and the initial tem-
perature of the fireball from Sec. 4.2, it is possible to compute the value of the initial
heavy-quark chemical potential, µQ ∼ O(103 MeV) at the center of the fireball. We cal-
culated that a similar result also holds at the freezeout: since the heavy-quark chemical
potential is two orders of magnitudes larger than the baryon chemical potential, in the
present analysis we will neglect the contribution of µB(x). If in the future we extend our
study to lower energy systems, where µB ∼ O(102 MeV) [90], an implementation of the
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baryon chemical potential in FluiduM will need to be addressed.
At RHIC, the total number of charmed hadrons per unit of rapidity is expected to be
smaller than unity even for the most central collisions. For this reason, following the work
of [91] and [92], the exact conservation of charm quark number should be imposed, or,
in other words, a canonical ensemble (CE) formalism should be used to describe charm
hadron multiplicities. This problem is addressed by introducing a canonical suppression
factor, which is the same for all individual open charm states. Being Noc the number of
charmed hadrons calculated by the grand canonical formalism, and N tot

c the total num-
ber of charm quarks, the corrected number of open charm hadrons N ce

oc can be expressed
as [91],

N ce
oc =

∑
α=1,2

Noc,α
Iα(N

tot
c )

I0(N tot
c )

, (4.23)

where I0 and Iα are modified Bessel functions. For hadrons with two or three charm
quarks, there are generally additional correction terms that are, however, small com-
pared to Eq. 4.23, and can be at first approximation neglected. Notice that, since the
number of produced open charm hadrons is well above the unit, at LHC energies it is
not necessary to take into account the presence of this correction factor.
In order to study the pT spectra of charmed hadrons several fluid parameters need to
be fixed. The values of diffusion coefficients η/s = 0.1 and ζ/s = 0.05 are taken from
[59]. In this analysis, a simplified model of the freeze-out is considered, and kinetic and
chemical freeze-outs are assumed to occur at the same temperature: for this reason, a
single temperature parameter Tfo = 156.5 MeV [91] is set. In the future, it would be ap-
propriate to incorporate a partial chemical equilibrium phase, in order to describe better
the later stages of the evolution, as done in [79].
The momentum spectra are produced for the non-diffusive case DsT = 0, and for the
upper limit predicted by lQCD at the pseudo-critical temperature Tc [85], DsT = 0.24.
The value of Ds should not in principle influence the particle multiplicity. However,
the predicted yield differs for different values of Ds because of the missing dissipative
corrections at freeze-out, as introduced in Sec. 4.3.1. Figure 4.7 shows the model results
compared to the experimental data for D0 and D+

s mesons. The model band well de-
scribes the experimental pT spectra in the low momentum region (pT < 4 GeV), where
the fluid-dynamic approach is expected to be valid.
A similar approach can also be applied for J/ψ mesons. In this case, since the charm

content is double, the model band is expected to be broader, leading to a less precise
description of the J/ψ experimental spectrum. Nevertheless, the experimental data are
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Figure 4.7: Comparison between model and experimental pT spectra for D0 meson (left panel)
and for D+

s meson (right panel) for 0− 10% centrality class.
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Figure 4.8: Comparison between model and experimental pT spectra for J/ψ meson for 0−20%
centrality class.

well described by the current model up to 5 GeV, depicted in Fig. 4.8.
All the model results shown here and in [75] were obtained using values of DsT , of

the transport coefficients η/s and ζ/s and of the freeze-out temperature fixed from the
literature. However, in the current work, a phenomenological approach to estimate both
heavy-quark and transport coefficients is presented, based on Bayesian inference and
mainly inspired by [79].
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5 Analysis framework

5.1 The Bayesian inference

Bayes’ theorem, or the theorem of the compound probability is a mathematical tool
widely used in statistics to compute conditional probabilities. Given a set of n parameters
x = (x1, x2, ..., xn) and an experimental data vector Y, the probability of the set x with
respect to the data Y can be calculated as,

P (x|Y) =
P (Y|x)P (x)

P (Y)
, (5.1)

where P (Y|x) represents the likelihood, and quantifies how likely it is to observe the data
Y given a specific set of the parameters x. On the other hand, P (x) and P (Y) known
respectively as the prior and marginal probability, are the probabilities of observing x

and Y without any given conditions. Since the marginal probability does not depend on
the parameters x, in this work it will be considered as a normalization constant.
The Bayesian approach is applicable to many areas of physics: it is widely used, for
example, to discriminate between different hypotheses x by measuring Y experimental
data. For the current analysis, the hypotheses x is represented by the fluid-dynamics
parameters used as input for the simulation, whereas the data Y are the experimental and
the model pT spectra. In the following sections, the explicit form of the prior distribution
P (x) and of the likelihood function P (Y|x) will be addressed.

5.1.1 Priors distribution

The prior probability expresses the initial confidence about the likeliness of each pa-
rameter and may vary from individual to individual. It is possible to eliminate this
subjectivity associated with the priors through an iterative process or by increasing the
number of measurements Y. Nevertheless, a good physical result should not depend on
the choice of the prior, and by replacing a value with another one equally reasonable, the
variations in the result should be small enough.
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5.1. THE BAYESIAN INFERENCE

Since in the current analysis, there are no physical reasons to favor one parameter set over
another, given m parameter sets it is appropriate to consider a uniform prior distribution,

P (x) =

1 if xmin
i < xi < xmax

i ∀i ∈ [1,m]

0 otherwise,
(5.2)

where the parameter ranges
[
xmin
i , xmax

i

]
are given as input of the analysis. Since it is

assumed that there is no possibility of observing parameters outside their given range, it
is important that

[
xmin
i , xmax

i

]
includes all the plausible values.

5.1.2 Likelihood function

As introduced in Sec. 5.1, the likelihood P (Y|x) represents the conditional probability
of observing the experimental data Y given a parameter set x: for this reason P (Y|x)
quantifies the quality of the fit to data, accounting for all sources of uncertainty.
To study how the likelihood can be constructed, let us consider the vector of data exper-
imentally measured ye, and the vector of data ytrue

e labeled as true, which correspond to
the underlying physical values not influenced by the measurement. The two vectors can
be related as [93],

ye = ytrue
e + ϵe, (5.3)

where the error ϵe, which accounts for all sources of experimental uncertainty, is a n-
dimension normal distribution (also called multivariate normal distribution) centered in
zero and with covariance matrix Σe.
A similar relation also holds for the case of model output ym with input parameters x,
and the ideal model output yideal

m (x), which represents the hypothetical calculations of a
perfect physical model with unlimited precision,

ym(x) = yideal
m (x) + ϵm. (5.4)

Once again the model uncertainty is a multivariate normal distribution with covariance
matrix Σm. It is now possible to assume that there exist some values of the parameters
xbest at which the ideal model calculation is equal to the true experimental data,

ytrue
e = yideal

m (xbest) → ye = ym(xbest) + ϵ, (5.5)
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where ϵ has covariance matrix Σ = Σm + Σe, and takes into account all sources of
uncertainty.
This relation between the model and experimental data implies that the likelihood can
be expressed as a multivariate normal distribution in n dimensions [93],

P (Y|x) = 1√
(2π)ndetΣ

exp

{
−1

2
[ym(x)− ye]

TΣ−1 [ym(x)− ye]

}
. (5.6)

Knowing the prior distribution and the likelihood function, the posterior probability can
thus be calculated via Eq. 5.1. However, to obtain the full probability distribution,
the posterior probability should be known for any set of parameters x in the parameter
space. Since an analytic treatment is not applicable in this specific case, numerical
methods need to be implemented. For this reason, first machine learning techniques are
used to perform a regression on FluiduM results. Afterward, to infer the parameters’
probability distribution, the numerical Markov-chain Monte Carlo method is employed.

5.2 Machine learning techniques

In recent years, machine learning (ML) methods have emerged as powerful tools in many
research areas. ML algorithms can handle multidimensional datasets and solve complex
non-linear problems: for this reason, they increasingly represent a fundamental technique
for particle physics as well. In the heavy-ion collisions sector for example, impact param-
eter determination via neural networks dates back to 1990 [94], and ML has been recently
used to identify the QCD phase transition [95] as well as to determine the temperature
in the collision [96].
Machine learning algorithms can be categorized into two different macro categories: su-
pervised and unsupervised learning. In supervised learning, labeled datasets are used to
train algorithms to predict outcomes. Thus, after the training, a function that maps new
data on expected output values is built. An optimal scenario will allow for the algorithm
to correctly determine output values for unseen instances. On the other hand, unsu-
pervised method algorithms learn from unlabeled data, trying to find any similarities,
differences, patterns, and structure in the data. For the present analysis, we employ
supervised learning, and in particular neural network algorithms, which are introduced
in the next section.
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Figure 5.1: Representation of an artificial neuron model, where the different input vectors xi

are multiplied for the respective weights wi, summed up to a bias b and used as
argument of the activation function ϕ. Figure taken from [97].

5.2.1 Neural Networks

Artificial neural networks (ANNs), usually abbreviated as neural networks (NNs), are a
class of machine learning supervised algorithms developed in the 1980s. Like many other
artificial intelligence algorithms, NNs were motivated to address the different aspects of
learning, such as the induction and prediction processes. Most ANN algorithms have
two common features. First, they are composed of a network of simple processing units,
also referred to as artificial neurons or nodes, that are mutually connected: this feature
makes an ANN model similar to a human brain. Second, a NN model typically does
not make any prior assumptions about data distribution before learning. This greatly
promotes the usability of neural networks in various applications.
Each artificial neuron takes as input a vector x multiplied by a weight wT and added to
a scalar bias b. The sum of these terms, z = wTx+b forms the argument of an activation
function, ϕ, resulting in the output of the neuron model y [97],

y = ϕ(z) = ϕ(wTx+ b) (5.7)

The activation function ϕ can in principle be any function that satisfies a R → R mapping
and is piece-wise differentiable: its explicit form depends on the specific applications. The
Rectified Linear Unit function (ReLU) [98] currently represents one of the most popular
activation functions used in neural networks. In Fig. 5.1 a simple drawing of an artificial
neuron is represented.
In order to build networks, the neurons need to be connected, and thus the outputs of

some neurons are used as inputs to other ones. The simplest connection is represented
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Figure 5.2: Schematic representation of a shallow FFNN (left panel), and of a deep FFNN with
three hidden layers (right panel). Figure taken from [97].

by a feed-forward neural network (FFNN) in which neurons are only connected in the
forward direction, and no loops are allowed. The information signals travel from the first
layer, called the input layer to the final layer (the output layer), possibly passing through
multiple intermediate layers, known as hidden layers. A network is typically called a deep
neural network if it has at least two hidden layers, as depicted in Fig. 5.2. The number
of hidden layers and of nodes per layer have a large impact on the performance of a NN,
and hence their choice is of fundamental importance.

5.2.2 Loss function

In the supervised learning approach, it is common to define a loss function, which typi-
cally is expressed as the difference between estimated and true values. The loss function
is a measurement of how good the machine learning model is to predict the expected out-
come and can be used for parameter estimation. One of the most common loss functions
for NNs algorithms is the mean squared error function (MSE). Considered n training
samples, with input value xi and target value fi, the MSE is defined as,

F (w) =
1

n

n∑
i=1

F (w) =
1

n

n∑
i=1

(y(xi,w)− fi) , (5.8)
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where y(xi,w) represents the prediction of the neural network for input value xi and
weight w. The minimization of the loss function with respect to the weight parameters
is usually not solvable analytically, and can addressed using iterative approaches, such
as the gradient descent method. Given a starting value w0, this algorithm gives an
approximation of the minimum of the function F (w) after the n interactions [99],

wn+1 = wn − η∇F (wn), (5.9)

where η is known as the learning rate. The choice of η is fundamental to reducing the
number of iterations needed to reach the approximate solution. The calculation of the
gradient of F (w) can be computationally expensive, especially for a large dataset. For
this reason, usually, only a random subset (mini-batch) is used to approximate the true
gradient of F (w): the result obtained by this method still allows for a good representation
of the gradient of the full dataset.

5.2.3 Uncertainty quantification

The neural network output consists only of point predictions and does not provide any
error estimation. In the majority of research analyses, however, uncertainties play a
fundamental role: for this reason, several methods to account for error estimation in
neural networks have been developed through the years. In the following, we will focus
mainly on the ensemble method, since it represents the error estimation procedure used
in the current analysis. An overview of other techniques, such as deterministic, bayesian,
and Test-Time Data Augmentation methods can be found in [100].
The main idea of building an NN ensemble is that by combining multiple models, the
errors of a single prediction will likely be compensated by other predictions, and, as a
result, the overall performance of the ensemble would be better than that of a single
prediction. The combination of the single predictions can be performed in several ways,
among which the most common is the arithmetic average. Besides improving accuracy,
building an ensemble of neural networks allows for defining a model’s uncertainty, which is
usually defined as the standard deviation of the predictions. Thus, the ensemble provides
a valid estimation of the model uncertainty.
One of the most important aspects of the NN ensemble is the maximization of the
variety among the members. This can be achieved by knowing that, due to the non-
linearity of the network, different weight initializations can lead to different training
results. Moreover, since the training is realized on mini-batches, the order of the training
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data points can also affect the final result. For this reason, the increase in variety can be
achieved by both random weight initialization and data shuffle.

5.3 Markov-chain Monte Carlo

Markov-chain Monte Carlo (MCMC) is a class of algorithms used for sampling probabil-
ity distributions. In the case of Bayesian inference MCMC methods are typically used
to draw samples from the posterior distribution P (Y|x).
Here, an initial candidate x0 is first randomly chosen from the parameter space. Then
a new proposal x′ is sampled from a given distribution called the proposal distribution.
Usually, the proposal distribution is chosen to be sufficiently simple so that it is straight-
forward to draw samples from it, as the case of normal distributions. After the sampling,
an algorithm is used to determine if the proposed sample x′ can be rejected or accepted.
One of the most popular methods is the Metropolis-Hastings algorithm, where the ac-
ceptance probability r(x′,x0) is expressed as [101],

r(x′,x0) = min

(
1,
P (Y|x′)
P (Y|x0)

Q(x0;x
′)

Q(x′;x0)

)
. (5.10)

Here Q(x0;x
′), known as transition distribution is usually parametrized by a multivariate

Gaussian distribution centered in x0. To determine if x′ is accepted, a random number
u is sampled from a uniform distribution: if r(x′,x0) > u the new proposal is accepted
and x1 ≡ x′, otherwise it gets rejected and x1 ≡ x0. It is important to notice that the
initial samples are often discarded because the chain may start from a low probability
area of the parameter space and hence may not represent the target distribution well.
The number of samples discarded is usually referred to as burn-in samples.
Thus, Markov-chain represents a sequence of samples, where each sample is dependent on
the previous one, as schematically depicted in Fig. 5.3. By this procedure, a random walk
based on the posterior probability is performed: if the number of samples drawn (known
as workers) is sufficiently high, the distribution of each parameter xi will converge to a
stationary distribution, where the mean represents the best estimate of xi. Moreover,
considering the width of the probability distribution in a given interval, the uncertainty
related to xi can also be estimated.
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Figure 5.3: Schematic representation of Markov-chain Monte Carlo method sampling using
random walk. Figure taken from [102].

5.4 Analysis implementation

5.4.1 Parameters set

Now that every analysis tool has been introduced, it is possible to give an overview of
the workflow of the present work. First of all, the parameter set x needs to be chosen.
For the present work, six different parameters are used, of which five are related to the
hydrodynamic evolution of the QGP, whereas one is related to heavy-quark dynamics.
The parameters related to the fireball initial conditions, Norm and τ0, were already
introduced in Sec. 4.2.1. Regarding the viscosity contribution, as mentioned in Sec.
2.2.2 the shear stress tensor and the bulk pressure are tuned by the relative coefficients
η and ζ. In the present work, the bulk viscosity coefficient over entropy is considered
temperature-dependent and takes the Lorentzian form,

ζ

s
(T ) =

(ζ/s)max

1 +
(
T−Tpeak

Twidth

)2 , (5.11)

where the peak Tpeak = 175 MeV and width temperature Twidth = 24 MeV are fixed
from [103]. The value of (ζ/s)max is taken as a free parameter for the Bayesian analysis.
On the other hand, we consider here η/s independent of the system temperature.
Following [104], the ratio between the diffusion coefficients and the respective relaxation
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Norm η/s (ζ/s)max τ0 [fm] Tfo [MeV] DsT

5− 80 0.08− 1 10−4 − 0.3 0.1− 2 110− 150 0− 0.50

Table 5.1: Parameter ranges used in the current analysis.

times are assumed to be constant,

τbulk
ζ/(ϵ+ p)

=
1

15
(
1
3 − c2s

)2 +
aoffset

ζ/(ϵ+ p)
, (5.12)

τshear
η/(ϵ+ p)

= 5, (5.13)

where ϵ represents the energy density, p the pressure, cs the speed of sound, and aoffset =
0.1 fm is a small offset introduced to ensure a casual radial expansion [50].
Strongly interacting field theories predict the existence of a lower bound for the shear
viscosity to entropy ratio: η/s ≥ 1

4π ≈ 0.08 [105]. This value is conjectured to be
universally valid for any fluid and will also be used in the present analysis as the lower
constraint of η/s.
Since in this analysis, kinetic and chemical freeze-outs are assumed to occur at the same
temperature, a single temperature parameter Tfo is needed.
The introduced parameters are related to the hydrodynamic evolution of the QGP, and
in the following, we will commonly refer to them as hydro model parameters.
The last parameter, the HQ spatial diffusion coefficient multiplied by the temperature
DsT is related to heavy-quark dynamics, and its bounds are taken from [84, 85].
As mentioned before, the parameter ranges need to be chosen carefully, since every
value outside these constraints is excluded. In Table 5.1 an overview of the ranges is
presented, mainly inspired by [79]. It is important to underline that the lower range
of the thermalization time is set to 0.1 fm due to simulation instabilities: as a matter
of fact it was observed in [106] that FluiduM becomes unstable for τ0 < 0.1 fm. Once
the parameters’ ranges are set, it is possible to build a Latin hypercube, that is a n-
dimensional grid in which the parameters are sampled semi-randomly and uniformly
within their ranges. In the current analysis, the number of sampled parameters is set
to 2 · 104. All the parameter configurations are independent of each other and can
be run in parallel: for this reason, it is possible to simultaneously run 103 tasks with 20

configurations each on a computing cluster, the Cluster Computing Infrastructure at GSI
[107]. In the present work, considerable effort was dedicated to the optimization of the
FluiduM package. FluiduM was originally written in Wolfram Language: however, since
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this language is not open-source, the number of tasks that can be run in parallel is highly
dependent on the number of licenses available. For this reason in the present analysis, a
different version of FluiduM written in Julia was optimized and used. Julia is an open-
source high-level programming language especially well suited for parallel computation
[108]. With this new version of FluiduM, up to ∼ 2 ·102 tasks can be simultaneously run
on the cluster. Since each task takes on average three minutes, the entire simulation can
be performed in 30 minutes: this performance represents a considerable improvement
with respect to the previous version, with a running time of the order of three hours.
In order to gain an initial understanding of the accuracy of the FluiduM simulation, it
is possible to study the parameter configuration which minimizes the χ2, defined as,

χ2 =
N∑
i=1

yFluidum,i(x)− ye,i
σe,i

, (5.14)

where ye,i is the experimental value of the transverse momentum spectrum of a particle
species in the i-th pT bin, yFluidum,i is the corresponding FluiduM output for the param-
eter configuration x, and σe,i =

√
σ2stat + σ2syst is the square-root of the sum of squares

of the systematic and the statistical uncertainties of the experimental data.
The minimization of the χ2 was used in [59] (one of the predecessors of this work) to find
the optimal parameter configuration. However, this procedure had several limitations:
for example, in the uncertainty quantification, the correlations between the parameters
were not considered. To overcome these limitations, following [79], the optimal parameter
configuration in this work will be inferred using Bayesian inference. We remark here that
the emulator and the Markov-chain Monte Carlo routines used for the Bayesian analysis
are almost integrally taken from [79].

5.4.2 Neural networks in the present analysis

In order to build a continuous posterior distribution as introduced in Sec. 5.1.2, it is
necessary to employ an emulator which is able to mimic the behavior of FluiduM simu-
lation. For each parameter configuration x used as input, a model result y is obtained
as output: thus, the training samples of the emulator consist of the input-output pairs
{xi,yi}. As a result, after the training a continuous regression in {xi,yi} space will be
obtained. Neural networks, if constructed large enough, are well suited for regression
tasks, and are used as emulators in this work.
Before the training, the data obtained from FluiduM is divided into three different cate-
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gories: the training set accounting for 83.3% of the data, the validation, and the test set
of 8.3% each. The validation and test set are used to perform a grid search and optimize
the model’s hyperparameters. In the case of NN, a hyperparameter can be defined as any
parameter that cannot be optimized through gradient descent: thus, hyperparameters
include the number of hidden layers, the number of nodes per layer, the learning rate,
and the activation function, defined in Sec. 5.2. In simple terms, the grid search consists
of trying to find the minimal loss function curve for different NN configurations: with this
procedure, it was found that the optimal configuration in the present analysis consists
of a shallow neural network with three hidden layers with ∼ 900 nodes, a learning rate
of around 0.01, and a ReLU activation function. For more details on the grid search,
see [106].
After the optimization of the hyperparameters, the NN can be trained. To ensure that
every parameter has the same weight on the network, the input and output data of the
training set are first normalized to [−1,+1] range. Moreover, to quantify the performance
of the trained NN, FluiduM output can be compared to the validation output, as shown
in Sec. 6.1.2.
In order to build a NN ensemble, M = 100 different neural networks are trained, each
with random initialization and data shuffling. The mean of the ensemble is then con-
structed by averaging the single NN models yi(x),

yemu(x) =
1

M

M∑
i=1

yi(x) (5.15)

To compute the model uncertainty, it is important to take into account the correla-
tion among the different neural networks of the ensemble: this correlation introduces a
correction factor c to the standard deviation of the neural network predictions [79],

σemu(x) = c ·

√√√√ 1

M

M∑
i=1

(yi(x)− yemu(x))
2 = c · σ̂emu(x). (5.16)

Knowing the output of FluiduM y(x)FluiduM and of the emulator yemu(x), the value of c
can be determined by fitting a Student-distribution to [yFluiduM(x)− yemu(x)] /σ̂emu(x)

[79]. In the present analysis, c ≈ 0.5.
With the ensemble mean and the model uncertainty, it is now possible to calculate the
posterior probability distributions for each parameter using the Markov-chain Monte
Carlo method.
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5.4.3 MCMC in the present analysis

In order to run the Markov-chain Monte Carlo, the Python library emcee is employed
[109], where the logarithmic of the posterior probability is taken as input. From the
definition of the posterior and of the likelihood in Eq. 5.2 and 5.6 respectively, the
logarithm of the posterior probability can be calculated as,

log (P (x|Y)) ∝

−1
2 [yemu(x)− ye]

TΣ−1 [yemu(x)− ye] if xmin
i ≤ xi ≤ xmax

i ∀ i
−∞ otherwise,

(5.17)
where ye represents the vector of experimental pT spectra, yemu(x) is the vector of em-
ulator model output corresponding to input x, and Σ = Σemu + Σe is the covariance
matrix. The experimental covariance matrix can be constructed by taking into account
experimental statistical σstat and systematic uncertainties σsyst. Since no information
about the correlations between the experimental uncertainties exists, Σe is constructed
as a diagonal matrix with entries given by σ =

√
σ2stat + σ2syst.

The second covariance matrix Σemu represents the ensemble covariance and can be com-
puted as,

Σj,k
emu = c · 1

M − 1

M∑
i=1

(yji (x)− yjemu(x))(y
k
i (x)− ykemu(x)), (5.18)

where yj is the jth-spectra output value and yjemu its mean ensemble prediction. Notice
that the covariance matrix has to be scaled by the correction factor c.
Using Eq. 5.17 the logarithm of the posterior probability can now be obtained. However,
P (x|Y) is a n-dimensional vector: thus, the posterior distribution of a single parameter
xi, known as the marginal posterior distribution, can be calculated integrating out all the
remaining parameters. Thus, for example for the parameter x1,

P (x1|Y) =

∫
dx2 ... dxnP (x|Y). (5.19)

The next sections will focus on the results computed by employing the analysis procedure
described so far.
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6 Results and discussion

Heavy quarks represent only a small percentage of the particles of the QGP: thus, the
properties of the QCD medium are better inferred by studying light-quark dynamics. In
the present analysis, two separate fits on light and on charmed hadrons are performed.
The study on light-hadrons pT spectra allows us to estimate the hydro model parameters
through the Markov-chain Monte Carlo procedure. After fixing the values of the hydro
model parameters, the Bayesian inference is applied to charmed-hadrons pT spectra, in
order to estimate the value of DsT . However, via this strategy, several hydro model
parameters and DsT are not well constrained. For this reason, a simultaneous fit of light
and charmed hadrons is later investigated.

6.1 Light hadrons

6.1.1 FluiduM results

As already remarked in the previous sections, the first five parameters of Table 5.1,
are related to the hydrodynamic evolution of the QGP. Following the work in [79], it is
possible to estimate the values of these hydro model parameters by studying the invariant
yields of light hadrons (i.e. pions, kaons, and protons) produced at freeze-out.
The experimental data of light hadrons are taken from the PHENIX collaboration [81].
At RHIC top energies the baryon chemical potential is µB ∼ 20 MeV [90]. Thus, while
the antiprotons are all created in the heavy-ion collisions, some of the observed protons
at midrapidity may be remnants of the original colliding ions. For this reason, the
experimental yields of antiprotons, and, for consistency, of anti-mesons K− and π− are
considered here.
Fig. 6.1 shows the comparison between the experimental data and our model for 2 · 104
configurations. Here, the configuration that minimizes the χ2 between the model and
the experimental data is highlighted as an orange line. FluiduM correctly describes the
experimental yield of pions and of kaons. As for antiprotons, however, the model results
seem to overestimate the experimental data for pT < 1 GeV. This effect can be due to
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Figure 6.1: Comparison between n = 2 · 104 transverse momentum spectra generated by
FluiduM and experimental data of Au − Au collisions at

√
sNN = 200 GeV for

the 0–10 % centrality class, from the PHENIX collaboration [81]. The solid mark-
ers show the experimental data that will be used in the MCMC procedure, while
the open ones represent the full experimental dataset. The configuration that min-
imizes the χ2 is drawn as an orange line.

the absence of a partial chemical equilibrium phase in the present model. The hadronic
phase builds additional radial flow, mostly due to the presence of elastic interactions [29].
Since heavier particles are more affected by the developing radial flows, a depletion at
low transverse momentum for protons is expected. Moreover, this effect is not observed
in [79], where the partial chemical equilibrium phase was implemented.
Since kaons and pions experimental pT spectra are well captured, the present model can
be used nonetheless to train the neural network.

6.1.2 Neural network validation

Using the FluiduM output, an ensemble of 100 NN is built and trained. In order to
quantify the performance of the trained neural networks, the FluiduM output is compared
to the output of the NN. Fig. 6.2 shows the correlation between the pT spectra estimated
by FluiduM and the ones simulated by the ensemble of 100 NN, considering the validation
set only. Each point represents a pT spectrum value in one experimental pT bin for either
pions, kaons, or protons in the 0 − 10% centrality class: since the points mostly lie on
the bisector, we verify that the NN predictions are strongly correlated to the model
predictions, or in other words, the emulator accurately reproduces the FluiduM output.
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Figure 6.2: Correlation between the pT spectra values estimated by FluiduM and the pT spectra
simulated by the ensemble of 100 NN, for pions, kaons, and protons in the 0− 10%
centrality class. As a comparison, the bisector is drawn (black line). On the right,
the residual distribution is shown, and compared to a standard normal distribution
(orange line).

In order to study the accuracy of the NN ensemble, it is also possible to calculate the
distribution of the residuals between the emulator output and FluiduM, scaled by the
neural networks ensemble uncertainty, as depicted in the right side of Fig. 6.2. The
residual distribution is centered at zero and is compatible with a Gaussian distribution
with zero mean and unitary variance.
Moreover, the prediction error, measured in units of the experimental data uncertainty
is of the order of (yFluidum − yemu) /σexp ∼ 10−3: this level of accuracy is sufficient for
the purposes of this study, and allows us to use the NN output in the next steps of the
present analysis.

6.1.3 MCMC procedure

The pT spectra generated by the emulator can now be used to apply the Markov-chain
Monte Carlo procedure. In the present work, the vector ye is built considering the ex-
perimental data in the low transverse-momentum region, up to pT ≤ 2 GeV. Moreover,
in the case of pions a limit of pT > 0.5 GeV is set. This constraint, also used in [79],
is necessary to take into account the observed enhancement of pions at low pT, which is

73



6.1. LIGHT HADRONS

Parameter Value

Norm 21.8+2.1
−3.2

η/s 0.52+0.29
−0.22

(ζ/s)max unconstr.

τ0 [fm] 0.70+0.42
−0.39

Tfo [GeV] 0.135+0.001
−0.001

Table 6.1: Posterior parameter estimates. The reported values correspond to the median values
and 68% confidence intervals.

believed to have non-hydrodynamic origins [110].
In Fig. 6.3 the distribution of the marginal posteriors is shown for the hydro model pa-

rameters. In the diagonal panels, the marginal distribution of each parameter is shown,
whereas the off-diagonal panels depict the correlations among pairs of parameters. A
summary of the best-estimated values of the hydro model parameters is reported in Ta-
ble 6.1.
The MCMC procedure manages to constrain the value of the normalization constant
Norm and of the freeze-out temperature Tfo, which are distributed as a Gaussian-like
shape around their most probable value. The value of the freeze-out temperature Tfo =

0.135+0.001
−0.001 GeV is within the chemical freeze-out temperature determined by statis-

tical models, Tchem ≈ 0.170 GeV [111, 112], and the kinetic freeze-out temperature
Tkin ≈ 0.120 GeV extracted using the blast-wave model fit to experimental data [113].
The normalization constant is a system-dependent quantity: in accordance with the ex-
pectations, its value Norm = 21.8+2.1

−3.2 is lower than the one predicted at LHC energies,
where Norm = 36.0+3.1

−3.6 [79].
The distribution of τ0 results too large to draw any conclusion on its best-estimated
value: as a matter of fact, since τ0 = 0.70+0.42

−0.39 fm, its relative error is more than 50%.
Similarly to what is observed in [79], the transport coefficients η/s and (ζ/s)max are not
well constrained by the current analysis. On one hand, the shear viscosity over entropy
ratio seems to favor values beyond the upper bound of the allowed interval. The same
behavior is observed when trying to increase the upper range up to η/s = 3, and it is
thus not attributable to the value of the bound itself. The bulk viscosity over entropy
ratio, on the other hand, hits the lower bound of its prior interval: in this case, even if
theoretically possible, extending the lower range of (ζ/s)max causes numerical problems
in the FluiduM simulation, and it is thus not feasible at the moment. For this reason, we
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Figure 6.3: Marginal distributions of the hydro model parameters obtained employing Bayesian
inference. In the diagonal panels, the marginal distribution of each parameter
is shown, whereas the off-diagonal panels depict the correlations among pairs of
parameters. The two contours represent 1σ and 2σ confidence level.
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Figure 6.4: Top panels: comparison between n = 400 transverse momentum spectra generated
by FluiduM from the marginal distributions and experimental data of Au − Au
collisions at

√
sNN = 200 GeV for the 0–10 % centrality class, from the PHENIX

collaboration [81]. The solid markers show the experimental data used in MCMC
the procedure, while the open ones represent the full experimental dataset. Bottom
panels: ratio between the FluiduM prediction and experimental data.

consider (ζ/s)max unconstrained, as reported in Table 6.1. The value of (ζ/s)max used
as input for the charmed-hadrons study will be the one automatically estimated by the
MCMC simulation: however, we remark here that this value does not represent a best
estimate, given the current shape of the marginal distribution.
In conclusion, several hydro parameters are not well constrained by the MCMC proce-
dure. However, it is important to underline that this work represents a preliminary study
of Bayesian analysis applied to RHIC top energies. Systematically varying the ranges of
the hydro parameters and employing more centrality classes will presumably allow us to
better estimate of the hydro model parameters. Moreover, the difficulty of constraining
the value of the η/s and of (ζ/s)max can be attributed to the limited sensitivity of the pT
spectrum to the transport coefficients. In order to address this issue, it will be possible in
the future to employ additional observables, such as the anisotropic flow coefficients vn.
In order to study the posterior pT spectra, it is possible to sample n = 400 random
parameter configurations from the marginal distributions and use them as new input
for FluiduM simulation. The top panel of Fig. 6.4 shows that the FluiduM predictions
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sampled from the marginal distributions are significantly more constrained than the orig-
inal prior pT spectra. Moreover, the ratio between FluiduM and the experimental data
is shown in the bottom panel: here, the deviation between the model results and the
data is between 5% − 10%, except for low-pT protons, where a deviation of ∼ 30% is
observed. In this case, this result is attributable to the absence of a chemical equilibrium
phase in the current model. The Maximum A Posteriori (MAP) estimate, which is the
configuration that maximizes the posterior probability, is shown as a black line. The
MAP can be considered as the optimal posterior configuration, and in the present case,
χ̃2
MAP ∼ 0.5. These results prove that, even if several hydro model parameters are not

currently constrained, the present model captures well the experimental pT spectra.

6.2 Charmed hadrons

The study on the light-flavor hadrons served as a starting point for the charmed-hadrons
analysis. Even if several hydro model parameters are not well constrained, the level of ac-
curacy reached can be considered, as for now, sufficient for the main purpose of our work,
which is the study of heavy-flavor hadrons and of DsT . Therefore, the charmed hadrons
pT spectra can be generated by using the median values of the hydro model parameters
reported in Table 6.1. In Fig. 6.5 the FluiduM results varying the value of DsT from 0
to 0.5 are shown. Since the only available experimental data of J/ψ are in the centrality
class 0− 20%, we will limit our study to D mesons in the centrality class 0− 10%. The
prior bands of D0 and D+

s are already very constrained around the experimental data,
and they fail to correctly describe the D0 experimental data for pT > 3 GeV. This
result arises because the hydro model parameters are fixed to their median values, and
we do not consider any error associated with them. In order to account for the uncer-
tainty related to every hydro model parameter, it would be necessary to perform an error
propagation to the charmed hadron momentum spectra. Employing prior distributions
that are so constrained around the experimental data could pose several questions on the
applicability of the present procedure. However, as already stressed, this work represents
a preliminary study, and we aim to test the Bayesian procedure on charmed hadrons.
Therefore, as for now, we can employ the current model results to train the NN.
After building the emulator using an ensemble of 100 neural networks, the Markov-chain
Monte Carlo procedure is applied. In this case, we limit to pT < 4 GeV, where the
hydrodynamic description of heavy quarks is assumed to be valid. Fig. 6.6 depicts the
marginal distribution of DsT obtained from the MCMC analysis. From the shape of the
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Figure 6.5: n = 2 · 104 charmed hadrons pT spectra generated by FluiduM fixing the hydro
parameters according to the procedure presented in Sec. 6.1, and experimental
data of Au − Au collisions at

√
sNN = 200 GeV for the 0–10 % centrality class,

from the STAR collaboration [87, 88]. The solid markers show the experimental
data that will be used in the MCMC procedure, while the open ones represent the
full experimental dataset. The configuration that minimizes the χ2 is drawn as an
orange line.
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Figure 6.6: Posterior distribution of DsT obtained using the median values of the hydro model
parameters.

distribution, it is clear that the current procedure is not able to constrain the value of the
charm spatial diffusion coefficient multiplied by the temperature. As a matter of fact, the
DsT marginal distribution is characterized by two peaks, which respectively hit the upper
and the lower bound of the prior interval considered. It is not convenient in the present
work to increase the searching region of DsT . As already stressed in Sec. 4.3.1 large
values of the HQ spatial diffusion coefficient entail large corrections δfdiffusion. Thus,
by using DsT > 0.5, we would produce pT spectra which need large out-of-equilibrium
corrections. Since these corrections are neglected here, the current framework cannot
correctly describe the spectra corresponding to large DsT values. Thus, we will limit our
analysis to 0 < DsT < 0.5, which still represents a reasonable range according to lQCD
predictions [85].
The invariant spectra of charmed hadrons obtained by sampling the marginal distribu-
tion of DsT are shown in Fig. 6.7. Since the value of DsT is not well constrained in
the present analysis, the width of the total posterior band does not differ much from the
one of the prior pT spectra in Fig. 6.5. Thus, as expected, the present procedure does
not allow us to provide a more precise description of the momentum spectra of charmed
hadrons.
It is important to remark that here we employed the median values of the hydro model
parameters, even if several parameters are not well constrained by the analysis on light
hadrons. Moreover, as already stressed, it would be necessary to propagate the uncer-
tainties of the hydro model parameters to the estimate of DsT . These issues will be
addressed in the near future, while for now, it is possible to test a different fit procedure,
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Figure 6.7: n = 400 charmed hadrons pT spectra generated sampling from DsT marginal dis-
tributions. The experimental data of Au−Au collisions at

√
sNN = 200 GeV in the

0–10 % centrality class are taken from the STAR collaboration [87, 88]. The solid
markers show the experimental data used in MCMC the procedure, while the open
ones represent the full experimental dataset.

presented in the next section.

6.3 Global fit

An alternative approach is to apply the Bayesian inference considering both the light
and charmed hadrons simultaneously. Therefore, the hydro model parameters and DsT

will be estimated at the same time. Since the value of the HQ spatial diffusion coefficient
does not influence the dynamics of light hadrons, their prior pT spectra do not differ
from the ones shown in Fig. 6.1. In Fig. 6.8 the invariant yields of charmed hadrons
are reported. Compared to the prior spectra shown in Sec. 6.2, the current invariant
yields span over a broader range, since all the model parameters are varied at the same
time. This result represents a good indication that the prior distributions span a large
range of pT spectra, and can be used to apply Bayesian inference. Thus, the light and
the charmed-hadrons momentum spectra are used together to train the neural networks.
Since in this case the FluiduM simulation depends on six parameters and five particle
species are studied, a new grid search is performed. Here the configuration that mini-
mizes the loss function consists of neural networks with three hidden layers and ∼ 1000
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Figure 6.8: n = 2·104 charmed hadrons pT spectra generated by FluiduM varying all the model
parameters and experimental data of Au−Au collisions at

√
sNN = 200 GeV for the

0–10 % centrality class from the STAR collaboration [87, 88]. The solid markers
show the experimental data that will be used in the MCMC procedure, while the
open ones represent the full experimental dataset. The configuration that minimizes
the χ2 is drawn as an orange line.

nodes per layer. Moreover, the NN validation does not qualitatively differ from the re-
sults shown in Sec. 6.1.2.
After emulating the FluiduM output, the MCMC procedure is applied. In Fig. 6.9 the
marginal distributions of the model parameters are shown. As already mentioned, the
hydro model parameters should mostly depend on the light-quark dynamics, since they
represent the majority of the particles of the QGP. However, the simultaneous fit of light
and charmed hadrons affects the marginal distribution of several hydro model parameters.
The thermalization time seems now to be better constrained: since τ0 = 1.04+0.24

−0.26 fm

its relative error is more than halved with respect to fitting light hadrons only. On the
other hand, the distribution of the shear viscosity over the entropy ratio differs from the
one shown in Fig. 6.3. In the present case, the distribution hits the upper bound of its
range and hence we consider η/s unconstrained.
In order to understand if and to what extent the charmed hadrons pT spectra really
influence the estimation of the hydro model parameters, and if the current procedure is
preferable over the separate fit of light and charmed hadrons, further investigations will
be needed in the future.
The marginal distribution of DsT hits the upper bound of its range. The tendency of
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DsT to favor high values can be traced back to the absence of δfdiffusion. The charm
multiplicity has a non-physical dependence on DsT , and large values of DsT translate
into large multiplicities. Since the majority of prior distributions shown in Fig. 6.8
are below the experimental data, the configurations with higher multiplicity (and hence
higher DsT ) tend to be preferred by the MCMC simulation. By simultaneously fitting
light and heavy hadrons, it is not necessary to propagate the uncertainty of the hydro
parameters to the error of DsT . Moreover, the global fit procedure will allow us to study
in the future if the hydro model parameters influence the value of DsT , employing the
pair correlations given by the MCMC procedure.
The posterior momentum spectra of charmed hadrons (Fig. 6.10) describe the experi-
mental data at pT < 4 GeV. Even if these posteriors do not seem more constrained than
the posteriors of Sec. 6.2, it is necessary to remark that here all the model parameters
are varied, and the initial prior distributions were very spread around the experimental
data.
This work represents the first application of the Bayesian approach to the study of heavy
quarks. Therefore, even if the results shown here are only preliminary, they serve as
a fundamental proof of concept for applying Bayesian analysis to charmed hadrons, in
order to put constraints on the value of DsT . Systematic studies in the future will allow
us to provide valuable insights into the properties of heavy quarks in the QGP.
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Figure 6.9: Marginal distribution of all parameters, obtained employing Bayesian inference.
In the diagonal panels, the marginal distributions of each model parameter are
shown, whereas the off-diagonal panels depict the correlations among pairs of model
parameters.
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Figure 6.10: n = 400 charmed hadrons pT spectra spectra generated sampling from all model
marginal distributions. The experimental data of Au − Au collisions at

√
sNN =

200 GeV in the 0–10 % centrality class are taken from the STAR collaboration [87,
88]. The solid markers show the experimental data used in MCMC the procedure,
while the open ones represent the full experimental dataset.
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7 Conclusions and outlook

In this thesis, the applicability of a fluid-dynamic approach to heavy-quark dynamics at
RHIC energies of

√
sNN = 200 GeV was explored, and a Bayesian analysis to estimate the

heavy-quark spatial diffusion coefficient multiplied by the temperature DsT was applied.
Heavy quarks represent essential probes to study the QGP, since they are mainly pro-
duced in the initial hard scattering, and experience the entire evolution of the fireball.
Due to their large mass, HQ propagation within the QGP is canonically treated using
a Brownian-like motion. However, motivated by studies on the charmed-hadron elliptic
flow [72], a fluid-dynamic approach to describe heavy quarks in the QGP was developed
in [69]. This approach is valid under the assumption that low-pT heavy quarks interact
enough with the QGP, and approach local thermal equilibrium within the lifetime of
the QGP, as verified for LHC energies [75]. The thermalization process is highly depen-
dent on the collision energy: thus a natural question is if HQ can still be described via
fluid-dynamic equations even at lower-temperature QGP states, as the ones produced at
RHIC in Au−Au collisions at

√
sNN = 200 GeV.

After modeling the initial QGP state, it was estimated that ∼ 1.5 charm quark pairs are
produced at RHIC per event per unit of rapidity. This value is in full agreement with the
predictions of statistical models [78]. To estimate whether it is possible for the charm
quarks to be described by fluid dynamics within an expanding medium, the relaxation
time τn of charm was compared with the expansion time τexp of the fluid, using the sim-
plified model of a Bjorken expansion. For most of the values of the heavy-quark spatial
diffusion coefficient multiplied by the temperature DsT , it was found that τn ≪ τexp,
supporting a fast-thermalization picture also at RHIC top energies. The applicability of
the fluid-dynamics approach was further explored by studying charmed-hadron invariant
yields. Our model captures well the experimental data of D0, D+

s and J/ψ mesons in
the low-transverse momentum region, pT < 4 GeV, measured by the STAR collaboration.
These results motivated us to apply a Bayesian parameter estimation on charmed hadrons,
to estimate the value of the HQ spatial diffusion coefficient multiplied by the tempera-
ture DsT . The framework used closely follows the one developed in [79], and employs
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neural networks as emulator and Markov-chain Monte Carlo simulations. In order to
fix the coefficients related to the QGP hydrodynamic, a fit on light-hadrons pT spectra
was first performed. However, the current procedure is not able to constrain well the
values of several hydro model parameters, such as the initial thermalization time and the
transport coefficients. Since the present analysis represents a preliminary study of the
Bayesian approach applied at RHIC energies, the accuracy reached here was considered
sufficient for this test phase.
The hydro parameters’ median values were used as input for the charmed-hadron studies.
Applying the MCMC procedure to their pT spectra it was found that the current analysis
is not able to set any constraint on the value of DsT . Moreover, applying two separate
fits for light and heavy hadrons raises several questions, such as the propagation of hydro
model parameter errors to the estimate of DsT .
As an alternative approach, a fit of light and heavy hadrons was simultaneously per-
formed. In this case, the thermalization time is well constrained, and the errors associ-
ated with the hydro model parameters are in general smaller. In the future, we will need
to investigate whether charmed hadrons spectra influence the estimation of the hydro
model parameters. Moreover, it was observed that the DsT marginalized distribution
tends to favor values close to the upper bound of its prior distribution: this behavior can
be traced back to the absence of δfdiffusion corrections at the freeze-out.
This work represents the first study on the Bayesian analysis applied to the HQ dynamics.
Even if the value of DsT was not constrained here, the results shown are very promising
and motivate us to further investigations.

7.1 Outlook

In the next studies, it will be possible to focus on a robust estimation of the value of the
HQ spatial diffusion coefficient multiplied by the temperature. As already stressed, in
the present work we neglect the charm out-of-equilibrium corrections at the freeze-out.
However, assuming δfdiffusion = 0 entails a non-physical dependence of the charm mul-
tiplicity on the value of HQ spatial diffusion coefficient: this reduces the ranges of DsT

that can be probed, and can introduce a bias on the value of DsT extracted from the
Bayesian procedure. The computation of the out-of-equilibrium corrections results there-
fore of priority importance, and to address the problem a maximum-entropy approach
[114] is currently under study.
Moreover, as for the case of η/s and (ζ/s)max, it is possible that the pT spectrum is
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not sensitive enough to DsT . Therefore, the anisotropic flow coefficients, which are more
sensitive to the medium properties, may play a fundamental role in the future in inferring
the value of DsT . The study on the anisotropic coefficients will also allow more precise
results on the transport coefficients at RHIC top energies.
In the present analysis, due to the experimental data availability, the fit on charmed
hadrons included only two particle species in a single centrality class 0 − 10%: the dif-
ficulty of constrain DsT value could also be due to the limited amount of experimental
data employed. Within the FluiduM framework, it is straightforward to extend this work
to the LHC: here the larger amount of available experimental data could allow us for a
better estimate of DsT .
Moreover, we assumed here that the value of DsT remains constant throughout the evo-
lution of the fireball. However, recent lQCD studies [85] show a dependence of DsT on
the medium temperature. A first approach to address this point could be to consider a
linear dependence of DsT with the temperature, in order to mimic the trend observed
by lQCD calculations.

In the future, it will be possible to investigate whether the fluid-dynamic approach to
HQ still holds for lower collision energies, down to O(10 GeV). Under these experimental
conditions, since µB ≫ 0, a conserved baryon current needs to be added and evolved
within the FluiduM framework.
Finally, our study can in principle be extended to the bottom quarks sector as well. Due
to their larger mass, bottom quarks need more time to thermalize with the QGP, and a
fluid-dynamic description results even more complicated than for charm quarks. In [69]
it was shown that b quark might thermalize in the late stages of the fireball evolution,
possibly opening up a new way to investigate heavy-quark dynamics in the QGP.
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