

Universität Heidelberg

Beauty and beauty-jet measurement via displaced vertices with ALICE in p+p collisions at $\sqrt{s} = 7$ TeV

MinJung Kweon for the ALICE Collaboration Physikalisches Institut, Universität Heidelberg

March 22th 2011, DPG, Muenster

Heavy quark energy loss at RHIC via heavy-flavour electrons

R_{AA} of the heavy-flavour electrons approaches the π^0 value for p_T > 4 GeV/c

- → Indicate strong coupling of heavy quarks to the medium (larger than expected)
- \Rightarrow additional energy loss mechanism required?

\Rightarrow role of individual D, B meson contribution?

What do we learn more at the LHC?

b-quark fragments much harder than light quarks(due to dead cone effect in the vacuum) \rightarrow Jet energy can be measured more precisely, so it gives better handle on the fragmentation function to extract medium modification effect

Proton-proton collisions

- Measurement of heavy flavour production(charm and beauty) in p+p will provide important test of pQCD in a new energy domain and heavy ion reference

MinJung Kweon, University of Heidelberg

ALarge Ion Collider Experiment

■ Electrons from beauty have larger impact parameter compared to the ones from charm and hard momentum spectrum → increase S/B via impact parameter cuts

- Electron identification with combined TPC, TOF and TRD
- Estimate remaining charm decays via measured charm cross section

Estimate remaining non heavy flavor decays (e[±] from Dalitz decays and Y conversions) via background electron cocktails

ALICE has GOOD electron PID + vertex detectors

MinJung Kweon, University of Heidelberg

22 March 2010, DPG, Muenster

Beauty Tagging via Secondary Vertexing

Thanks to GOOD electron PID + vertex detectors

B tagging

⇒ Secondary vertex reconstruction of beauty decay through electron + hadrons

B-jet tagging

 \Rightarrow Reconstruct jets, then associated with secondary vertex tagged by above b tagging method

distinctive variables

Signed decay length (*Signed*
$$L_{xy}$$
) = $|\vec{r}| \frac{\vec{r} \cdot \vec{p}}{|\vec{r} \cdot \vec{p}|}$

- Invariant mass
- Secondary vertex χ^2/NDF
- **Impact parameter of secondary particle**($l \parallel P$)

Electron Identification Performance

MinJung Kweon, University of Heidelberg

22 March 2010, DPG, Muenster

Vertexing Performance

Excellent vertex capabilities, impact parameter resolution → (~ 75 µm at 1 GeV/c)
Vertexing performance within ~10 % to the MC target

Impact Parameter Cuts Performance

Cuts are tuned to optimize S/B

Impact parameter cuts \rightarrow efficient to suppress backgrounds electrons than beauty electrons(~ factor 2)

Reduction factor by impact parameter

B Tagging F

Signed decay length distribution

 Signal has distinctive distribution due to its larger decay length than those of backgrounds
 define cuts to preferentially select electrons from b-decays

Purity as a function of minimum Signed L_{xy} cut

With mass cut, obtain ~80 % purity by applying cut on 800 µm of minimum signed L_{xy}

Charm Background estimated based on Measurement

The charm cross section measured with D meson decays is used to produce electron spectrum

Heavy flavor electrons from charm and beauty decay
 Heavy flavor electrons from charm

- Beauty contribution is getting large as a function of p_t

Works on subtracting remaining background after displaced vertex cuts(IP, SecVtx) are ongoing!

MinJung Kweon, University of Heidelberg

Perspectives on Electron Identification

Extend good electron identification at higher momentum with TRD and EMCal

Transition Radiation Detector TPC dE/dx slice w/o and with TRD

ElectroMagnetic Calorimeter E/p distributions

Provide good e/π separation from 1 to ~15 GeV/c
 Provide possibility to trigger (L1) on high pt identified particles

Works are "actively" ongoing to extend pt spectrum to higher momentum!

Summary and Outlook

- At LHC, charm and beauty quarks are produced copiously and this provides a tool to understand color charge and mass dependence of energy loss in the medium
- ALICE has excellent electron identification and vertexing capability and this allows beauty electron tagging
- B, B-jet tagging analysis ongoing with $\sqrt{s} = 7$ TeV data
- Pb-Pb collisions data were taken at √s = 2.76 TeV in November 2010 and the same analysis technic will be applied

BACKUP SLIDES

Open heavy flavour measurement via lepton channels

Complementary to heavy flavor hadronic decays

Proton-proton collisions

10 %

 Measurement of heavy flavour production(charm and beauty) in p+p will provide important test of pQCD in a new energy domain and heavy ion reference
 Heavy-ion collisions

- Heavy quark energy loss in the medium

MinJung Kweon, University of Heidelberg

 $b \rightarrow c \rightarrow l + X$

Approaches to describe non-photonic electron RAA(pT)

- Heavy meson dissociation in QGP

22 March 2010, DPG, Muenster

GLV + QGP dissociation shows B-meson suppression comparable to (or larger) D-meson as low as $p_T \sim \! 15 \mbox{ GeV}$

pQCD curves have a significant rise and the AdS/CFT curves fall with p_T

Charm-to-Beauty ratio at LHC

R_{AA}^c/R_{AA}^b vs. p_T is remarkably robust observable for finding deviations from different theoretical framework
 → Interesting to measure charm and beauty separately

Baseline: PYTHIA, with EKS98 shadowing, tuned to reproduce c and b p_T distributions from NLO pQCD(MNR) MNR: Mangano, Nason, Ridolfi, NPB 373 (1992) 295.

R_{AA} of D meson is less sensitive on varying \hat{q} (higher \hat{q} region), but can give good constraint together with R_{AA} of B meson with precise measurement

Nuclear modification for open heavy flavour

MinJung Kweon, University of Heidelberg

22 March 2010, DPG, Muenster

Charm/Beauty from HVQMNR

plot by Anton: http://www-alice.gsi.de/ana/results/results.html

charm

beauty

35

45

40

p, (Q) [GeV/c]

50

Yield

10⁹ pp events leads ~190k(47k) charm and ~98k(25k) beauty electrons at $p_t > 1$ GeV/c

Distinctive variables and cuts

- |impact parameter of secondary particle| < 0.1 cm

Powerful to reject charm background

- Signed decay length (*Signed* L_{xy}) = $|\vec{r}| \frac{\vec{r} \cdot \vec{p}}{|\vec{r} \cdot \vec{p}|}$
- Invariant mass
- Secondary vertex χ^2/NDF
- Impact parameter of secondary particle(*l* IP)

Invariant mass cut is good to suppress charm background → Allow to separate beauty from charm

MinJung Kweon, University of Heidelberg

22 March 2010, DPG, Muenster

Purity and efficiency

PYTHIA MinBias, $\sqrt{s} = 10$ TeV, 2.7x10⁷ events, MC PID

 \Rightarrow ~80% purity with currently optimized cuts with current understanding on MC

Analysis Approach via Electrons

- (1) Measure inclusive electron transverse momentum spectrum
- (2) Build background contributions spectrum described with an electron cocktail (photonic, Dalitz/dielectron decays of mesons, weak kaon decay, direct radiation, J/ψ and Y)
- (3) Measure heavy flavor semielectronic decays by subtracting(2) from (1)

Cocktail and Corrected Inclusive Electron Spectrum

Systematic errors on input π⁰ spectrum (+20% –40%) is propagated to the cocktail (Will be reduced in near future!)

No systematic errors are shown yet on the corrected inclusive electron spectrum

(including J/ψ , direct radiation)