

ROOT - Installation

ROOT – Installation

Namenskonvention der ROOT Versionen: v<MAJOR>.<MINOR>/<PATCH>

- immer die Version mit dem neuesten PATCH release verwenden
- für alle Versionen ist der I/O vorwärts und rückwärts kompatibel
- Installation von Quellcode oder von pre-compiled Code

Platform	Files	Size
CentOS 7	root_v6.22.02.Linux-centos7-x86_64-gcc4.8.tar.gz	186M
Fedora 30	root_v6.22.02.Linux-fedora30-x86_64-gcc9.3.tar.gz	225M
Fedora 31	root_v6.22.02.Linux-fedora31-x86_64-gcc9.3.tar.gz	225M
Fedora 32	root_v6.22.02.Linux-fedora32-x86_64-gcc10.2.tar.gz	227M

Frforderliche installierte Software:

https://root.cern/install/dependencies/

ROOT - Binäre Installation

Die ROOT Dateien werden als gepacktes und komprimiertes File verteilt, als tar Archiv. Beim Entpacken wird die directory Struktur zum Zeitpunkt des Packens erhalten.

tar Beispiel

alle Directories und Files in myDirectory werden in ein File mit dem Namen myTarFile.tar geschrieben und anschließend mit gzip komprimiert.

```
$> tar -cvf myTarFile.tar myDirectory
$> gzip myTarFile.tar
```

Das komprimierte tar File mit dem Namen myTarFile.tar.gz wird entpackt und in die ursprüngliche Struktur expandiert.

```
$> tar -zxvf myTarFile.tar.gz
```

Ein Entpacken der binären ROOT Distribution wird die Struktur von ROOT erhalten.

```
$> cd MeinROOT
$> tar -zxvf root_v6.22.02.Linux-ubuntu20-x86_64-gcc9.3.tar.gz
$> mv root-v6.22.02 root
$> . MeinROOT/root/bin/thisroot.sh
$> root
```

ROOT – Quellcode Installation

Zum Kompilieren von ROOT benötigen wir die Header der Programmpakete, die ROOT benötigt. Diese sind in PaketName-devel oder PaketName-dev zu finden. Die Liste der benötigten Pakete für die verschiedenen Linux Distributionen gibt es unter https://root.cern/install/dependencies/

 Quellcode Installation auf dem Übungslaptop die notwendigen Pakete können unter OpenSuSE 15 entweder mit yast2 oder zypper installiert werden:

```
$> zypper install git bash cmake gcc-c++ gcc binutils \
$> xorg-x11-libX11-ccache libXpm-devel xorg-x11-devel\
$> xorg-x11-util-devel libXext-devel libX11-devel

optionale Pakete:
$> zypper install gcc-fortran libopenssl-devel \
$> pcre-devel Mesa Mesa-devel glew-devel pkg-config \
$> libmysqld-devel fftw3-devel fftw3-threads-devel \
$> fftw3-mpi-devel libcfitsio6 graphviz-devel \
$> libdns169_sd avahi-compat-mDNSResponder-devel \
$> openldap2-devel patterns-devel-python-devel_python3 \
$> libxml2-devel krb5-devel gsl-devel libqt4-devel libpythia8 \
$> pythia-devel libjpeg62-devel libtiff-devel giflib-devel
```

die Verwendung der python Version hängt von der installierten Version ab.

ROOT – Quellcode Installation

• ROOT soll im directory /local/cern installiert werden

Bitte zum superuser root wechseln und das komprimierte tar File mit dem Namen root_v6.22.02.source.tar.gz

entpacken und in die ROOT Quellstruktur expandieren.

```
$> tar -zxvf root_v6.22.02.source.tar.gz
$> less root-6.22.02/README/INSTALL
```

Im folgenden nehmen wir eine Installation fuer alle user des Linuxsystems auf dem Übungslaptop vor. Die Dateien werden in /local/cern/root zu finden sein.

```
$> mkdir root_v6.22.02_build; cd root_v6.22.02_build
$> cmake /local/cern/root-6.22.02 -Droofit=ON -Dminuit2=ON \
$> -Dpythia8=ON -Dbuiltin_xrootd=ON
$> make -j4
$> ln -s root_v6.22.02_build root
$> source /local/cern/root/bin/thisroot.sh
```

Setzt die Pfad Variablen, die zur Benutzung von ROOT notwendig sind

Alternativ kann folgendes in das .bashrc geschrieben werden

```
export ROOTSYS=/local/cern/root/
export PYTHONDIR=/usr/bin/python3
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PYTHONDIR/lib
export PYTHONPATH=$ROOTSYS/lib:$PYTHONPATH
```