

Visual cortex, Wikipedia

CNN Overview

• Neurons in the visual cortex fire signals (action potential)
 in case of visual stimuli in the field of vision (receptive
 field). Each neuron responds only to a subset of the
 receptive field and passes the signals to the neurons
 of the next layers with increasing complexity from layer
 to layer.

• Convolutional Neural Networks were inspired by this
 type of biological models. They are feed forward neural networks which learns feature
 engineering via filters (also called kernels). They lead to regularized weights and create
 less connections in the propagating network. The intention was to prevent vanishing and
 exploding gradients during back propagation and to overcome over training.

• The convolution filters (kernels) slide along the input features and provide new feature
 (multiple) maps (convolutional layers) of reduced size. The neurons in one layer are fully
 connected to the neurons in the next layer (feed-forward neural network)
 → leads to reduced set of parameters which typically appear in the structure
 finding of large images

• Key component of CNNs: Convolutional layers
 - Set of learnable filters
 - Low-level features at the first layers → high
 level features towards the end

CNN Overview

• Typical applications are
 - audio recognition and language processing
 - image and video recognition
 - medical image analysis
 - financial time series

• CNNs learn to optimize the filters (kernels) and extract specific image features by
 applying a small matrix of numbers (called filtering)

Convolutional Neural Networks
• A Convolutional Neural Network (CNN) learns features directly from data without specifying
 the features explicitly. CNNs are useful for pattern recognition in images and computer
 vision, but also for classification tasks in audio data and signal processing.

• Learning the features happens via convolution filter, which are activated by scanning over
 the pixel of an image. Edges or structure and color changes are transported to another
 filter layer. A Rectified Linear Unit (ReLU) is applied as activation function. Via a pooling
 technique the number of parameters is reduced from layer to layer.

• Convolution

 The function value of the weight function f at the position τ tells us how strong the contribution
 of g(x – τ) in f at the position x is.

• Discrete convolution

source Wikipedia

input distribution kernel or filter function

image kernel
Play with images and and various kernel for image processing: https://setosa.io/ev/image-kernels/

https://setosa.io/ev/image-kernels/

Convolutional Neural Networks
More information can be found in the Stanford course https://cs231n.github.io/convolutional-networks/

• Structure of a typical CNN used in image classification

 - Main idea is to extract particular localized features of data, eg. an image, using a
 convolution as filter mechanism. The input is a data structure [xPix,yPix,3] of raw pixel
 values with three color channels R,G,B. Each color channel is treated independently.

https://cs231n.github.io/convolutional-networks/

Convolutional Neural Networks
More information can be found in the Stanford course https://cs231n.github.io/convolutional-networks/

• Structure of a typical CNN used in image classification

 - Main idea is to extract particular localized features of data, eg. an image, using a
 convolution as filter mechanism. The input is a data structure [xPix,yPix,3] of raw pixel
 values with three color channels R,G,B. Each color channel is treated independently.

https://cs231n.github.io/convolutional-networks/

Convolutional Neural Networks
More information can be found in the Stanford course https://cs231n.github.io/convolutional-networks/

• Structure of a typical CNN used in image classification

 - Main idea is to extract particular localized features of data, eg. an image, using a
 convolution as filter mechanism. The input is a data structure [xPix,yPix,3] of raw pixel
 values with three color channels R,G,B. Each color channel is treated independently.

 - There are 3 main building blocks:

 I) Convolutional layer
 ○ Obtain a weight matrix by computing the dot product of the weight matrix and a small
 sub region of the input data and scanning over the whole image. This results in a
 weight matrix which transports certain features of the image to further layers.
 ○ To the weights activation functions like ReLU are applied. The convolution operation
 (weight matrix ∙ sub input structure) behaves like a filter.
 ○ The weight matrix is determined by a loss function.
 ○ Multiple convolutional layers extract with increasing depth more and more complex
 features

https://cs231n.github.io/convolutional-networks/

Convolutional Neural Networks
• Structure of a typical CNN used in image classification

 II) Pooling layer
 ○ Several neighboring pixel are pooled together by averaging or by taking their
 maximum.

 ○ Max Pooling algorithm: Take a 4x4 input (W),
 step (S) with a 2x2 filter (F) over the input, take
 the maximum entry

 ○ Zero Padding: to the edges of the picture pixel
 are added (P) and filled with zeros

 ○ Output size OP :

More information can be found in the Stanford course https://cs231n.github.io/convolutional-networks/

source Computer Science Wiki

https://cs231n.github.io/convolutional-networks/

Convolutional Neural Networks
• Structure of a typical CNN used in image classification

 III) Output layer
 ○ The final stage is a fully connected layer which works as MLP to generate an output

 ○ The very last layer is equal to the number of output classes.
 In order to obtain probabilities for each class
 SoftMax is applied

 ○ A loss function determines all the weights

More information can be found in the Stanford course https://cs231n.github.io/convolutional-networks/

Input Layer

Output Layer

Convolutional Layer

Convolution Stage

Activation Stage

Pooling Stage

https://cs231n.github.io/convolutional-networks/

Convolutional Neural Networks
• 2D Convolution as matrix multiplication

 Fewer weights needed than for the full matrix
 multiplication

• Example: blur an image by convolution with a Gaussian kernel
 - the bluring increases with increasing width of the gaussian
 (here an FFT is used instead of the matrix multiplication)

lectures.scientific-python.org

plot_image_blur.ipynb

http://lectures.scientific-python.org/
https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/plot_image_blur.ipynb

Examples - Deep Neural Networks
• Two extreme cases of training results

 - If the model does not reflect the data content or the training is insufficient
 → bad network performance

 - If the model allows for to much complexity it learns features of the training data sample
 → network can be applied to other samples (overtraining effect)
 test overtraining in the example clothing dataset by including the method Dropout in TF
 or changing the number of nodes in the hidden layer

• Other classification examples with Tensorflow and Keras

 - uses the Fashion MNIST dataset of Zalando, which contains 60,000 gray scale images in
 10 categories each showing low resolution clothing pictures.

 - sequential model with two dense layers → significant overtraining with test accuracy = 87.7%

 - sequential model with two dense layers adding Dropout and softmax activation
 → no over training with test accuracy = 88.2 %

 - CNN model where the input data is shaped to a 4D tensor of shape (samples, height,
 width, channels). MaxPooling2D and 3x3 Filters and ReLu activation and the Dropout
 feature is used → no over training with test accuracy = 91.4 %

clothingSequential.ipynb

clothingCNN_4D.ipynb

clothingSequentialDropout.ipynb

ttps://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/clothingSequential.ipynb
https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/clothingCNN_4D.ipynb
https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/clothingSequentialDropout.ipynb

CNN_MNIST_digits_tf.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/CNN_MNIST_digits_tf.ipynb

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

