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 8.5.3 Higher order corrections: Anomalous magnetic moment 

1. Magnetic moment of the electron 

a)  Dirac equation with electron coupling to electro-magnetic field: 
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Ansatz for the solution as for free particle: 
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Non-relativistic limit: 

For this limit it makes sense to separate 

interaction via charge and magnetic moment  

meAmE 20,

from (2)   inserted in (1): 
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Pauli equation. 

Lower spinor component in non-relativistic limit small. 
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Interaction of  

“spinless  charge” 

“Magnetic interaction” 

via spin  spin-flip 
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b)   Gordon decomposition for electron current: 
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2. Effect of higher order corrections 
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Higher order corrections to g-2 

Radiative corrections g-2 are 

calculated to the 4-loop level: 

Feynman Graphs 

O( ) 1 

O( 2) 7 

O( 3) 72 

O( 4) 891 

til O( 4) 971 

Most precise QED prediction. 

T. Kinoshita et al. 

analytically 

numerically 
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3. Electron g-2 measurement 

Experimental method: 
Storage of single electrons in a Penning trap 

(electrical quadrupole + axial B field) 

 complicated electron movement (cyclotron 

and magnetron precessions). 
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Idea: bound electron: 

Energy levels single electron: 

Cyclotron frequency 

Spin precession frequency 

H. Dehmelt et al., 1987                       

G. Gabrielse et al., 2006 

C    149 GHz 
    134 kHz  

z    200 MHz  

Leading relativistic correction 
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http://www.nobelprize.org/nobel_prizes/physics/laureates/1989/dehmelt-lecture.pdf 

Excitement of axial oscillation: 

Magnetron levels 

(from E-field) 

Axial oscillation  

(E-field) 

Cyclotron levels (n) 

&  Spin orientation 



H. Dehmelt et al. 1987 
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 most precise value of : 
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For comparison  from Quanten Hall 
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Trigger RF induced transitions ( a) between 

different n states or spin flips. 

(change in cyclotron or spin state revealed 

by axial oscillation ->  feedback driven osc.) 

)76(85180652159001.0ea

G. Gabrielse et al. 2006 

)76(85180652159001.0ea

Phys. Rev. Lett. 97, 030801 (2006) 

Phys. Rev. Lett. 97, 030802 (2006) 

SEO = single electron oscillation 
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4. Experimental determination of muon g-2 
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Principle: 

• store polarized muons in a storage ring; 

revolution with cyclotron frequency c 

• measure spin precession around the 

magnetic dipole field relative to the 

direction of cyclotron motion  
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Precession: 

Difference between Lamor 

and cyclotron frequency 

Effect of electrical focussing 

fields (relativistic effect). 

GeV/c094.3  

29.3 for  0

μp

First measurements: 

   CERN 70s 
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)12(937165001.0
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e
e e

e“V-A” structure of weak decay: 

Use  high-energy e+ from muon 

decay to measure the muon 

polarization 

(g-2)  Experiment at BNL 

2 7.1 m 

E=24GeV 

1  / 109 protons on target 

6x1013 protons / 2.5 sec 

Weak charged current couples to LH 

fermions (RH anti-fermions) 
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From a to a   -  How to measure the B field 

<B> is determined by measuring the proton nuclear magnetic 

resonance (NMR) frequency p in the  magnetic field.  

)1(
/

~/

2

~4

2

~ a

gcm

e
B

cm

e
a

p

pa

p

p

a

p

p

aa







pap

pa
a

//

/

Frequencies can be 

measured very precisely 

+/ p=3.183 345 39(10) 

from hyperfine splitting in muonium 

W. Liu et al., Phys. Rev. Lett. 82, 711 (1999). 
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NMR trolley 

17 trolley NMR probes 

375 fixed NMR probes 

around the ring 

p /2π = 61 791 400(11) Hz (0.2ppm) 
~ 
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About 2.6  deviation: 

• Often interpreted as sign of 

new physics:  SUSY  

• But careful:                               

“Theory” has uncertainties … 

… and sometimes even bugs. 

• Quantum loop effects (SM or new 

physics) are ~ m2  and therefore 

more important for muons than 

for electrons. 

)7.0(10)8(21465911 10 ppma

)7.0(10)8(20365911 10 ppma

)5.0(10)6(20865911 10 ppma
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5. Theoretical prediction of a  

Beside pure QED corrections there are 

weak corrections (W, Z) exchange and 

„hadronic corrections“  

EWHadQED aaaa

(For the electron with much lower mass 

the hadronic and weak corrections  are 

suppressed (~m2), and can be neglected.) 

Hadronic corrections 

 Determination of hadronic corrections 

is difficult and is in addition based on 

data: hot discussion amongst 

theoreticians how to correctly use the 

data. 
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Hadronic vacuum polarization: 

Hadronic corrections related to virtual intermediate 

hadronic states  ( , , ) – cannot be calculated. 

Use the “optical theorem” to relate the loop corrections to 

observable cross sections / branching ratios: 

 Im[                    ]    |                   hadrons  |2 
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… calculations are sometimes not easy … 

In 2001 Kinoshita et al. found a sign mistake in their calculation of the                                             

light-by-light scattering amplitude: 
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Potential SUSY contribution to muon (g-2) 

Potential SUSY contributions: 

For muon ~40000 times larger 

than in case of electrons.  

SUSYEWHadQED aaaaa First sign of New Physics ?? 


