
AliRoot Primer

Editor P.Hristov

1 Introduction
1.1 About this primer
The aim of this primer is to give some basic information about the ALICE offline
framework (AliRoot) from users perspective. We explain in details the installa-
tion procedure, and give examples of some typical use cases: detector description,
event generation, particle transport, generation of summable digits, event merg-
ing, reconstruction, particle identification, and generation of event summary data.
The primer also includes some examples of analysis, and short description of the
existing analysis classes in AliRoot. An updated version of the document can be
downloaded from http://aliweb.cern.ch/offline.

For the reader interested by the AliRoot architecture and by the performance
studies done so far, a good starting point is Chapter 4 of the ALICE Physics Per-
formance Report[?]. Another important document is the ALICE Computing Tech-
nical Design Report[?]. Some information contained there has been included in
the present document, but most of the details have been omitted.

AliRoot uses the ROOT system as a foundation on which the framework for
simulation, reconstruction and analysis is built.

Except for large existing libraries, such as Pythia6 and HIJING, and some
remaining legacy code, this framework is based on the Object Oriented program-
ming paradigm, and it is written in C++.

The following packages are needed to install the fully operational software
distribution: ROOT, available from http://root.cern.ch or using the ROOT
CVS repository
:pserver:cvs@root.cern.ch:/user/cvs,
and AliRoot from the ALICE offline CVS repository
:pserver:cvs@alisoft.cern.ch:/soft/cvsroot. One also has to download
one or more particle transport packages. GEANT 3 is available from the ROOT
CVS repository. FLUKA library can be obtained from
http://www.fluka.org, and GEANT 4 distribution – from
http://cern.ch/geant4.

1

1.2 AliRoot framework
In HEP, a framework is a set of software tools that enables data processing. For
example the old CERN Program Library was a toolkit to build a framework. PAW
was the first example of integration of tools into a coherent ensemble specifically
dedicated to data analysis. The role of the framework is shown in Fig. ??.

Figure 1: Data processing framework.

The primary interactions are simulated via event generators, and the resulting
kinematic tree is then used in the transport package. An event generator produces
set of “particles” with their momenta. The set of particles, where one maintains
the production history (in form of mother-daughter relationship and production
vertex) forms the kinematic tree. More details can be found in the ROOT doc-
umentation of class TParticle. The transport package transports the particles
through the set of detectors, and produces hits, which in ALICE terminology
means energy deposition at given point. The hits contain also information (“track
labels”) about the particles that have generated them. There one main exception,
namely the calorimeter (PHOS and EMCAL) hits, where a hit is the energy depo-
sition in the whole detecting element volume. In some detectors the energy of the
hit is used only for comparison with a given threshold, for example in TOF and
ITS pixel layers.

2

At the next step the detector response is taken into account, and the hits are
transformed into digits. As it was explained above, the hits are closely related to
the tracks which generated them. The transition from hits/tracks to digits/detectors
is marked on the picture as “disintegrated response”, the tracks are “disintegrated”
and only the labels carry the Monte Carlo information. There are two types of dig-
its: summable digits, where one uses low thresholds and the result is additive, and
digits, where the real thresholds are used, and result is similar to what one would
get in the real data taking. In some sense the summable digits are precursors of
the digits. The noise simulation is activated when digits are produced. There are
two differences between the digits and the raw data format produced by the de-
tector: firstly, the information about the Monte Carlo particle generating the digit
is kept, and secondly, the raw data are stored in binary format as “payload” in
a ROOT structure, while the digits are stored in ROOT classes. Two conversion
chains are provided in AliRoot: hits → summable digits → digits, and hits →
digits. The summable digits are used for the so called “event merging”, where
a signal event is embedded in a signal-free underlying event. This technique is
widely used in heavy-ion physics and allows to reuse the underlying events with
substantial economy of computing resources. Optionally it is possible to perform
the conversion digits → raw data, which is used to estimate the expected data
size, to evaluate the high level trigger algorithms, and to carry on the so called
computing data challenges. The reconstruction and the HLT algorithms can work
both with digits or with raw data.

After the creation of digits, the reconstruction and analysis chain can be ac-
tivated to evaluate the software and the detector performance, and to study some
particular signatures. The reconstruction takes as input digits or raw data, real or
simulated. The user can intervene into the cycle provided by the framework to
replace any part of it with his own code or implement his own analysis of the data.
I/O and user interfaces are part of the framework, as are data visualization and
analysis tools and all procedures that are considered of general enough interest to
be introduced into the framework. The scope of the framework evolves with time
as the needs and understanding of the physics community evolves.

The basic principles that have guided the design of the AliRoot framework
are re-usability and modularity. There are almost as many definitions of these
concepts as there are programmers. However, for our purpose, we adopt an oper-
ative heuristic definition that expresses our objective to minimize the amount of
unused or rewritten code and maximize the participation of the physicists in the
development of the code.

Modularity allows replacement of parts of our system with minimal or no im-
pact on the rest. Not every part of our system is expected to be replaced. Therefore
we are aiming at modularity targeted to those elements that we intend to change.
For example, we require the ability to change the event generator or the transport

3

Monte Carlo without affecting the user code. There are elements that we do not
plan to interchange, but rather to evolve in collaboration with their authors such
as the ROOT I/O subsystem or the ROOT User Interface (UI), and therefore no
effort is made to make our framework modular with respect to these. Whenever an
element has to be modular in the sense above, we define an abstract interface to it.
The codes from the different detectors are independent so that different detector
groups can work concurrently on the system while minimizing the interference.
We understand and accept the risk that at some point the need may arise to make
modular a component that was not designed to be. For these cases, we have elab-
orated a development strategy that can handle design changes in production code.

Re-usability is the protection of the investment made by the programming
physicists of ALICE. The code embodies a large scientific knowledge and expe-
rience and is thus a precious resource. We preserve this investment by designing
a modular system in the sense above and by making sure that we maintain the
maximum amount of backward compatibility while evolving our system. This
naturally generates requirements on the underlying framework prompting devel-
opments such as the introduction of automatic schema evolution in ROOT.

2 Installation and development tools
2.1 Platforms and compilers
The main development and production platform is Linux on Intel 32 bits pro-
cessors. Till recently CERN has supported RedHat[?] version 7.3, but the code
works also with the more recent version 8.0, 9.0, Fedora Core[?] 1 – 3, etc. The
official Linux[?] version at CERN now is Scientific Linux SLC[?] 3.0.6. The
main compiler on Linux is gcc[?]: the recommended version is gcc 3.2 or more
recent one, because the older releases (2.91.66, 2.95.2, 2.96) have problems in
the FORTRAN optimization. If you use such an old gcc compiler, it is necessary
to compile without optimization for the FORTRAN code. As an option you can
use Intel icc[?] compiler, which is supported as well. You can download it from
http://www.intel.com and use it free of charge for non-commercial projects.
Intel also provides free of charge the VTune[?] profiling tool which is really one
of the best available so far.

AliRoot is supported on Intel 64 bit processors (Itanium[?]) running Linux.
Both the gcc and Intel icc compilers can be used.

On 64 bit AMD[?] processors such as Opteron AliRoot runs successfully with
the gcc compiler.

The software is also regularly compiled and run on other Unix platforms. On
Sun (SunOS 5.8) we recommend the CC compiler Sun WorkShop 6 update 1 C++

4

5.2. The WorkShop integrates nice debugging and profiling facilities which are
very useful for code development.

On Compaq alpha server (Digital Unix V4.0) the default compiler is cxx (
Compaq C++ V6.2-024 for Digital UNIX V4.0F). Alpha provides also its profil-
ing tool pixie, which works well with shared libraries.

Recently AliRoot was ported to MacOS (Darwin). This OS is very sensitive
to the circular dependences in the shared libraries, which makes it very useful as
test platform.

Some additional notes concern the new version of the gcc compiler (4.0.0
and later). The gcc developers has decided to abandon the old FORTRAN front
end (g77) and to use instead gfortran, which is relatively new product with some
known instabilities. For the moment the possibilities to use gcc 4.0.0 – 4.0.2 are
being evaluated, but the recommended version is still within the 3.2 – 3.3 release
series.

2.2 Essential CVS information
CVS[?] stands for Concurrent Version System. It permits to a group of people
to work simultaneously on groups of files (for instance program sources). It also
records the history of files, which allows back tracking and file versioning. The of-
ficial CVS Web page is http://www.cvshome.org/. CVS has a host of features,
among them the most important are:

• CVS facilitates parallel and concurrent code development;

• it provides easy support and simple access;

• it has possibility to establish group permissions (for example only detector
experts and CVS administrators can commit code to given detector module).

CVS has rich set of commands, the most important are described below. There
exist several tools for visualization, logging and control which work with CVS.
More information is available in the CVS documentation and manual[?].

Usually the development process with CVS has the following features:

• all developers work on their own copy of the project (in one of their direc-
tories)

• they often have to synchronize with a global repository both to update with
modifications from other people and to commit their own changes.

Here below we give an example of a typical CVS session

5

Login to the repository. The password is stored in ~/.cvspass

If no cvs logout is done, the password remains there and

one can access the repository without new login

% cvs -d :pserver:hristov@alisoft.cern.ch:/soft/cvsroot login

(Logging in to hristov@alisoft.cern.ch)

CVS password:

xxxxxxxx

Check-Out a local version of the TPC module

% cvs -d :pserver:hristov@alisoft.cern.ch:/soft/cvsroot checkout TPC

cvs server: Updating TPC

U TPC/.rootrc

U TPC/AliTPC.cxx

U TPC/AliTPC.h

...

edit file AliTPC.h

compile and test modifications

Commit your changes to the repository with an appropriate comment

% cvs commit -m "add include file xxx.h" AliTPC.h

Checking in AliTPC.h;

/soft/cvsroot/AliRoot/TPC/AliTPC.h,v <-- AliTPC.h

new revision: 1.9; previous revision:1.8

done

Instead of specifying the repository and user name by -d option, one can export
the environment variable CVSROOT, for example

% export CVSROOT=:pserver:hristov@alisoft.cern.ch:/soft/cvsroot

Once the local version has been checked out, inside the directory tree the CVS-
ROOT is not needed anymore. The name of the actual repository can be found in
CVS/Root file. This name can be redefined again using the -d option.

In case somebody else has committed some changes in AliTPC.h file, the de-
veloper have to update the local version merging his own changes before commit-
ting them:

% cvs commit -m "add include file xxx.h" AliTPC.h

cvs server: Up-to-date check failed for ‘AliTPC.h’

6

cvs [server aborted]: correct above errors first!

% cvs update

cvs server: Updating .

RCS file: /soft/cvsroot/AliRoot/TPC/AliTPC.h,v

retrieving revision 1.9

retrieving revision 1.10

Merging differences between 1.9 and 1.10 into AliTPC.h

M AliTPC.h

edit, compile and test modifications

% cvs commit -m "add include file xxx.h" AliTPC.h

Checking in AliTPC.h;

/soft/cvsroot/AliRoot/TPC/AliTPC.h,v <-- AliTPC.h

new revision: 1.11; previous revision: 1.10

done

Important note: CVS performs a purely mechanical merging, and it is the devel-
oper’s to verify the result of this operation. It is especially true in case of conflicts,
when the CVS tool is not able to merge the local and remote modifications con-
sistently.

2.3 Main CVS commands
In the following examples we suppose that the CVSROOT environment variable
is set, as it was shown above. In case a local version has been already checked
out, the CVS repository is defined automatically inside the directory tree.

• login stores password in .cvspass. It is enough to login once to the reposi-
tory.

• checkout retrieves the source files

% cvs -q -z9 co -r v4-01-Rev-08 AliRoot

• update retrieves modifications from the repository and merges them with
the local ones. The -q option reduces the verbose output, and the -z9 sets
the compression level during the data transfer.

7

% cvs -q -z9 update -AdP STEER

• diff shows differences between the local and repository versions

% cvs -q -z9 diff STEER

• add adds files or directories to the repository. The actual transfer is done
when the commit command is invoked.

% cvs -q -z9 add AliTPCseed.*

• remove removes old files or directories from the repository. The -f option
forces the removal of the local files.

% cvs remove -f CASTOR

• commit checks in the local modifications to the repository and increments
the version.

% cvs -q -z9 commit -m ‘‘Coding convention’’ STEER

• tag creates new tags and/or branches (with -b option).

% cvs tag -b v4-01-Rev-09 .

• status returns the actual status of a file: revision, sticky tag, dates, options,
and local modifications.

% cvs status Makefile

• logout removes the stored password. It is not really necessary unless the
user really wants to remove the password from that account.

8

2.4 Environment variables
Before the installation of AliRoot the user has to set some environment variables.
In the following examples the user is working on Linux and the default shell is
bash. It is enough to add to the .bash profile file few lines as shown below:

ROOT

export ROOTSYS=/home/mydir/root

export PATH=$PATH\:$ROOTSYS/bin

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH\:$ROOTSYS/lib

AliRoot

export ALICE=/home/mydir/alice

export ALICE_ROOT=$ALICE/AliRoot

export ALICE_TARGET=‘root-config --arch‘

export PATH=$PATH\:$ALICE_ROOT/bin/tgt_${ALICE_TARGET}

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH\:$ALICE_ROOT/lib/tgt_${ALICE_TARGET}

GEANT 3

export PLATFORM=‘root-config --arch‘

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH\:$ALICE/geant3/lib/tgt_${ALICE_TARGET}

where “/home/mydir” has to be replaced with the actual directory path. The
meaning of the environment variables is the following:

ROOTSYS – the place where the ROOT package is located;
ALICE – top directory for all the software packages used in ALICE;
ALICE ROOT – the place where the AliRoot package is located, usually as sub-

directory of ALICE;
ALICE TARGET – specific platform name. Up to release v4-01-Release this

variable was set to the result of “uname” command. Starting from AliRoot v4-02-
05 the ROOT naming schema was adopted, and the user has to use “root-config
–arch” command.

PLATFORM – the same as ALICE TARGET for the GEANT 3 package. Until
GEANT 3 v1-0 the user had to use ‘uname‘ to specify the platform. From version
v1-0 on the ROOT platform is used instead (“root-config –arch”).

2.5 Software packages
2.5.1 ROOT

All ALICE offline software is based on ROOT[?]. The ROOT framework offers a
number of important elements which are exploited in AliRoot:

9

• a complete data analysis framework including all the PAW features;

• an advanced Graphic User Interface (GUI) toolkit;

• a large set of utility functions, including several commonly used mathemat-
ical functions, random number generators, multi-parametric fit and mini-
mization procedures;

• a complete set of object containers;

• integrated I/O with class schema evolution;

• C++ as a scripting language;

• documentation tools.

There is a nice ROOT user’s guide which incorporates important and detailed
information. For those who are not familiar with ROOT a good staring point
is the ROOT Web page at http://root.cern.ch. Here the experienced users
may find easily the latest version of the class descriptions and search for useful
information.

The recommended way to install ROOT is from the CVS sources, as it is
shown below:

1. Login to the ROOT CVS repository if you haven’t done it yet.

% cvs -d :pserver:cvs@root.cern.ch:/user/cvs login

% CVS password: cvs

2. Download (check out) the needed ROOT version (v5-08-00 in the example)

% cvs -d :pserver:cvs@root.cern.ch:/user/cvs co -r v5-08-02 root

A list of matching Root, Geant3 and AliRoot versions can be found at
http://aliweb.cern.ch/offline/releases.html

3. The code is stored in the directory “root”. You have to go there, set the
ROOTSYS environment variable (if this is not done in advance),and con-
figure ROOT. The ROOTSYS contains the full path to the ROOT directory.
Please note that now Root check for libPythia6.* and then searches in the list
of found libraries for one which contains the pythia6 common block address
string. In case no library is found or none contains this common block, the
compilation of the Pythia6 interface is switched off. The following con-
figuration script overcomes this requirement, since AliRoot uses its own
version of Pythia6, and this version is not yet available at the time of Root
compilation.

10

% cd root

% export ROOTSYS=‘pwd‘

The following is a script to provide fake Pythia6 library

to ROOT which triggers the configuration of the interface

[-r lib] || mkdir lib

rm -rf lib/libPythia6.a

cat > /tmp/p1.c <<EOF

void nevercalled() {}

EOF

gcc -c -o /tmp/p1.o /tmp/p1.c

cat > /tmp/p2.c <<EOF

void pythia6_common_block_address_() {}

EOF

gcc -c -o /tmp/p2.o /tmp/p2.c

ar rv lib/libPythia6.a /tmp/p2.o

ranlib lib/libPythia6.a

ALIEN_ROOT=/opt/alien

./configure linux \

--enable-pythia6 --with-pythia6-libdir=$ROOTSYS/lib \

--enable-cern --enable-rfio \

--enable-mathmore --enable-mathcore --enable-roofit \

--enable-asimage --enable-minuit2 \

--enable-alien --with-alien-incdir=$ALIEN_ROOT/api/include \

--with-alien-libdir=$ALIEN_ROOT/api/lib \

--with-ssl-incdir=$ALIEN_ROOT/include \

--with-ssl-libdir=$ALIEN_ROOT/lib

rm lib/libPythia6.a

ar rv lib/libPythia6.a /tmp/p1.o

ranlib lib/libPythia6.a

rm /tmp/p1.* /tmp/p2.*

4. Now you can compile and test ROOT

% make

% cd test

11

% make

% export LD_LIBRARY_PATH=$LD_LIBRARY_PATH\:.

% ./stress

% ./stressgeom

% ./stressLinear

% ./stressVector

Another possibility to solve the “Pythia6 problem” mentioned above is to
compile first Root without Pythia6 support. Then the compilation of Ali-
Root is started, and it finishes unsuccessfully because the libEGPythia6.so
library is missing. However one can use the newly created Pythia6 li-
brary from AliRoot to reconfigure ROOT and to create the missing interface
(libEGPythia6.so). Here is how this can be done

cd $ROOTSYS/lib

ln -s $ALICE_ROOT/lib/tgt_$ALICE_TARGET/libpythia6.so libPythai6.so

cd ..

./configure linux --enable-pythia6 --with-pythia6-libdir=$ROOTSYS/lib make

At this point the user should have a working ROOT version on a Linux (32 bit
Pentium processor with gcc compiler). In case of different platform the user has
to replace the second argument in the ./configure command. For example if the
Itanium version of Root compiled with icc is needed, you have to configure speci-
fying linuxi64icc as platform. The list of platform can be obtained by “./configure
–help” command.

2.5.2 GEANT 3

The installation of GEANT 3 is needed since for the moments this is the default
particle transport package. GEANT 3 description is available on

http://wwwasdoc.web.cern.ch/wwwasdoc/geant html3/geantall.html

You can download the GEANT 3 distribution from the ROOT CVS repository
and compile it in the following way:

% cd $ALICE

% cvs -q -z2 -d :pserver:cvs@root.cern.ch:/user/cvs co -r v1-3 geant3

% cd $ALICE/geant3

% export PLATFORM=‘root-config --arch‘

% make

12

Please note that GEANT 3 is downloaded in $ALICE directory. This feature is
used in AliRoot to set correctly the include path to TGeant3.h. Another important
feature is the PLATFORM environment variable. If it is not set, the makefile sets
it to the result of ‘root-config –arch‘.

2.5.3 GEANT 4

To use GEANT 4[?], some additional software has to be installed. GEANT 4
needs CLHEP[?] package, the user can get the tar file (hereon “tarball”) from
http://proj-clhep.web.cern.ch/proj-clhep/ . Then the installation can
be done in the following way:

% cd $ALICE

% tar zxvf clhep-2.0.2.2.tgz

% cd CLHEP

% ./configure --prefix=/opt/CLHEP # You can use also ‘pwd‘ or something else

% make

% make check

% make install

Another possibility is to use the CLHEP CVS repository:

% cvs -d :pserver:anonymous@clhep.cvs.cern.ch:/cvs/CLHEP login # Empty password

% cd $ALICE

% cvs -d :pserver:anonymous@clhep.cvs.cern.ch:/cvs/CLHEP co -r CLHEP_2_0_2_2 CLHEP

% cd CLHEP

% ./bootrstrap

% ./configure --prefix=/opt/CLHEP # You can use also ‘pwd‘ or something else

% make

% make check

% make install

Now the following lines should be added to the .bash profile

export CLHEP_BASE_DIR=$ALICE/CLHEP

The next step is to install GEANT 4. First of all, you have to download the
GEANT 4 tarball from http://geant4.web.cern.ch/geant4/

Then the following steps have to be executed:

% cd $ALICE

% tar zxvf geant4.8.0.p01.gtar.gz

13

% ln -s geant4.8.0.p01 geant4

% cd geant4

% ./Configure -build

As asnwer choose the default (proposed) value, except of:

Question: Where is Geant4 installed? /opt/geant4

Question: Do you want to copy all Geant4 headers in one directory? YES

Please, specify where CLHEP is installed: /usr/CLHEP

Question: Do you want to build ’shared’ (.so) libraries? YES

Question: Do you want to use G4VIS_USE_OPENGLX? YES

Question: Do you want to set G4USE_G3TOG4? YES

now a long compilation...

% ./Configure -install

% . $ALICE/geant4/env.sh

The execution of the env.sh script can be made from the .bash profile to have
the GEANT 4 environment initialized automatically.

2.5.4 FLUKA

The installation of FLUKA[?] consists of the following steps:

1. download the latest FLUKA version from http://www.fluka.org

2. install

% mkdir myFlukaArea

% mv fluka.tar.gz myFlukaArea/.

% cd myFlukaArea

% gunzip fluka.tar.gz

% tar -xf fluka.tar

% export FLUPRO=/somePath/myFlukaArea

3. compile TFluka

% cd $ALICE_ROOT

% make all-TFluka

4. create a working directory to run aliroot using FLUKA

14

% cd $ALICE_ROOT/TFluka/scripts

% ./runflukageo.sh

This script creates the directory tmp and inside all the necessary links for
data and configuration files and starts aliroot. For the next run it is not
necessary to run the script again. The tmp directory can be kept or renamed.
The user should run aliroot from inside this directory.

5. change the Config.C (The configuration file Config.C is explained in details
in section “
When you run

gAlice->Init()

from the aliroot prompt the program will generate the files containing the
cross sections for the electromagnetic processes, with pemf extension. Once
this file has been created it is not necessary to repeat the procedure for the
same geometry. Change in Config.C the line

((TFluka*) gMC)->SetGeneratePemf(kTRUE);

to

((TFluka*) gMC)->SetGeneratePemf(kFALSE);

In future, this procedure will be automatic. Some important changes are
foreseen, namely the creation of pemf files will be automatic.

6. report any problems you encounter to the offline list.

2.5.5 AliRoot

The AliRoot distribution is taken from the CVS repository and then

% cd $ALICE

% cvs -q -z2 -d :pserver:cvs@alisoft.cern.ch:/soft/cvsroot co AliRoot

% cd $ALICE_ROOT

% make

The AliRoot code (the above example retrieves the HEAD version from CVS)
is contained in ALICE ROOT directory. The ALICE TARGET is defined auto-
matically in the .bash profile via the call to ‘root-config –arch‘.

15

2.6 Debugging
While developing code or running some ALICE program, the user may be con-
fronted with the following execution errors:

• floating exceptions: division by zero, sqrt from negative argument, assign-
ment of NaN, etc.

• segmentation violations/faults: attempt to access a memory location that is
not allowed to access, or in a way which is not allowed.

• bus error: attempt to access memory that the computer cannot address.

In this case, the user will have to debug the program to determine the source
of the problem and fix it. There is several debugging techniques, which are briefly
listed below:

• using printf(...) and assert(...)

– often this is the only easy way to find the origin of the problem;
– assert(...) aborts the program execution if the argument is FALSE.

It is a macro from assert.h, it can be inactivated by compiling with
-DNDEBUG.

• using gdb

– gdb needs compilation with -g option. Sometimes -O -g prevents from
exact tracing;

– One can use it directly (gdb aliroot) or attach it to a process (gdb aliroot
12345).

Below we report the main gdb commands and their descriptions:

• run starts the execution of the program;

• Control-C stops the execution and switches to the gdb shell;

• where prints the program stack. Sometimes the program stack is very long.
The user can get the last n frames by specifying n as a parameter to where;

• print prints the value of the expression

(gdb) print *this

16

• up and down are used to navigate in the program stack;

• print prints a variable or expression;

• quit exits the gdb session;

• break sets break point;

(gdb) break AliLoader.cxx:100

(gdb) break ’AliLoader::AliLoader()’

The automatic completion of the class methods via tab is available in case
an opening quote is put in front of the class name.

• cont continues the run;

• watch sets watchpoint (slow execution). The example below shows how to
check each change of fData;

(gdb) watch *fData

• list shows the source code;

• help shows the description of commands.

2.7 Profiling
Profiling is used to discover where the program spends most of the time, and to
optimize the algorithms. There are several profiling tools available on different
platforms:

• Linux: gprof: compilation with -pg option, static libraries oprofile: uses
kernel module VTune: instruments shared libraries

• Sun: Sun workshop (Forte agent). It needs compilation with profiling option
(-pg)

• Compaq Alpha: pixie profiler. instruments shared libraries for profiling.

On Linux AliRoot can be built with static libraries using the special target
“profile”

17

% make profile

change LD_LIBRARY_PATH to replace lib/tgt_linux with lib/tgt_linuxPROF

change PATH to replace bin/tgt_linux with bin/tgt_linuxPROF

% aliroot

root [0] gAlice->Run()

root [1] .q

After the end of aliroot session a file called gmon.out will be created. It con-
tains the profiling information which can be investigated using gprof.

% gprof ‘which aliroot‘ | tee gprof.txt

% more gprof.txt

VTune profiling tool
VTune is available from the Intel Web site http://www.intel.com/software/products/index.htm.

It is free for non-commercial use on Linux. It provides possibility for call-graph
and sampling profiling. VTuneInstruments shared libraries, and needs only -g
option during the compilation. Here is an example of call-graph profiling:

Register an activity

% vtl activity sim -c callgraph -app aliroot,’’ -b -q sim.C’’ -moi aliroot

% vtl run sim

% vtl show

% vtl view sim::r1 -gui

2.8 Detection of run time errors
The Valgrind tool can be used for detection of run time errors on linux. It is avail-
able from http://www.valgrind.org. Valgrind is equipped with the following
set of tools:

• memcheck for memory management problems;

• addrcheck: lightweight memory checker;

• cachegrind: cache profiler;

• massif: heap profiler;

• hellgrind: thread debugger;

• callgrind: extended version of cachegrind.

The most important tool is memcheck. It can detect:

18

• use of non-initialized memory;

• reading/writing memory after it has been free’d;

• reading/writing off the end of malloc’d blocks;

• reading/writing inappropriate areas on the stack;

• memory leaks – where pointers to malloc’d blocks are lost forever;

• mismatched use of malloc/new/new [] vs free/delete/delete [];

• overlapping source and destination pointers in memcpy() and related func-
tions;

• some misuses of the POSIX pthreads API;

Here is an example of Valgrind usage:

% valgrind --tool=addrcheck --error-limit=no aliroot -b -q sim.C

ROOT memory checker
The ROOT memory checker provides tests of memory leaks and other prob-

lems related to new/delete. It is fast and easy to use. Here is the recipe:

• link aliroot with -lNew. The user has to add ‘new’ before ‘glibs’ in the
ROOTCLIBS variable of the Makefile;

• add Root.MemCheck: 1 in .rootrc

• run the program: aliroot -b -q sim.C

• run memprobe -e aliroot

• Inspect the files with .info extension that have been generated.

2.9 Useful information LSF and CASTOR
LSF is the batch system at CERN. Every user is allowed to submit jobs to the
different queues. Usually the user has to copy some input files (macros, data,
executables, libraries) from a local computer or from the mass-storage system to
the worker node on lxbatch, than to execute the program, and to store the results on
the local computer on in the mass-storage system. The main steps and commands
are described below.

In order to have access to the local desktop and to be able to use scp without
password, the user has to create pair of SSH keys. Currently lxplus/lxbatch uses
RSA1 cryptography. After login into lxplus the following has to be done:

19

% ssh-keygen -t rsa1

Use empty password

% cp .ssh/identity.pub public/authorized_keys

% ln -s ../public/authorized_keys .ssh/authorized_keys

A list of useful LSF commands is given bellow:

• bqueues shows the available queues and their status;

• bsub -q 8nm job.sh submits the shell script job.sh to the queue 8nm, where
the name of the queue indicates the “normalized CPU time” (maximal job
duration 8 min of CPU time);

• bjobs lists all unfinished jobs of the user;

• lsrun -m lxbXXXX xterm returns a xterm running on the batch node lxbXXXX.
This permits to inspect the job output and to debug a batch job.

Each batch job store the output in directory LSFJOB XXXXXX, where XXXXXX
is the job id. Since the home directory is on AFS, the user has to redirect the ver-
bose output, otherwise the AFS quota might be exceeded and the jobs will fail.

The CERN mass storage system is CASTOR2[?]. Every user has its own
CASTOR2 space, for example /castor/cern.ch/user/p/phristov. The commands of
CASTOR2 start with prefix “ns” of “rf”. Here is very short list of useful com-
mands:

• nsls /castor/cern.ch/user/p/phristov lists the CASTOR space of user phris-
tov;

• rfdir /castor/cern.ch/user/p/phristov the same as above, but the output is
in long format;

• nsmkdir test creates a new directory (test) in the CASTOR space of the
user;

• rfcp /castor/cern.ch/user/p/phristov/test/galice.root . copies the file from
CASTOR to the local directory. If the file is on tape, this will trigger the
stage-in procedure, which might take some time.

• rfcp AliESDs.root /castor/cern.ch/p/phristov/test copies the local file AliESDs.root
to CASTOR in the subdirectory test and schedules it for migration to tape.

20

The user also has to be aware, that the behavior of CASTOR depends on the
environment variables RFIO USE CASTOR V2(=YES), STAGE HOST(=castoralice)
and STAGE SVCCLASS(=default). They are set by default to the values for the
group (z2 in case of ALICE).

Below the user can find an example of job, where the simulation and recon-
struction are run using the corresponding macros sim.C and rec.C. An example of
such macros will be given later.

#! /bin/sh

Take all the C++ macros from the local computer to the working directory

command scp phristov@pcepalice69:/home/phristov/pp/*.C .

Execute the simulation macro. Redirect the output and error streams

command aliroot -b -q sim.C > sim.log 2>&1

Execute the reconstruction macro. Redirect the output and error streams

command aliroot -b -q rec.C > rec.log 2>&1

Create a new CASTOR directory for this job ($LSB_JOBID)

command rfmkdir /castor/cern.ch/user/p/phristov/pp/$LSB_JOBID

Copy all log files to CASTOR

for a in *.log; do rfcp $a /castor/cern.ch/user/p/phristov/pp/$LSB_JOBID; done

Copy all ROOT files to CASTOR

for a in *.root; do rfcp $a /castor/cern.ch/user/p/phristov/pp/$LSB_JOBID; done

3 Simulation
3.1 Introduction
Heavy-ion collisions produce a very large number of particles in the final state.
This is a challenge for the reconstruction and analysis algorithms. The devel-
opment of these algorithms requires a predictive and precise simulation of the
detector response. Model predictions discussed in the first volume of Physics Per-
formance Report for the charged multiplicity at LHC in Pb–Pb collisions vary
from 1400 to 8000 particles in the central unit of rapidity. The experiment was
designed when the highest nucleon–nucleon center-of-mass energy heavy-ion in-
teractions was at 20 GeV per nucleon–nucleon pair at CERN SPS, i.e. a factor of
about 300 less than the energy at LHC. Recently, the RHIC collider came online.
Its top energy of 200 GeV per nucleon–nucleon pair is still 30 times less than the

21

LHC energy. The RHIC data seem to suggest that the LHC multiplicity will be on
the lower side of the interval. However, the extrapolation is so large that both the
hardware and software of ALICE have to be designed for the highest multiplicity.
Moreover, as the predictions of different generators of heavy-ion collisions differ
substantially at LHC energies, we have to use several of them and compare the
results.

The simulation of the processes involved in the transport through the detector
of the particles emerging from the interaction is confronted with several problems:

• existing event generators give different answers on parameters such as ex-
pected multiplicities, pT -dependence and rapidity dependence at LHC en-
ergies.

• most of the physics signals, like hyperon production, high-pT phenomena,
open charm and beauty, quarkonia etc., are not exactly reproduced by the
existing event generators.

• simulation of small cross-sections would demand prohibitively long runs
to simulate a number of events that is commensurable with the expected
number of detected events in the experiment.

• the existing generators do not provide for event topologies like momentum
correlations, azimuthal flow etc.

To allow nevertheless efficient simulations we have adopted a framework that
allows for a number of options:

• the simulation framework provides an interface to external generators, like
HIJING [?] and DPMJET [?].

• a parameterized, signal-free, underlying event where the produced multi-
plicity can be specified as an input parameter is provided.

• rare signals can be generated using the interface to external generators like
PYTHIA or simple parameterizations of transverse momentum and rapidity
spectra defined in function libraries.

• the framework provides a tool to assemble events from different signal gen-
erators (event cocktails).

• the framework provides tools to combine underlying events and signal events
at the primary particle level (cocktail) and at the summable digit level (merg-
ing).

22

• afterburners are used to introduce particle correlations in a controlled way.
An afterburner is a program which changes the momenta of the particles
produced by another generator, and thus modifies as desired the multi-
particle momentum distributions.

The implementation of this strategy is described below. The results of different
Monte Carlo generators for heavy-ion collisions are described in section ??.

3.2 Simulation framework
The simulation framework covers the simulation of primary collisions and gener-
ation of the emerging particles, the transport of particles through the detector, the
simulation of energy depositions (hits) in the detector components, their response
in form of so called summable digits, the generation of digits from summable
digits with the optional merging of underlying events and the creation of raw
data. The AliSimulation class provides a simple user interface to the simulation
framework. This section focuses on the simulation framework from the (detector)
software developers point of view.

Figure 2: Simulation framework.

Generation of Particles
Different generators can be used to produce particles emerging from the col-

lision. The class AliGenerator is the base class defining the virtual interface to
the generator programs. The generators are described in more detail in the ALICE
PPR Volume 1 and in the next chapter.
Virtual Monte Carlo

23

The simulation of particles traversing the detector components is performed
by a class derived from TVirtualMC. The Virtual Monte Carlo also provides an
interface to construct the geometry of detectors. The task of the geometry descrip-
tion is done by the geometrical modeler TGeo. The concrete implementation of
the virtual Monte Carlo application TVirtualMCApplication is AliMC. The Monte
Carlos used in ALICE are GEANT 3.21, GEANT 4 and FLUKA. More informa-
tion can be found on the VMC Web page: http://root.cern.ch/root/vmc

As explained above, our strategy was to develop a virtual interface to the de-
tector simulation code. We call the interface to the transport code virtual Monte
Carlo. It is implemented via C++ virtual classes and is schematically shown in
Fig. ??. The codes that implement the abstract classes are real C++ programs or
wrapper classes that interface to FORTRAN programs.

Event Generators
(AliGenerator)

User
Detector

Description Code
VMC

G3

G4

FLUKA

G3 Transport

G3 Geometry

G4 Transportt

G4 Geometry

FLUKA Transport

FLUGG

Figure 3: Virtual Monte Carlo

Thanks to the virtual Monte Carlo we have converted all FORTRAN user code
developed for GEANT 3 into C++, including the geometry definition and the user
scoring routines, StepManager. These have been integrated in the detector classes
of the AliRoot framework. The output of the simulation is saved directly with
ROOT I/O, simplifying the development of the digitization and reconstruction
code in C++.
Modules and Detectors

Each module of the ALICE detector is described by a class derived from
AliModule. Classes for active modules (= detectors) are not derived directly from
AliModule but from its subclass AliDetector. These base classes define the in-

24

terface to the simulation framework via a set of virtual methods.
Configuration File (Config.C)

The configuration file is a C++ macro that is processed before the simulation
starts. It creates and configures the Monte Carlo object, the generator object, the
magnetic field map and the detector modules. A detailed description is given
below.
Detector Geometry

The virtual Monte Carlo application creates and initializes the geometry of the
detector modules by calling the virtual functions CreateMaterials, CreateGeometry,
Init and BuildGeometry.
Vertexes and Particles

In case the simulated event is intended to be merged with an underlying event,
the primary vertex is taken from the file containing the underlying event by using
the vertex generator AliVertexGenFile. Otherwise the primary vertex is gen-
erated according to the generator settings. Then the particles emerging from the
collision are generated and put on the stack (an instance of AliStack). The trans-
port of particles through the detector is performed by the Monte Carlo object. The
decay of particles is usually handled by the external decayer AliDecayerPythia.
Hits and Track References

The Monte Carlo simulates the transport of a particle step by step. After each
step the virtual method StepManager of the module in which the particle cur-
rently is located is called. In this step manager method, the hits in the detector
are created by calling AddHit. Optionally also track references (location and
momentum of simulated particles at selected places) can be created by calling
AddTackReference. AddHit has to be implemented by each detector whereas
AddTackReference is already implemented in AliModule. The container and the
branch for the hits – and for the (summable) digits – are managed by the detec-
tor class via a set of so-called loaders. The relevant data members and methods
are fHits, fDigits, ResetHits, ResetSDigits, ResetDigits,MakeBranch and
SetTreeAddress.

For each detector methods like PreTrack, PostTrack, FinishPrimary, FinishEvent
and FinishRun are called during the simulation when the conditions indicated by
the method names are fulfilled.
Summable Digits

Summable digits are created by calling the virtual method Hits2SDigits of a
detector. This method loops over all events, creates the summable digits from hits
and stores them in the sdigits file(s).
Digitization and Merging

Dedicated classes derived from AliDigitizer are used for the conversion of
summable digits into digits. Since AliDigitizer is a TTask, this conversion is
done for the current event by the Exec method. Inside this method the summable

25

digits of all input streams have to be added, combined with noise, converted to
digital values taking into account possible thresholds and stored in the digits con-
tainer.

The input streams (more than one in case of merging) as well as the output
stream are managed by an object of type AliRunDigitizer. The methods Get-
Ninputs, GetInputFolderName and GetOutputFolderName return the relevant in-
formation. The run digitizer is accessible inside the digitizer via the protected
data member fManager. If the flag fRegionOfInterest is set, only detector parts
where summable digits from the signal event are present should be digitized. If
Monte Carlo labels are assigned to digits, the stream-dependent offset given by
the method GetMask is added to the label of the summable digit.

The detector specific digitizer object is created in the virtual method Create-
Digitizer of the concrete detector class. The run digitizer object is used to con-
struct the detector digitizer. The Init method of each digitizer is called before
the loop over the events starts.

A direct conversion from hits directly to digits can be implemented in the
method Hits2Digits of a detector. The loop over the events is inside the method.
Of course merging is not supported in this case.

An example of simulation script that can be used for simulation of proton-
proton collisions is provided below:

void sim(Int_t nev=100) {

AliSimulation simulator;

// Measure the total time spent in the simulation

TStopwatch timer;

timer.Start();

// List of detectors, where both summable digits and digits are provided

simulator.SetMakeSDigits("TRD TOF PHOS EMCAL RICH MUON ZDC PMD FMD START VZERO");

// Direct conversion of hits to digits for faster processing (ITS TPC)

simulator.SetMakeDigitsFromHits("ITS TPC");

simulator.Run(nev);

timer.Stop();

timer.Print();

}

The following example shows how one can do event merging

void sim(Int_t nev=6) {

AliSimulation simulator;

26

TStopwatch timer;

timer.Start();

// The underlying events are stored in a separate directory.

// Three signal events will be merged in turn with each

// underlying event

simulator.MergeWith("../backgr/galice.root",3);

simulator.Run(nev);

timer.Stop();

timer.Print();

}

Raw Data
The digits stored in ROOT containers can be converted into the DATE[?] for-

mat that will be the ‘payload’ of the ROOT classes containing the raw data. This
is done for the current event in the method Digits2Raw of the detector.

The simulation of raw data is managed by the class AliSimulation. To create
raw data DDL files it loops over all events. For each event it creates a directory,
changes to this directory and calls the method Digits2Raw of each selected de-
tector. In the Digits2Raw method the DDL files of a detector are created from the
digits for the current event.

For the conversion of the DDL files to a DATE file the AliSimulation class
uses the tool dateStream. To create a raw data file in ROOT format with the DATE
output as payload the program alimdc is utilized.

The only part that has to be implemented in each detector is the Digits2Raw

method of the detectors. In this method one file per DDL has to be created obeying
the conventions for file names and DDL IDs. Each file is a binary file with a DDL
data header in the beginning. The DDL data header is implemented in the structure
AliRawDataHeader. The data member fSize should be set to the total size of the
DDL raw data including the size of the header. The attribute bit 0 should be set by
calling the method SetAttribute(0) to indicate that the data in this file is valid.
The attribute bit 1 can be set to indicate compressed raw data.

The detector-specific raw data are stored in the DDL files after the DDL data
header. The format of this raw data should be as close as possible to the one that
will be delivered by the detector. This includes the order in which the channels
will be read out.

In order to create RAW data one needs the executable “dateStream” in the ac-
tual $PATH. A recent version is always available on AFS the directory /afs/cern.ch/alice/library/local/bin/.

Below we show an example of raw data creation for all the detectors

void sim(Int_t nev=1) {

AliSimulation simulator;

27

TStopwatch timer;

timer.Start();

simulator.SetWriteRawData("ALL","raw.root",kFALSE);

simulator.Run(nev);

timer.Stop();

timer.Print();

}

3.3 Configuration: example of Config.C
The example below contains as comments the most important information:

// Function converting pseudorapidity

// interval to polar angle interval. It is used to set

// the limits in the generator

Float_t EtaToTheta(Float_t arg){

return (180./TMath::Pi())*2.*atan(exp(-arg));

}

// Switch for holes in front of PHOS. This is a parameter in the

// TRD and TOF geometries

enum PprGeo_t

{

kHoles, kNoHoles

};

static PprGeo_t geo = kNoHoles; // without holes

void Config()

{

// Set Random Number seed using the current time

TDatime dat;

static UInt_t sseed = dat.Get();

gRandom->SetSeed(sseed);

cout<<"Seed for random number generation= "<<gRandom->GetSeed()<<endl;

// Load GEANT 3 library. It has to be in LD_LIBRARY_PATH

gSystem->Load("libgeant321");

28

// Instantiation of the particle transport package.

// gMC is set internaly

new TGeant3TGeo("C++ Interface to Geant3");

// Create run loader and set some properties

AliRunLoader* rl = AliRunLoader::Open("galice.root",

AliConfig::GetDefaultEventFolderName(),

"recreate");

if (!rl) Fatal("Config.C","Can not instatiate the Run Loader");

rl->SetCompressionLevel(2);

rl->SetNumberOfEventsPerFile(3);

// Register the run loader in gAlice

gAlice->SetRunLoader(rl);

// Set External decayer

TVirtualMCDecayer *decayer = new AliDecayerPythia();

decayer->SetForceDecay(kAll); // kAll means no specific decay is forced

decayer->Init();

// Register the external decayer in the transport package

gMC->SetExternalDecayer(decayer);

// STEERING parameters FOR ALICE SIMULATION

// Specify event type to be transported through the ALICE setup

// All positions are in cm, angles in degrees, and P and E in GeV

// For the details see the GEANT 3 manual

// Swithch on/off the physics processes

gMC->SetProcess("DCAY",1);

gMC->SetProcess("PAIR",1);

gMC->SetProcess("COMP",1);

gMC->SetProcess("PHOT",1);

gMC->SetProcess("PFIS",0);

gMC->SetProcess("DRAY",0);

gMC->SetProcess("ANNI",1);

gMC->SetProcess("BREM",1);

gMC->SetProcess("MUNU",1);

gMC->SetProcess("CKOV",1);

gMC->SetProcess("HADR",1);

gMC->SetProcess("LOSS",2);

29

gMC->SetProcess("MULS",1);

gMC->SetProcess("RAYL",1);

// Set the transport package cuts

Float_t cut = 1.e-3; // 1MeV cut by default

Float_t tofmax = 1.e10;

gMC->SetCut("CUTGAM", cut);

gMC->SetCut("CUTELE", cut);

gMC->SetCut("CUTNEU", cut);

gMC->SetCut("CUTHAD", cut);

gMC->SetCut("CUTMUO", cut);

gMC->SetCut("BCUTE", cut);

gMC->SetCut("BCUTM", cut);

gMC->SetCut("DCUTE", cut);

gMC->SetCut("DCUTM", cut);

gMC->SetCut("PPCUTM", cut);

gMC->SetCut("TOFMAX", tofmax);

// Set up the particle generation

// AliGenCocktail permits to combine several different generators

AliGenCocktail *gener = new AliGenCocktail();

// The phi range is always inside 0-360

gener->SetPhiRange(0, 360);

// Set pseudorapidity range from -8 to 8.

Float_t thmin = EtaToTheta(8); // theta min. <---> eta max

Float_t thmax = EtaToTheta(-8); // theta max. <---> eta min

gener->SetThetaRange(thmin,thmax);

gener->SetOrigin(0, 0, 0); // vertex position

gener->SetSigma(0, 0, 5.3); // Sigma in (X,Y,Z) (cm) on IP position

gener->SetCutVertexZ(1.); // Truncate at 1 sigma

gener->SetVertexSmear(kPerEvent);

// First cocktail component: 100 ‘‘background’’ particles

AliGenHIJINGpara *hijingparam = new AliGenHIJINGpara(100);

hijingparam->SetMomentumRange(0.2, 999);

gener->AddGenerator(hijingparam,"HIJING PARAM",1);

30

// Second cocktail component: one gamma in PHOS direction

AliGenBox *genbox = new AliGenBox(1);

genbox->SetMomentumRange(10,11.);

genbox->SetPhiRange(270.5,270.7);

genbox->SetThetaRange(90.5,90.7);

genbox->SetPart(22);

gener->AddGenerator(genbox,"GENBOX GAMMA for PHOS",1);

gener->Init(); // Initialization of the coctail generator

// Field (the last parameter is 1 => L3 0.4 T)

AliMagFMaps* field = new AliMagFMaps("Maps","Maps", 2, 1., 10., 1);

gAlice->SetField(field);

// Make sure the current ROOT directory is in galice.root

rl->CdGAFile();

// ALICE BODY parameters. BODY is always present

AliBODY *BODY = new AliBODY("BODY", "ALICE envelop");

// Start with Magnet since detector layouts may be depending

// on the selected Magnet dimensions

AliMAG *MAG = new AliMAG("MAG", "Magnet");

// Absorber

AliABSO *ABSO = new AliABSOv0("ABSO", "Muon Absorber");

// Dipole magnet

AliDIPO *DIPO = new AliDIPOv2("DIPO", "Dipole version 2");

// Hall

AliHALL *HALL = new AliHALL("HALL", "ALICE Hall");

// Space frame

AliFRAMEv2 *FRAME = new AliFRAMEv2("FRAME", "Space Frame");

if (geo == kHoles) {

FRAME->SetHoles(1);

} else {

FRAME->SetHoles(0);

}

31

// Shielding

AliSHIL *SHIL = new AliSHILv2("SHIL", "Shielding Version 2");

// Beam pipe

AliPIPE *PIPE = new AliPIPEv0("PIPE", "Beam Pipe");

// ITS parameters

AliITSvPPRasymmFMD *ITS = new AliITSvPPRasymmFMD("ITS",

"ITS PPR detailed version with asymmetric services");

ITS->SetMinorVersion(2); // don’t change it if you’re not an ITS developer

ITS->SetReadDet(kTRUE); // don’t change it if you’re not an ITS developer

ITS->SetThicknessDet1(200.); // detector thickness on layer 1

// must be in the range [100,300]

ITS->SetThicknessDet2(200.); // detector thickness on layer 2

// must be in the range [100,300]

ITS->SetThicknessChip1(200.); // chip thickness on layer 1

// must be in the range [150,300]

ITS->SetThicknessChip2(200.); // chip thickness on layer 2

// must be in the range [150,300]

ITS->SetRails(0); // 1 --> rails in ; 0 --> rails out

ITS->SetCoolingFluid(1); // 1 --> water ; 0 --> freon

ITS->SetEUCLID(0); // no output for the EUCLID CAD system

// TPC

AliTPC *TPC = new AliTPCv2("TPC", "Default");

// TOF

AliTOF *TOF = new AliTOFv4T0("TOF", "normal TOF");

// HMPID

AliRICH *RICH = new AliRICHv1("RICH", "normal RICH");

// ZDC

AliZDC *ZDC = new AliZDCv2("ZDC", "normal ZDC");

// TRD parameters

AliTRD *TRD = new AliTRDv1("TRD", "TRD slow simulator");

// Select the gas mixture (0: 97% Xe + 3% isobutane, 1: 90% Xe + 10% CO2)

32

TRD->SetGasMix(1);

if (geo == kHoles) {

TRD->SetPHOShole();

TRD->SetRICHhole();

}

// Switch on TR

AliTRDsim *TRDsim = TRD->CreateTR();

// FMD

AliFMD *FMD = new AliFMDv1("FMD", "normal FMD");

// MUON parameters

AliMUON *MUON = new AliMUONv1("MUON", "default");

MUON->AddGeometryBuilder(new AliMUONSt1GeometryBuilder(MUON));

MUON->AddGeometryBuilder(new AliMUONSt2GeometryBuilder(MUON));

MUON->AddGeometryBuilder(new AliMUONSlatGeometryBuilder(MUON));

MUON->AddGeometryBuilder(new AliMUONTriggerGeometryBuilder(MUON));

// PHOS

AliPHOS *PHOS = new AliPHOSv1("PHOS", "IHEP");

// PMD

AliPMD *PMD = new AliPMDv1("PMD", "normal PMD");

// START

AliSTART *START = new AliSTARTv1("START", "START Detector");

// EMCAL

AliEMCAL *EMCAL = new AliEMCALv2("EMCAL", "SHISH");

// VZERO

AliVZERO *VZERO = new AliVZEROv5("VZERO", "normal VZERO");

}

3.4 Event generation
This is from the software chapter in PPR I, it will be modified

The theoretical uncertainty that concerns high-energy heavy-ion collisions at
the LHC has several consequences for our simulation strategy. A large part of the
physics analysis will be the search for rare signals over an essentially uncorrelated

33

Figure 4: AliGenerator is the base class, which has the responsibility to gen-
erate the primary particles of an event. Some realizations of this class do not
generate the particles themselves but delegate the task to an external generator
like PYTHIA through the TGenerator interface.

background of emitted particles. To avoid being dependent on a specific model,
and to gain in efficiency and flexibility, we use a specially developed parameteri-
zation of a signal-free final state. This is already sufficient for a large number of
cases as some studies can be done with a single event. This is the case of the track
reconstruction efficiency as a function of the initial multiplicity and occupation.
This parameterization is based on a pseudo-rapidity (η) parameterization accord-
ing to HIJING and a transverse momentum (pT) distribution taken from CDF [?]
data. To simulate the highest anticipated multiplicities we scale the η-distribution
so that 8000 charged particles per event are produced in the range |η| < 0.5.

To facilitate the usage of different generators we have developed an abstract
generator interface called AliGenerator, see Fig. ??. The objective is to provide
the user with an easy and coherent way to study a variety of physics signals as well
as full set of tools for testing and background studies. This interface allows the
study of full events, signal processes, and a mixture of both, i.e. cocktail events.

Several event generators are available via the abstract ROOT class that imple-
ments the generic generator interface, TGenerator. Through implementations of
this abstract base class we wrap FORTRAN Monte Carlo codes like PYTHIA,

34

HERWIG, and HIJING that are thus accessible from the AliRoot classes. In par-
ticular the interface to PYTHIA includes the use of nuclear structure functions of
PDFLIB.

In many cases, the expected transverse momentum and rapidity distributions
of particles are known. In other cases the effect of variations in these distributions
must be investigated. In both situations it is appropriate to use generators that
produce primary particles and their decays sampling from parametrized spectra.
To meet the different physics requirements in a modular way, the parameteriza-
tions are stored in independent function libraries wrapped into classes that can be
plugged into the generator. This is schematically illustrated in Fig. ?? where four
different generator libraries can be loaded via the abstract generator interface.

It is customary in heavy-ion event generation to superimpose different signals
on an event to tune the reconstruction algorithms. This is possible in AliRoot via
the so-called cocktail generator (Fig. ??). This creates events from user-defined
particle cocktails by choosing as ingredients a list of particle generators.

Figure 5: AliGenParam is a realization of AliGenerator that generates particles
using parameterized pt and pseudo-rapidity distributions. Instead of coding a fixed
number of parameterizations directly into the class implementations, user defined
parametrization libraries (AliGenLib) can be connected at run time allowing for
maximum flexibility.

An example of AliGenParam usage is presented below:

// Example for J/psi Production from Parameterisation

// using default library (AliMUONlib)

AliGenParam *gener = new AliGenParam(ntracks, AliGenMUONlib::kUpsilon);

gener->SetMomentumRange(0,999); // Wide cut on the Upsilon momentum

gener->SetPtRange(0,999); // Wide cut on Pt

gener->SetPhiRange(0. , 360.); // Full azimutal range

gener->SetYRange(2.5,4); // In the acceptance of the MUON arm

35

gener->SetCutOnChild(1); // Enable cuts on Upsilon decay products

gener->SetChildThetaRange(2,9); // Theta range for the decay products

gener->SetOrigin(0,0,0); // Vertex position

gener->SetSigma(0,0,5.3); // Sigma in (X,Y,Z) (cm) on IP position

gener->SetForceDecay(kDiMuon); // Upsilon->mu+ mu- decay

gener->SetTrackingFlag(0); // No particle transport

gener->Init()

3.4.1 Pythia6

Pythia is used for simulation of proton-proton interactions and for generation of
jets in case of event merging. An example of minimum bias Pythia events is
presented below:

AliGenPythia *gener = new AliGenPythia(-1);

gener->SetMomentumRange(0,999999);

gener->SetThetaRange(0., 180.);

gener->SetYRange(-12,12);

gener->SetPtRange(0,1000);

gener->SetProcess(kPyMb); // Min. bias events

gener->SetEnergyCMS(14000.); // LHC energy

gener->SetOrigin(0, 0, 0); // Vertex position

gener->SetSigma(0, 0, 5.3); // Sigma in (X,Y,Z) (cm) on IP position

gener->SetCutVertexZ(1.); // Truncate at 1 sigma

gener->SetVertexSmear(kPerEvent);// Smear per event

gener->SetTrackingFlag(1); // Particle transport

gener->Init()

3.4.2 HIJING and HIJING parametrization

HIJING (Heavy-Ion Jet Interaction Generator) combines a QCD-inspired model
of jet production [?] with the Lund model [?] for jet fragmentation. Hard or semi-
hard parton scatterings with transverse momenta of a few GeV are expected to
dominate high-energy heavy-ion collisions. The HIJING model has been devel-
oped with special emphasis on the role of mini jets in pp, pA and A–A reactions
at collider energies.

Detailed systematic comparisons of HIJING results with a wide range of data
demonstrates a qualitative understanding of the interplay between soft string dy-
namics and hard QCD interactions. In particular, HIJING reproduces many in-
clusive spectra, two-particle correlations, and the observed flavor and multiplicity
dependence of the average transverse momentum.

36

The Lund FRITIOF [?] model and the Dual Parton Model [?] (DPM) have
guided the formulation of HIJING for soft nucleus–nucleus reactions at interme-
diate energies, √sNN ≈ 20GeV . The hadronic-collision model has been inspired
by the successful implementation of perturbative QCD processes in PYTHIA [?].
Binary scattering with Glauber geometry for multiple interactions are used to ex-
trapolate to pA and A–A collisions.

Two important features of HIJING are jet quenching and nuclear shadowing.
Jet quenching is the energy loss by partons in nuclear matter. It is responsible
for an increase of the particle multiplicity at central rapidities. Jet quenching is
modeled by an assumed energy loss by partons traversing dense matter. A simple
color configuration is assumed for the multi-jet system and the Lund fragmenta-
tion model is used for the hadronisation. HIJING does not simulate secondary
interactions.

Shadowing describes the modification of the free nucleon parton density in the
nucleus. At the low-momentum fractions, x, observed by collisions at the LHC,
shadowing results in a decrease of the multiplicity. Parton shadowing is taken into
account using a parameterization of the modification.

Here is an example of event generation with HIJING:

AliGenHijing *gener = new AliGenHijing(-1);

gener->SetEnergyCMS(5500.); // center of mass energy

gener->SetReferenceFrame("CMS"); // reference frame

gener->SetProjectile("A", 208, 82); // projectile

gener->SetTarget ("A", 208, 82); // projectile

gener->KeepFullEvent(); // HIJING will keep the full parent child chain

gener->SetJetQuenching(1); // enable jet quenching

gener->SetShadowing(1); // enable shadowing

gener->SetDecaysOff(1); // neutral pion and heavy particle decays switched off

gener->SetSpectators(0); // Don’t track spectators

gener->SetSelectAll(0); // kinematic selection

gener->SetImpactParameterRange(0., 5.); // Impact parameter range (fm)

gener->Init()

AliGenHIJINGparam [?] is an internal AliRoot generator based on parame-
terized pseudorapidity density and transverse momentum distributions of charged
and neutral pions and kaons. The pseudorapidity distribution was obtained from
a HIJING simulation of central Pb–Pb collisions and scaled to a charged-particle
multiplicity of 8000 in the pseudo rapidity interval |η| < 0.5. Note that this is
about 10% higher than the corresponding value for a rapidity density with an av-
erage dN/dy of 8000 in the interval |y| < 0.5.

The transverse-momentum distribution is parameterized from the measured
CDF pion pT -distribution at

√
s = 1.8TeV . The corresponding kaon pT -distribution

37

was obtained from the pion distribution bymT -scaling. See Ref. [?] for the details
of these parameterizations.

3.4.3 Additional universal generators

Dual parton model
DPMJET is an implementation of the two-component Dual Parton Model

(DPM) for the description of interactions involving nuclei based on the Glauber–
Gribov approach. DPMJET treats soft and hard scattering processes in an unified
way. Soft processes are parameterized according to Regge phenomenology while
lowest order perturbative QCD is used to simulate the hard component. Multiple-
parton interactions in each individual hadron (nucleon, photon)–nucleon interac-
tion are described by the PHOJET event generator. The fragmentation of parton
configurations is treated by the Lund model PYTHIA.

Particle production in the fragmentation regions of the participating nuclei
is described by a formation zone suppressed intra-nuclear cascade followed by
Monte Carlos of evaporation processes of light nucleons and nuclei, high-energy
fission, spectator fragmentation (limited to light-spectator nuclei), and de-excitation
of residual nuclei by photon emission.

The most important features of DPMJET-II.5 [?] are new diagrams contribut-
ing to baryon stopping and a better calculation of Glauber cross-sections. A new
striking feature of hadron production in nuclear collisions is the large stopping of
the participating nucleons in hadron–nucleus and nucleus–nucleus collisions com-
pared to hadron–hadron collisions [?, ?]. The popcorn mechanism implemented
in models with independent string fragmentation, like the DPM, is insufficient to
explain this enhanced baryon stopping. New DPM diagrams were proposed by
Kharzeev [?], Capella and Kopeliovich [?]. DPMJET-II.5 implements these di-
agrams and obtains an improved agreement with the net-baryon distributions in
nuclear collisions.

For some light nuclei, the Glauber model calculations have been modified
and the Woods–Saxon nuclear densities are replaced by parameterizations that
agree better with the data. Measured nuclear radii are used [?] instead of the
nuclear radii given by the previous parameterization. The new option XSECNUC
is added to calculate a table of total, elastic, quasi-elastic, and perturbative QCD
cross-sections using a modified version of the routine XSGLAU adopted from
DTUNUC-II [?, ?]. These changes lead to improved agreement with measured
nuclear cross-sections, such as the p–Air cross-sections from cosmic-ray data.

DPMJET-II.3/4 was extended to higher energies by calculating mini-jet pro-
duction using as a default the GRVLO94 parton distributions [?]. They are re-
placed in DPMJET-II.5 by the more recent GRVLO98 [?], which describe the
most recent HERA data.

38

The present version of the model DPMJET-II.5 allows the inclusion or ex-
clusion of single-diffractive events in nucleus–nucleus collisions or to sample
only single-diffractive events. The diffractive cross-section in hadron–nucleus
and nucleus–nucleus collisions is calculated by Monte Carlo.

3.4.4 Generators for specific studies

MEVSIM
MEVSIM [?] was developed for the STAR experiment to quickly produce a

large number of A–A collisions for some specific needs – initially for HBT studies
and for testing of reconstruction and analysis software. However, since the user
is able to generate specific signals, it was extended to flow and event-by-event
fluctuation analysis. A detailed description of MEVSIM can be found in Ref. [?].

MEVSIM generates particle spectra according to a momentum model cho-
sen by the user. The main input parameters are: types and numbers of generated
particles, momentum-distribution model, reaction-plane and azimuthal-anisotropy
coefficients, multiplicity fluctuation, number of generated events, etc. The mo-
mentum models include factorized pT and rapidity distributions, non-expanding
and expanding thermal sources, arbitrary distributions in y and pT and others.
The reaction plane and azimuthal anisotropy is defined by the Fourier coefficients
(maximum of six) including directed and elliptical flow. Resonance production
can also be introduced.

User can define the acceptance intervals, avoiding generating particles that do
not enter the detector. The generation time is negligible compared to the analysis
time.

MEVSIM was originally written in FORTRAN. It was later integrated into
AliRoot. A complete description of the AliRoot implementation of MEVSIM can
be found on the web page (http://home.cern.ch/∼radomski).

GeVSim
GeVSim [?] is a fast and easy-to-use Monte Carlo event generator imple-

mented in AliRoot. It can provide events of similar type configurable by the
user according to the specific needs of a simulation project, in particular, that
of flow and event-by-event fluctuation studies. It was developed to facilitate de-
tector performance studies and for the test of algorithms. GeVSim can also be
used to generate signal-free events to be processed by afterburners, for example
HBT processor.

GeVSim is based on the MevSim [?] event generator developed for the STAR
experiment. The latter was written in FORTRAN, while the former is written
in C++ integrated into the ROOT environment. MevSim has been interfaced to
AliRoot inside the TMevSim package [?] in order to maintain it as a common
code with the STAR offline project. Since interfacing FORTRAN code makes the

39

design complicated and the maintenance more difficult a new package, GeVSim,
written purely in C++, was developed.

GeVSim generates a list of particles by randomly sampling a distribution func-
tion. The parameters of single-particle spectra and their event-by-event fluctua-
tions are explicitly defined by the user. Single-particle transverse-momentum and
rapidity spectra can be either selected from a menu of four predefined distribu-
tions, the same as in MevSim, or provided by user.

Flow can be easily introduced into simulated events. The parameters of the
flow are defined separately for each particle type and can be either set to a constant
value or parameterized as a function of transverse momentum and rapidity. Two
parameterizations of elliptic flow based on results obtained by RHIC experiments
are provided.

GeVSim also has extended possibilities for simulating of event-by-event fluc-
tuations. The model allows fluctuations following an arbitrary analytically defined
distribution in addition to the Gaussian distribution provided by MevSim. It is also
possible to systematically alter a given parameter to scan the parameter space in
one run. This feature is useful when analyzing performance with respect to, for
example, multiplicity or event-plane angle.

The current status and further development of GeVSim code and documenta-
tion can be found in Ref. [?].

HBT processor
Correlation functions constructed with the data produced by MEVSIM or any

other event generator are normally flat in the region of small relative momenta.
The HBT-processor afterburner introduces two particle correlations to the set of
generated particles. It shifts the momentum of each particle so that the correlation
function of a selected model is reproduced. The imposed correlation effects due
to Quantum Statistics (QS) and Coulomb Final State Interactions (FSI) do not af-
fect the single-particle distributions and multiplicities. The event structures before
and after passing through the HBT processor are identical. Thus, the event recon-
struction procedure with and without correlations is also identical. However, the
track reconstruction efficiency, momentum resolution and particle identification
need not to be, since correlated particles have a special topology at small relative
velocities. We can thus verify the influence of various experimental factors on the
correlation functions.

The data structure of reconstructed events with correlations is the same as
the structure of real events. Therefore, the specific correlation-analysis software
developed at the simulation stage can be directly applied to real data.

The method, proposed by L. Ray and G.W. Hoffmann [?] is based on ran-
dom shifts of the particle three-momentum within a confined range. After each
shift, a comparison is made with correlation functions resulting from the assumed
model of the space–time distribution and with the single-particle spectra which

40

should remain unchanged. The shift is kept if the χ2-test shows better agreement.
The process is iterated until satisfactory agreement is achieved. In order to con-
struct the correlation function, a reference sample is made by mixing particles
from some consecutive events. Such a method has an important impact on the
simulations when at least two events must be processed simultaneously.

Some specific features of this approach are important for practical use:
• the HBT processor can simultaneously generate correlations of up to two

particle types (e.g. positive and negative pions). Correlations of other parti-
cles can be added subsequently.

• the form of the correlation function has to be parameterized analytically.
One and three dimensional parameterizations are possible.

• a static source is usually assumed. Dynamical effects, related to expan-
sion or flow, can be simulated in a stepwise form by repeating simulations
for different values of the space–time parameters associated with different
kinematic intervals.

• Coulomb effects may be introduced by one of the three approaches: Gamow
factor, experimentally modified Gamow correction and integrated Coulomb
wave functions for discrete values of the source radii.

• Strong interactions are not implemented.
The HBT processor was written in FORTRAN but is now implemented in

AliRoot. The detailed description can be found elsewhere [?].
Generator for e+e− pairs in Pb–Pb collisions
In addition to strong interactions of heavy ions in central and peripheral colli-

sions, ultra-peripheral collisions of ions give rise to coherent, mainly electromag-
netic, interactions among which the dominant process is is the (multiple) e+e−-
pair production [?]

AA→ AA+ n(e+e−), (1)
where n is the pair multiplicity. Most electron–positron pairs are produced into the
very forward direction escaping the experiment. However, for Pb–Pb collisions
at the LHC the cross-section of this process, about 230 kb, is enormous. A
sizable fraction of pairs produced with large-momentum transfer can contribute
to the hit rate in the forward detectors increasing the occupancy or trigger rate.
In order to study this effect an event generator for e+e−-pair production has been
implemented in the AliRoot framework [?]. The class TEpEmGen is a realisation
of the TGenerator interface for external generators and wraps the FORTRAN
code used to calculate the differential cross-section. AliGenEpEmv1 derives from
AliGenerator and uses the external generator to put the pairs on the AliRoot
particle stack.

41

3.4.5 Combination of generators: AliGenCocktail

Figure 6: The AliGenCocktail generator is a realization of AliGenerator

which does not generate particles itself but delegates this task to a list of objects
of type AliGenerator that can be connected as entries (AliGenCocktailEntry)
at run time. In this way different physics channels can be combined in one event.

Here is an example of cocktail, used for studies in the TRD detector:

// The cocktail generator

AliGenCocktail *gener = new AliGenCocktail();

// Phi meson (10 particles)

AliGenParam *phi =

new AliGenParam(10,new AliGenMUONlib(),AliGenMUONlib::kPhi,"Vogt PbPb");

phi->SetPtRange(0, 100);

phi->SetYRange(-1., +1.);

phi->SetForceDecay(kDiElectron);

// Omega meson (10 particles)

AliGenParam *omega =

new AliGenParam(10,new AliGenMUONlib(),AliGenMUONlib::kOmega,"Vogt PbPb");

omega->SetPtRange(0, 100);

omega->SetYRange(-1., +1.);

omega->SetForceDecay(kDiElectron);

// J/psi

AliGenParam *jpsi = new AliGenParam(10,new AliGenMUONlib(),

42

AliGenMUONlib::kJpsiFamily,"Vogt PbPb");

jpsi->SetPtRange(0, 100);

jpsi->SetYRange(-1., +1.);

jpsi->SetForceDecay(kDiElectron);

// Upsilon family

AliGenParam *ups = new AliGenParam(10,new AliGenMUONlib(),

AliGenMUONlib::kUpsilonFamily,"Vogt PbPb");

ups->SetPtRange(0, 100);

ups->SetYRange(-1., +1.);

ups->SetForceDecay(kDiElectron);

// Open charm particles

AliGenParam *charm = new AliGenParam(10,new AliGenMUONlib(),

AliGenMUONlib::kCharm,"central");

charm->SetPtRange(0, 100);

charm->SetYRange(-1.5, +1.5);

charm->SetForceDecay(kSemiElectronic);

// Beauty particles: semi-electronic decays

AliGenParam *beauty = new AliGenParam(10,new AliGenMUONlib(),

AliGenMUONlib::kBeauty,"central");

beauty->SetPtRange(0, 100);

beauty->SetYRange(-1.5, +1.5);

beauty->SetForceDecay(kSemiElectronic);

// Beauty particles to J/psi ee

AliGenParam *beautyJ = new AliGenParam(10, new AliGenMUONlib(),

AliGenMUONlib::kBeauty,"central");

beautyJ->SetPtRange(0, 100);

beautyJ->SetYRange(-1.5, +1.5);

beautyJ->SetForceDecay(kBJpsiDiElectron);

// Adding all the components of the cocktail

gener->AddGenerator(phi,"Phi",1);

gener->AddGenerator(omega,"Omega",1);

gener->AddGenerator(jpsi,"J/psi",1);

gener->AddGenerator(ups,"Upsilon",1);

gener->AddGenerator(charm,"Charm",1);

gener->AddGenerator(beauty,"Beauty",1);

gener->AddGenerator(beautyJ,"J/Psi from Beauty",1);

43

// Settings, common for all components

gener->SetOrigin(0, 0, 0); // vertex position

gener->SetSigma(0, 0, 5.3); // Sigma in (X,Y,Z) (cm) on IP position

gener->SetCutVertexZ(1.); // Truncate at 1 sigma

gener->SetVertexSmear(kPerEvent);

gener->SetTrackingFlag(1);

gener->Init();

3.4.6 Afterburner processors

Flow afterburner
Azimuthal anisotropies, especially elliptic flow, carry unique information about

collective phenomena and consequently are important for the study of heavy-ion
collisions. Additional information can be obtained studying different heavy-ion
observables, especially jets, relative to the event plane. Therefore it is necessary to
evaluate the capability of ALICE to reconstruct the event plane and study elliptic
flow.

Since there is not a well understood microscopic description of the flow effect
it cannot be correctly simulated by microscopic event generators. Therefore, to
generate events with flow the user has to use event generators based on macro-
scopic models, like GeVSim [?] or an afterburner which can generate flow on top
of events generated by event generators based on the microscopic description of
the interaction. In the AliRoot framework such a flow afterburner is implemented.

The algorithm to apply azimuthal correlation consists in shifting the azimuthal
coordinates of the particles. The transformation is given by [?]:

ϕ→ ϕ′ = ϕ+ ∆ϕ

∆ϕ =
∑

n

−2

n
vn (pt, y) sinn× (ϕ− ψ)

where vn(pt, y) is the flow coefficient to be obtained, n is the harmonic number
and ψ is the event-plane angle. Note that the algorithm is deterministic and does
not contain any random numbers generation.

The value of the flow coefficient can be either constant or parameterized as a
function of transverse momentum and rapidity. Two parameterizations of elliptic
flow are provided as in GeVSim.

AliGenGeVSim* gener = new AliGenGeVSim(0);

mult = 2000; // Mult is the number of charged particles in |eta| < 0.5

44

vn = 0.01; // Vn

Float_t sigma_eta = 2.75; // Sigma of the Gaussian dN/dEta

Float_t etamax = 7.00; // Maximum eta

// Scale from multiplicity in |eta| < 0.5 to |eta| < |etamax|

Float_t mm = mult * (TMath::Erf(etamax/sigma_eta/sqrt(2.)) /

TMath::Erf(0.5/sigma_eta/sqrt(2.)));

// Scale from charged to total multiplicity

mm *= 1.587;

// Define particles

// 78% Pions (26% pi+, 26% pi-, 26% p0) T = 250 MeV

AliGeVSimParticle *pp =

new AliGeVSimParticle(kPiPlus, 1, 0.26 * mm, 0.25, sigma_eta) ;

AliGeVSimParticle *pm =

new AliGeVSimParticle(kPiMinus, 1, 0.26 * mm, 0.25, sigma_eta) ;

AliGeVSimParticle *p0 =

new AliGeVSimParticle(kPi0, 1, 0.26 * mm, 0.25, sigma_eta) ;

// 12% Kaons (3% K0short, 3% K0long, 3% K+, 3% K-) T = 300 MeV

AliGeVSimParticle *ks =

new AliGeVSimParticle(kK0Short, 1, 0.03 * mm, 0.30, sigma_eta) ;

AliGeVSimParticle *kl =

new AliGeVSimParticle(kK0Long, 1, 0.03 * mm, 0.30, sigma_eta) ;

AliGeVSimParticle *kp =

new AliGeVSimParticle(kKPlus, 1, 0.03 * mm, 0.30, sigma_eta) ;

AliGeVSimParticle *km =

new AliGeVSimParticle(kKMinus, 1, 0.03 * mm, 0.30, sigma_eta) ;

// 10% Protons / Neutrons (5% Protons, 5% Neutrons) T = 250 MeV

AliGeVSimParticle *pr =

new AliGeVSimParticle(kProton, 1, 0.05 * mm, 0.25, sigma_eta) ;

AliGeVSimParticle *ne =

new AliGeVSimParticle(kNeutron, 1, 0.05 * mm, 0.25, sigma_eta) ;

// Set Elliptic Flow properties

Float_t pTsaturation = 2. ;

45

pp->SetEllipticParam(vn,pTsaturation,0.) ;

pm->SetEllipticParam(vn,pTsaturation,0.) ;

p0->SetEllipticParam(vn,pTsaturation,0.) ;

pr->SetEllipticParam(vn,pTsaturation,0.) ;

ne->SetEllipticParam(vn,pTsaturation,0.) ;

ks->SetEllipticParam(vn,pTsaturation,0.) ;

kl->SetEllipticParam(vn,pTsaturation,0.) ;

kp->SetEllipticParam(vn,pTsaturation,0.) ;

km->SetEllipticParam(vn,pTsaturation,0.) ;

// Set Direct Flow properties

pp->SetDirectedParam(vn,1.0,0.) ;

pm->SetDirectedParam(vn,1.0,0.) ;

p0->SetDirectedParam(vn,1.0,0.) ;

pr->SetDirectedParam(vn,1.0,0.) ;

ne->SetDirectedParam(vn,1.0,0.) ;

ks->SetDirectedParam(vn,1.0,0.) ;

kl->SetDirectedParam(vn,1.0,0.) ;

kp->SetDirectedParam(vn,1.0,0.) ;

km->SetDirectedParam(vn,1.0,0.) ;

// Add particles to the list

gener->AddParticleType(pp) ;

gener->AddParticleType(pm) ;

gener->AddParticleType(p0) ;

gener->AddParticleType(pr) ;

gener->AddParticleType(ne) ;

gener->AddParticleType(ks) ;

gener->AddParticleType(kl) ;

gener->AddParticleType(kp) ;

gener->AddParticleType(km) ;

// Random Ev.Plane

TF1 *rpa = new TF1("gevsimPsiRndm","1", 0, 360);

gener->SetPtRange(0., 9.) ; // Used for bin size in numerical integration

gener->SetPhiRange(0, 360);

46

gener->SetOrigin(0, 0, 0); // vertex position

gener->SetSigma(0, 0, 5.3); // Sigma in (X,Y,Z) (cm) on IP position

gener->SetCutVertexZ(1.); // Truncate at 1 sigma

gener->SetVertexSmear(kPerEvent);

gener->SetTrackingFlag(1);

gener->Init()

3.5 Particle transport
3.5.1 Description of structure elements and detectors

The front and small-angle absorber region are very detailed due to their impor-
tance to the muon spectrometer. The simulation has been instrumental in optimiz-
ing their design to save costs without a negative impact on the physics.

The L3 and dipole magnets are described both in their material distributions
and their magnetic fields. The latter also includes the interference between the two
fields. The field distributions are described by three independent maps for 0.2, 0.4
and 0.5 T solenoid L3 magnetic field strengths. Alternatively, it is possible to use
simple parameterizations of the fields, i.e. constant solenoidal field in the barrel
and a dipole field varying along z for the muon spectrometer.

The space frame, supporting the barrel detectors, is described according to
its final design which may incorporate the recently proposed Electromagnetic
Calorimeter [?] if it is accepted.

The design of the ALICE beam pipe has been finalized. All elements that
could limit the detector performance (pumps, bellows, flanges) are represented in
the simulation.

Most of the detectors have both a detailed version of the geometry, used to
study their performance, and a coarse version that provides the correct material
budget, with minimal details, to study the influence on other detectors without
any detector response.

For some detectors, different versions corresponding to different geometry op-
tions are selectable via the input C++ script at run time. In the following we give
some examples. We remind the reader that some of this information is still subject
to rapid evolution.

Both a detailed and a coarse geometry are available for the ITS. The detailed
geometry of the ITS is very complicated and crucially affects the evaluation of
impact parameter and electron bremsstrahlung. On the other hand, simulation of
the coarse geometry is much faster when ITS hits are not needed.

Attention has been devoted to the correct simulation of detector response and
already very sophisticated effects can already be studied and optimized via Ali-

47

Root simulation.
Three configurations are available for the TPC. Version 0 is the coarse geom-

etry, without any sensitive element specified. It is used for the material budget
studies and is the version of interest for the outer detectors. Version 1 is the ge-
ometry version for the Fast Simulator. The sensitive volumes are thin gaseous
strips placed in the Small (S) and Large (L) sectors at the pad-row centers. The
hits are produced whenever a track crosses the sensitive volume (pad-row). The
energy loss is not taken into account. Version 2 is the geometry version for the
slow simulator. The sensitive volumes are S and L sectors. The user can specify
either all sectors or only a few of them, up to 6 S- and 12 L-sectors. The hits are
produced in every ionizing collision. The transport step is calculated for every
collision from an exponential distribution. The energy loss is calculated from an
1/E2 distribution and the response is parameterized by a Mathieson distribution.

The TRD geometry is now quite complete, including the correct material bud-
get for electronics and cooling pipes. The full response and digitization are im-
plemented allowing studies of open questions such as the number of time-bins,
the 9- or 10-bit ADC, the gas and electronics gain, the drift velocity, and maxi-
mum Lorentz angle. The transition-radiation photon yield is approximated by an
analytical solution for a foil stack, with adjustment of the yield for a real radiator,
including foam and fiber layers from test beam data. This is quite a challeng-
ing detector to simulate, as both normal energy loss in the gas and absorption of
transition-radiation photons have to be taken into account.

During the signal generation several effects are taken into account: diffusion,
1-dimensional pad response, gas gain and gain fluctuations, electronics gain and
noise, as well as conversion to ADC values. Absorption and E×B effects will be
introduced.

A detailed study of the background coming from slow neutron capture in Xe
gas has been performed [?]. The spectra of photons emitted after neutron capture
are not present in standard neutron-reaction databases. An extensive literature
search has been necessary in order to simulate them. The resulting code is now
part of the FLUKA Monte Carlo.

The TOF detector covers a cylindrical surface of polar acceptance |θ− 90◦| <
45◦. Its total weight is 25 tons and it covers an area of about 160 m2 with about
160 000 total readout channels (pads) and an intrinsic resolution of 60ns. It has
a modular structure corresponding to 18 sectors in ϕ and to 5 segments in z. All
modules have the same width of 128 cm and increasing lengths, adding up to an
overall TOF barrel length of 750 cm.

Inside each module the strips are tilted, thus minimizing the number of mul-
tiple partial-cell hits due to the obliqueness of the incidence angle. The double
stack-strip arrangement, the cooling tubes, and the materials for electronics have
been described in detail. During the development of the TOF design several dif-

48

ferent geometry options have been studied, all highly detailed.
The HMPID detector also poses a challenge in the simulation of the Čerenkov

effect and the secondary emission of feedback photons. A detailed simulation
has been introduced for all these effects and has been validated both by test-beam
data and with the ALICE RICH prototype that has been operating in the STAR
experiment.

The PHOS has also been simulated in detail. The geometry includes the
Charged Particle Veto (CPV), crystals (EMC), readout (PIN or APD) and support
structures. Hits record the energy deposition in one CPV–EMC cell per entering
particle. In the digits the contribution from all particles per event are summed up
and noise is added.

The simulation of the ZDC in AliRoot requires transport of spectator nucleons
with Fermi spread, beam divergence and crossing angle for over 100 m. The
HIJING generator is used for these studies taking into account the correlations
with transverse energy and multiplicity.

The muon spectrometer is composed of 5 tracking stations and two trigger sta-
tions. For stations 1–2 a conservative material distribution is adopted, while for
stations 3–5 and for the trigger stations a detailed geometry is implemented. Sup-
porting frames and support structures are still coarse or missing but they are not
very important in the simulation of the signal. The muon chambers have a com-
plicated segmentation that has been implemented during the signal generation via
a set of virtual classes. This allows changing the segmentation without modifying
the geometry.

Summable digits (pad hits) are generated taking into account the Mathieson
formalism for charge distribution, while work is ongoing on the angular depen-
dence, Lorentz angle and charge correlation.

The complex T0–FMD–V0–PMD forward detector system is still under de-
velopment and optimization. There are several options provided to study their
performance.

ALICE geometry and generation of simulated data is in place to allow full
event reconstruction including the main tracking devices. The framework allows
comparison with test-beam data that has already been often performed. The early
availability of a complete simulation has been an important point for the develop-
ment of reconstruction and analysis code and user interfaces, now the focus of the
development.

3.5.2 TGeo essential information

A detailed description of the Root geometry package is available in the Root
User’s Guide[?]. Several examples can be found in $ROOTSYS/tutorials, among
them assembly.C, csgdemo.C, geodemo.C, nucleus.C, rootgeom.C, etc. Here we

49

show a simple usage for export/import of the ALICE geometry and for check for
overlaps and extrusions:

aliroot

root [0] gAlice->Init()

root [1] gGeoManager->Export("geometry.root")

root [2] .q

aliroot

root [0] TGeoManager::Import("geometry.root")

root [1] gGeoManager->CheckOverlaps()

root [2] gGeoManager->PrintOverlaps()

root [3] new TBrowser

Now you can navigate in Geometry->Illegal overlaps

and draw each overlap (double click on it)

3.5.3 Visualization

Below we show an example of VZERO visualization using the Root geometry
package:

aliroot

root [0] gAlice->Init()

root [1] TGeoVolume *top = gGeoManager->GetMasterVolume()

root [2] Int_t nd = top->GetNdaughters()

root [3] for (Int_t i=0; i<nd; i++) \

top->GetNode(i)->GetVolume()->InvisibleAll()

root [4] TGeoVolume *v0ri = gGeoManager->GetVolume("V0RI")

root [5] TGeoVolume *v0le = gGeoManager->GetVolume("V0LE")

root [6] v0ri->SetVisibility(kTRUE);

root [7] v0ri->VisibleDaughters(kTRUE);

root [8] v0le->SetVisibility(kTRUE);

root [9] v0le->VisibleDaughters(kTRUE);

root [10] top->Draw();

3.5.4 Simulation of detector response

Much of the activity described in this report is a large virtual experiment where
we generate thousands of events and Analise them in order to produce the re-
sults presented. This has the objective of studying in detail the ALICE physics
capabilities, to clarify the physics goals of the experiment, and of verifying the
functionality of our software framework from (simulated) raw data to physics.

50

To carry out this double objective, it is important to have a high-quality and
reliable simulation. One of the most common programs for full detector simula-
tion is GEANT 3 which, however, is a 20-year old FORTRAN program officially
frozen since 1993. We are waiting for GEANT 4 to become available for pro-
duction for the LHC and we also intend to evaluate FLUKA as a full detector
simulation program. Therefore we decided to build an environment that could
profit from the maturity and solidity of GEANT 3 and, at the same time, protect
the investment in the user code when moving to a new Monte Carlo. Combining
immediate needs and long term requirements into a single framework we have
wrapped the GEANT 3 code in a C++ class (TGeant3) and we have introduced a
Virtual Monte Carlo abstract interface in AliRoot, described in the next section.
This has proved very satisfactory as we have been able to assure coherence of the
whole simulation process:

• event generation of final-state particles. The collision is simulated by a
physics generator code or a parameterization and the final-state particles
are fed to the transport program.

• particle transport. The particles emerging from the interaction of the beam
particles are transported in the material of the detector, simulating their in-
teraction with it, and the energy deposition that generates the detector re-
sponse (hits).

• signal generation and detector response. During this phase the detector re-
sponse is generated from the energy deposition of the particles traversing it.
This is the ideal detector response, before the conversion to digital signal
and the formatting of the front-end electronics is applied.

• Digitization. The detector response is digitized and formatted according the
the output of the front-end electronics and the data acquisition system. The
results should resemble closely the real data that will be produced by the
detector.

• fast simulation. The detector response is simulated via appropriate parame-
terizations or other techniques that do not require the full particle transport.

3.5.5 Control of physics processes

The control of the physics processes can be done from the configuration file. The
relevant part is shown below:

// STEERING parameters FOR ALICE SIMULATION

// Specify event type to be transported through the ALICE setup

51

// All positions are in cm, angles in degrees, and P and E in GeV

// For the details see the GEANT 3 manual

// Swithch on/off the physics processes

gMC->SetProcess("DCAY",1);

gMC->SetProcess("PAIR",1);

gMC->SetProcess("COMP",1);

gMC->SetProcess("PHOT",1);

gMC->SetProcess("PFIS",0);

gMC->SetProcess("DRAY",0);

gMC->SetProcess("ANNI",1);

gMC->SetProcess("BREM",1);

gMC->SetProcess("MUNU",1);

gMC->SetProcess("CKOV",1);

gMC->SetProcess("HADR",1);

gMC->SetProcess("LOSS",2);

gMC->SetProcess("MULS",1);

gMC->SetProcess("RAYL",1);

// Set the transport package cuts

Float_t cut = 1.e-3; // 1MeV cut by default

Float_t tofmax = 1.e10;

gMC->SetCut("CUTGAM", cut);

gMC->SetCut("CUTELE", cut);

gMC->SetCut("CUTNEU", cut);

gMC->SetCut("CUTHAD", cut);

gMC->SetCut("CUTMUO", cut);

gMC->SetCut("BCUTE", cut);

gMC->SetCut("BCUTM", cut);

gMC->SetCut("DCUTE", cut);

gMC->SetCut("DCUTM", cut);

gMC->SetCut("PPCUTM", cut);

gMC->SetCut("TOFMAX", tofmax);

In addition one may change the default parameters for each detector in the file
$ALICE ROOT/data/galice.cuts.

52

3.5.6 Particle decays

We use Pythia to carry one particle decays during the transport. The default decay
channels can be seen in the following way:

aliroot

root [0] AliPythia * py = AliPythia::Instance()

root [1] py->Pylist(12); >> decay.list

The file decay.list will contain the list of particles decays available in Pythia.
Now if we want to force the decay Λ0 → pπ−, the following lines should be
included in the Config.C before we register the decayer:

AliPythia * py = AliPythia::Instance();

py->SetMDME(1059,1,0);

py->SetMDME(1060,1,0);

py->SetMDME(1061,1,0);

where 1059,1060 and 1061 are the indexes of the decay channel (from de-
cay.list above) we want to switch off.

3.5.7 Examples

Fast simulation
This example is taken from the macro $ALICE ROOT/FASTSIM/fastGen.C.

It shows how one can create a Kinematics tree which later can be used as input
for the particle transport.

void fastGen(Int_t nev = 1, char* filename = "galice.root") {

// Runloader

AliRunLoader* rl = AliRunLoader::Open("galice.root","FASTRUN","recreate");

rl->SetCompressionLevel(2);

rl->SetNumberOfEventsPerFile(nev);

rl->LoadKinematics("RECREATE");

rl->MakeTree("E");

gAlice->SetRunLoader(rl);

// Create stack

rl->MakeStack();

AliStack* stack = rl->Stack();

53

// Header

AliHeader* header = rl->GetHeader();

// Create and initialize Generator

AliGenerator *gener = new AliGenPythia(1);

gener->SetVertexSmear(kPerEvent); // vertex position and smearing

gener->SetStrucFunc(kGRVHO); // structure function

gener->SetProcess(kPyJets); // selected process(jets)

gener->SetEnergyCMS(5500.); // Center of mass energy

gener->SetPtHard(50.,50.2); // Pt transfer of the hard scattering

gener->Init();

gener->SetStack(stack);

// Event Loop

Int_t iev;

for (iev = 0; iev < nev; iev++) {

printf("\n \n Event number %d \n \n", iev);

// Initialize event

header->Reset(0,iev);

rl->SetEventNumber(iev);

stack->Reset();

rl->MakeTree("K");

// Generate event

gener->Generate();

// ‘‘Analysis’’

Int_t npart = stack->GetNprimary();

printf("Analyse %d Particles\n", npart);

for (Int_t part=0; part<npart; part++) {

TParticle *MPart = stack->Particle(part);

Int_t mpart = MPart->GetPdgCode();

printf("Particle %d\n", mpart);

}

// Finish event

54

header->SetNprimary(stack->GetNprimary());

header->SetNtrack(stack->GetNtrack());

// I/O

stack->FinishEvent();

header->SetStack(stack);

rl->TreeE()->Fill();

rl->WriteKinematics("OVERWRITE");

} // event loop

//

// Termination

// Generator

gener->FinishRun();

// Stack

stack->FinishRun();

// Write file

rl->WriteHeader("OVERWRITE");

gener->Write();

rl->Write();

}

Reading of kinematics tree as input for the particle transport
We suppose that the macro fastGen.C above has been used to generate the

corresponding sent of files: galice.root and Kinematics.root, and that they are
stored in a separate subdirectory, for example kine. Then the following code in
Config.C fill read the set of files and put them in the stack for transport:

AliGenExtFile *gener = new AliGenExtFile(-1);

gener->SetMomentumRange(0,14000);

gener->SetPhiRange(0.,360.);

gener->SetThetaRange(45,135);

gener->SetYRange(-10,10);

gener->SetOrigin(0, 0, 0); //vertex position

gener->SetSigma(0, 0, 5.3); //Sigma in (X,Y,Z) (cm) on IP position

AliGenReaderTreeK * reader = new AliGenReaderTreeK();

reader->SetFileName("../galice.root");

gener->SetReader(reader);

55

gener->SetTrackingFlag(1);

gener->Init();

Usage of different generators
A lot of examples are available in $ALICE ROOT/macros/Config gener.C.

The correspondent part can be extracted and placed in the relevant Config.C file.

4 Reconstruction
4.1 Reconstruction Framework
This chapter focuses on the reconstruction framework from the (detector) software
developers point of view.

Wherever it is not specified explicitly as different, we refer to the ‘global
ALICE coordinate system’. It is a right-handed coordinate system with the z
axis coinciding with the beam-pipe axis and going in the direction opposite to
the muon arm, the y axis going up, and the origin of coordinates defined by the
intersection point of the z axis and the central-membrane plane of TPC.

We also use the following terms:

• Digit: This is a digitized signal (ADC count) obtained by a sensitive pad of
a detector at a certain time.

• Cluster: This is a set of adjacent (in space and/or in time) digits that were
presumably generated by the same particle crossing the sensitive element of
a detector.

• Reconstructed space point: This is the estimation of the position where a
particle crossed the sensitive element of a detector (often, this is done by
calculating the center of gravity of the ‘cluster’).

• Reconstructed track: This is a set of five parameters (such as the curvature
and the angles with respect to the coordinate axes) of the particle’s trajectory
together with the corresponding covariance matrix estimated at a given point
in space.

The input to the reconstruction framework are digits in root tree format or
raw data format. First a local reconstruction of clusters is performed in each de-
tector. Then vertexes and tracks are reconstructed and particles types are iden-
tified. The output of the reconstruction is the Event Summary Data (ESD). The

56

Figure 7: Reconstruction framework.

AliReconstruction class provides a simple user interface to the reconstruction
framework which is explained in the source code and.

Requirements and Guidelines
The following list contains items that are considered important. The impor-

tance varies from essential to only nice-to-have and may depend on the personal
point of view. The list and the importance of the items will change in time with
the improved understanding of our needs:

• the prime goal is to provide the data that is needed for a physics analysis.

• it should be aimed for high efficiency, purity and resolution.

• the user should have an easy to use interface to extract the required infor-
mation.

• the reconstruction code should be efficient but also maintainable.

• the reconstruction should be as flexible as possible. It should be possible to
do the reconstruction in one detector even in the case that other detectors are
not operational. To achieve such a flexibility each detector module should
be able to

– find tracks starting from seeds provided by another detector (external
seeding),

– find tracks without using information from other detectors (internal
seeding),

57

– find tracks from external seeds and add tracks from internal seeds
– and propagate tracks through the detector using the already assigned

clusters in inward and outward direction.

• where it is appropriate, common (base) classes should be used in the differ-
ent reconstruction modules.

• the interdependencies between the reconstruction modules should be mini-
mized. If possible the exchange of information between detectors should be
done via a common track class.

• the chain of reconstruction program(s) should be callable and steerable in
an easy way.

• there should be no assumptions on the structure or names of files or on the
number or order of events.

• each class, data member and method should have a correct, precise and
helpful html documentation.

AliReconstructor
The interface from the steering class AliReconstruction to the detector spe-

cific reconstruction code is defined by the base class AliReconstructor. For
each detector there is a derived reconstructor class. The user can set options for
each reconstructor in format of a string parameter which is accessible inside the
reconstructor via the method GetOption.

The detector specific reconstructors are created via plugins. Therefore they
must have a default constructor. If no plugin handler is defined by the user (in
.rootrc), it is assumed that the name of the reconstructor for detector DET is
AliDETReconstructor and that it is located in the library libDETrec.so (or lib-
DET.so).
Input Data

If the input data is provided in format of root trees, either the loaders or directly
the trees are used to access the digits. In case of raw data input the digits are
accessed via a raw reader.

If a galice.root file exists, the run loader will be retrieved from it. Otherwise
the run loader and the headers will be created from the raw data. The reconstruc-
tion can not work if there is no galice.root file and no raw data input.
Output Data

The clusters (rec. points) are considered as intermediate output and are stored
in root trees handled by the loaders. The final output of the reconstruction is
a tree with objects of type AliESD stored in the file AliESDs.root. This Event

58

Summary Data (ESD) contains lists of reconstructed tracks/particles and global
event properties.
Local Reconstruction (Clusterization)

The first step of the reconstruction is the so called local reconstruction. It is
executed for each detector separately and without exchanging information with
other detectors. Usually the clusterization is done in this step.

The local reconstruction is invoked via the method Reconstruct of the recon-
structor object. The deprecated Reconstruct methods with a run loader or a run
loader and a raw reader as argument do the local reconstruction for all events. The
event loop and the loading of the trees is handled by the AliReconstruction

class in case of the Reconstruct methods with two trees or a raw reader and a
tree as argument. Only the local reconstruction of the current event has to be
performed in these two methods for the two different types of digit input data
given by the first argument. The second argument provides the output tree for the
clusters. The local reconstruction method is only called if the method HasLocal-
Reconstruction of the reconstructor returns kTRUE.

Instead of running the local reconstruction directly on raw data, it is possible to
first convert the raw data digits into a digits tree and then to call the Reconstruct
method with a tree as input parameter. This conversion is done by the method
ConvertDigits. The reconstructor has to announce that it can convert the raw data
digits by returning kTRUE in the method HasDigitConversion.
Vertexing

The reconstruction of the primary-vertex position in ALICE is done using the
information provided by the silicon pixel detectors, which constitute the two in-
nermost layers of the ITS.

The algorithm starts with looking at the distribution of the z coordinates of
the reconstructed space points in the first pixel layers. At a vertex z coordinate
ztrue = 0 the distribution is symmetric and its centroid (zcen) is very close to the
nominal vertex position. When the primary vertex is moved along the z axis,
an increasing fraction of hits will be lost and the centroid of the distribution no
longer gives the primary vertex position. However, for primary vertex locations
not too far from ztrue = 0 (up to about 12 cm), the centroid of the distribution
is still correlated to the true vertex position. The saturation effect at large ztrue

values of the vertex position (ztrue =12–15 cm) is, however, not critical, since this
procedure is only meant to find a rough vertex position, in order to introduce some
cut along z.

To find the final vertex position, the correlation between the points z1, z2 in the
two layers was considered. More details and performance studies are available in
[?].

The primary vertex is reconstructed by a vertexer object derived from AliVertexer.
After the local reconstruction was done for all detectors the vertexer method

59

FindVertexForCurrentEvent is called for each event. It returns a pointer to
a vertex object of type AliESDVertex.

The vertexer object is created by the method CreateVertexer of the recon-
structor. So far only the ITS is used to determine the primary vertex (AliITSVertexerZ
class).

The precision of the primary vertex reconstruction in the bending plane re-
quired for the reconstruction of D and B mesons in pp events can be achieved only
after the tracking is done. The method is implemented in AliITSVertexerTracks.

Each track, reconstructed in the TPC and in the ITS, is approximated with a
straight line at the position of the closest approach to the nominal primary vertex
position (the nominal vertex position is supposed to be known with a precision of
100–200 µm). Then, all possible track pairs (i, j) are considered and for each pair,
the center C(i, j) ≡ (xij, yij, zij) of the segment of minimum approach between
the two lines is found. The coordinates of the primary vertex are determined as:

xv =
1

Npairs

∑

i,j

xij ; yv =
1

Npairs

∑

i,j

yij ; zv =
1

Npairs

∑

i,j

zij

where Npairs is the number of track pairs. This gives an improved estimate of the
vertex position.

Finally, the position rv = (xv, yv, zv) of the vertex is reconstructed minimizing
the χ2 function (see Ref. [?]):

χ2(rv) =
∑

i

(rv − ri)
T
V

−1
i (rv − ri), (2)

where ri is the global position of the track i (i.e. the position assigned at the step
above) and Vi is the covariance matrix of the vector ri.

In order not to spoil the vertex resolution by including in the fit tracks that
do not originate from the primary vertex (e.g. strange particle decay tracks), the
tracks giving a contribution larger than some value χ2

max to the global χ2 are re-
moved one-by-one from the sample, until no such tracks are left. The parameter
χ2

max was tuned, as a function of the event multiplicity, so as to obtain the best
vertex resolution.
Combined Track Reconstruction The combined track reconstruction tries to ac-
cumulate the information from different detectors in order to optimize the track
reconstruction performance. The result of this is stored in the combined track
objects. The AliESDTrack class also provides the possibility to exchange infor-
mation between detectors without introducing dependencies between the recon-
struction modules. This is achieved by using just integer indexes pointing to the
specific track objects, which on the other hand makes it possible to retrieve the
full information if needed. The list of combined tracks can be kept in memory

60

and passed from one reconstruction module to another. The storage of the com-
bined tracks should be done in the standard way (newIO).

The classes responsible for the reconstruction of tracks are derived from AliTracker.
They are created by the method CreateTracker of the reconstructors. The recon-
structed position of the primary vertex is made available to them via the method
SetVertex. Before the track reconstruction in a detector starts the clusters are
loaded from the clusters tree by the method LoadClusters. After the track re-
construction the clusters are unloaded by the method UnloadClusters.

The track reconstruction (in the barrel part) is done in three passes. The first
pass consists of a track finding and fitting in inward direction in TPC and then in
ITS. The virtual method Clusters2Tracks is the interface to this pass. The method
for the next pass is PropagateBack. It does the track reconstruction in outward
direction and is invoked for all detectors starting with the ITS. The last pass is the
track refit in inward direction in order to get the track parameters at the vertex.
The corresponding method RefitInward is called for TRD, TPC and ITS. All three
track reconstruction methods have an AliESD object as argument which is used to
exchange track information between detectors without introducing dependences
between the code of the detector trackers.

Depending on the way the information is used, the tracking methods can be
divided into two large groups: global methods and local methods. Each group has
advantages and disadvantages.

With the global methods, all the track measurements are treated simultane-
ously and the decision to include or exclude a measurement is taken when all the
information about the track is known. Typical algorithms belonging to this class
are combinatorial methods, Hough transform, templates, conformal mappings.
The advantages are the stability with respect to noise and mismeasurements and
the possibility to operate directly on the raw data. On the other hand, these meth-
ods require a precise global track model. Such a track model can sometimes be
unknown or does not even exist because of stochastic processes (energy losses,
multiple scattering), non-uniformity of the magnetic field etc. In ALICE, global
tracking methods are being extensively used in the High-Level Trigger (HLT) soft-
ware. There, we are mostly interested in the reconstruction of the high-momentum
tracks only, the required precision is not crucial, but the speed of the calculations
is of great importance.

Local methods do not need the knowledge of the global track model. The track
parameters are always estimated ‘locally’ at a given point in space. The decision
to accept or to reject a measurement is made using either the local information
or the information coming from the previous ‘history’ of this track. With these
methods, all the local track peculiarities (stochastic physics processes, magnetic
fields, detector geometry) can be naturally accounted for. Unfortunately, the local
methods rely on sophisticated space point reconstruction algorithms (including

61

unfolding of overlapped clusters). They are sensitive to noise, wrong or displaced
measurements and the precision of space point error parametrization. The most
advanced kind of local track-finding methods is Kalman filtering which was intro-
duced by P. Billoir in 1983 [?].

Kalman filtering is quite a general and powerful method for statistical estima-
tions and predictions. The conditions for its applicability are the following. A
certain ‘system’ is determined at any moment in time tk by a state vector xk. The
state vector varies with time according to an evolution equation

xk = fk(xk−1) + εk.

It is supposed that fk is a known deterministic function and εk is a random vector
of intrinsic ‘process noise’ which has a zero mean value (< εk >= 0) and a known
covariance matrix (cov(εk) = Qk). Generally, only some function hk of the state
vector can be observed, and the result of the observation mk is corrupted by a
‘measurement noise’ δk:

mk = hk(xk) + δk.

The measurement noise is supposed to be unbiased (< δk >= 0) and have a defi-
nite covariance matrix (cov(δk) = Vk). In many cases, the measurement function
hk can be represented by a certain matrix Hk:

mk = Hkxk + δk.

If, at a certain time tk−1, we are given some estimates of the state vector x̃k−1

and of its covariance matrix C̃k−1 = cov(x̃k−1 − xk−1), we can extrapolate these
estimates to the next time slot tk by means of formulas (this is called ‘prediction’):

x̃k−1
k = fk(x̃k−1)

C̃k−1
k = FkC̃k−1F

T
k +Qk, Fk =

∂fk

∂xk−1

.

The value of the predicted χ2 increment can be also calculated:

(χ2)k−1
k = (rk−1

k)T (Rk−1
k)−1rk−1

k , rk−1
k = mk−Hkx̃

k−1
k , Rk−1

k = Vk+HkC̃
k−1
k HT

k .
(3)

The number of degrees of freedom is equal to the dimension of the vector mk.
If at the moment tk, together with the results of prediction, we also have the

results of the state vector measurement, this additional information can be com-
bined with the prediction results (this is called ‘filtering’). As a consequence, the
estimation of the state vector improves:

x̃k = x̃k−1
k +Kk(mk −Hkx̃

k−1
k)

C̃k = C̃k−1
k −KkHkC̃

k−1
k ,

62

where Kk is the Kalman gain matrix Kk = C̃k−1
k HT

k (Vk +HkC̃
k−1
k HT

k)−1.
Finally, the next formula gives us the value of the filtered χ2 increment:

χ2
k = (rk)

T (Rk)
−1rk, rk = mk −Hkx̃k, Rk = Vk −HkC̃kH

T
k .

It can be shown that the predicted χ2 value is equal to the filtered one:

(χ2)k−1
k = χ2

k. (4)

The ‘prediction’ and ‘filtering’ steps are repeated as many times as we have
measurements of the state vector.

When applied to the track reconstruction problem, the Kalman-filter approach
shows many attractive properties:

• It is a method for simultaneous track recognition and fitting.

• There is a possibility to reject incorrect space points ‘on the fly’, during
the only tracking pass (see Eq. ??). These incorrect points can appear as
a consequence of the imperfection of the cluster finder. They may be due
to noise or they may be points from other tracks accidentally captured in
the list of points to be associated with the track under consideration. In the
other tracking methods one usually needs an additional fitting pass to get
rid of incorrectly assigned points.

• In the case of substantial multiple scattering, track measurements are cor-
related and therefore large matrices (of the size of the number of measured
points) need to be inverted during a global fit. In the Kalman-filter proce-
dure we only have to manipulate up to 5 × 5 matrices (although as many
times as we have measured space points), which is much faster.

• One can handle multiple scattering and energy losses in a simpler way than
in the case of global methods.

• It is a natural way to find the extrapolation of a track from one detector to
another (for example from the TPC to the ITS or to the TRD).

In ALICE we require good track-finding efficiency and reconstruction preci-
sion for track down to pt= 100 MeV/c. Some of the ALICE tracking detectors
(ITS, TRD) have a significant material budget. Under such conditions one can not
neglect the energy losses or the multiple scattering in the reconstruction. There
are also rather big dead zones between the tracking detectors which complicates
finding the continuation of the same track. For all these reasons, it is the Kalman-
filtering approach that has been our choice for the offline reconstruction since
1994.

63

The reconstruction software for the ALICE central tracking detectors (the ITS,
TPC and the TRD) shares a common convention on the coordinate system used.
All the clusters and tracks are always expressed in some local coordinate system
related to a given sub-detector (TPC sector, ITS module etc). This local coordinate
system is defined as the following:

• It is a right handed-Cartesian coordinate system;

• its origin and the z axis coincide with those of the global ALICE coordinate
system;

• the x axis is perpendicular to the sub-detector’s ‘sensitive plane’ (TPC pad
row, ITS ladder etc).

Such a choice reflects the symmetry of the ALICE set-up and therefore simplifies
the reconstruction equations. It also enables the fastest possible transformations
from a local coordinate system to the global one and back again, since these trans-
formations become simple single rotations around the z-axis.

The reconstruction begins with cluster finding in all of the ALICE central
detectors (ITS, TPC, TRD, TOF, HMPID and PHOS). Using the clusters recon-
structed at the two pixel layers of the ITS, the position of the primary vertex is
estimated and the track finding starts. As described later, cluster-finding as well
as the track-finding procedures performed in the detectors have some different
detector-specific features. Moreover, within a given detector, on account of high
occupancy and a big number of overlapped clusters, the cluster finding and the
track finding are not completely independent: the number and positions of the
clusters are finally determined only at the track-finding step.

The general tracking strategy is the following. We start from our best tracker
device, i.e. the TPC, and from the outer radius where the track density is minimal.
First, the track candidates (‘seeds’) are found. Because of the small number of
clusters assigned to a seed, the precision of its parameters is not enough to safely
extrapolate it outwards to the other detectors. Instead, the tracking stays within
the TPC and proceeds towards the smaller TPC radii. Whenever possible, new
clusters are associated with a track candidate in a ‘classical’ Kalman-filter way
and the track parameters are more and more refined. When all of the seeds are
extrapolated to the inner limit of the TPC, the tracking in the ITS takes over. The
ITS tracker tries to prolong the TPC tracks as close as possible to the primary
vertex. On the way to the primary vertex, the tracks are assigned additional, pre-
cisely reconstructed ITS clusters, which also improves the estimation of the track
parameters.

After all the track candidates from the TPC are assigned their clusters in the
ITS, a special ITS stand-alone tracking procedure is applied to the rest of the ITS

64

clusters. This procedure tries to recover the tracks that were not found in the TPC
because of the ptcut-off, dead zones between the TPC sectors, or decays.

At this point the tracking is restarted from the vertex back to the outer layer of
the ITS and then repeated towards the outer wall of the TPC. For the track that was
labeled by the ITS tracker as potentially primary, several particle-mass-dependent,
time-of-flight hypotheses are calculated. These hypotheses are then used for the
particle identification (PID) with the TOF detector. Once the outer radius of the
TPC is reached, the precision of the estimated track parameters is sufficient to
extrapolate the tracks to the TRD, TOF, HMPID and PHOS detectors. Tracking
in the TRD is done in a similar way to that in the TPC. Tracks are followed till
the outer wall of the TRD and the assigned clusters improve the momentum res-
olution further. Next, the tracks are extrapolated to the TOF, HMPID and PHOS,
where they acquire the PID information. Finally, all the tracks are refitted with
the Kalman filter backwards to the primary vertex (or to the innermost possible
radius, in the case of the secondary tracks).

The tracks that passed the final refit towards the primary vertex are used for
the secondary vertex (V0, cascade, kink) reconstruction. There is also an option
to reconstruct the secondary vertexes ‘on the fly’ during the tracking itself. The
potential advantage of such a possibility is that the tracks coming from a sec-
ondary vertex candidate are not extrapolated beyond the vertex, thus minimizing
the risk of picking up a wrong track prolongation. This option is currently under
investigation.

The reconstructed tracks (together with the PID information), kink, V0 and
cascade particle decays are then stored in the Event Summary Data (ESD).

More details about the reconstruction algorithms can be found in Chapter 5 of
the ALICE Physics Performance Report[?].
Filling of ESD

After the tracks were reconstructed and stored in the AliESD object, further
information is added to the ESD. For each detector the method FillESD of the
reconstructor is called. Inside this method e.g. V0s are reconstructed or particles
are identified (PID). For the PID a Bayesian approach is used which is explained
in a note. The constants and some functions that are used for the PID are defined
in the class AliPID.

Monitoring of Performance
For the monitoring of the track reconstruction performance the classes AliTrackReference

are used. Objects of the second type of class are created during the reconstruction
at the same locations as the AliTrackReference objects. So the reconstructed
tracks can be easily compared with the simulated particles. This allows to study
and monitor the performance of the track reconstruction in detail. The creation of
the objects used for the comparison should not interfere with the reconstruction
algorithm and can be switched on or off.

65

Several “comparison” macros permit to monitor the efficiency and the resolu-
tion of the tracking. Here is a typical usage (the simulation and the reconstruction
have been done in advance):

aliroot

root [0] gSystem->SetIncludePath("-I$ROOTSYS/include \

-I$ALICE_ROOT/include \

-I$ALICE_ROOT/TPC \

-I$ALICE_ROOT/ITS \

-I$ALICE_ROOT/TOF")

root [1] .L $ALICE_ROOT/TPC/AliTPCComparison.C++

root [2] .L $ALICE_ROOT/ITS/AliITSComparisonV2.C++

root [3] .L $ALICE_ROOT/TOF/AliTOFComparison.C++

root [4] AliTPCComparison()

root [5] AliITSComparisonV2()

root [6] AliTOFComparison()

Another macro can be used to provide a preliminary estimate of the combined
acceptance: $ALICE ROOT/STEER/CheckESD.C.

Classes
There are many classes used in the reconstruction. Some of the listed classes

are only propositions so far and for some classes there are alternative names pro-
posed.

• AliTrackReference: This class is used to store the position and the mo-
mentum of a simulated particle at given locations of interest (e.g. when the
particle enters or exits a detector or it decays). It is used for mainly for
debugging and tuning of the tracking.

• AliExternalTrackParams: This class describes the status of a track in a
given point. It knows the track parameters and its covariance matrix. This
parameterization is used to exchange tracks between the detectors. A set of
functions returning the position and the momentum of tracks in the global
coordinate system as well as the track impact parameters are implemented.
There is possibility to propagate the track to a given radius PropagateTo
and Propagate.

• AliKalmanTrack and subclasses: These classes are used to find and fit
tracks with the Kalman approach. The AliKalmanTrack fixes the inter-
faces and implements some common functionality. The derived classes
know about the clusters assigned to the track. They also update the infor-
mation in an AliESDtrack. The current status of the track during the track

66

reconstruction can be represented by an AliExternalTrackParameters.
The history of the track during the track reconstruction can be stored in a list
of AliExternalTrackParameters objects. The AliKalmanTrack defines
the methods:

– Double t GetDCA(...) Returns the (weighed !) distance of closest
approach between this track and the track passed as the argument.

– Double t MeanMaterialBudget(...) Calculate the mean material
budget and material properties between two points.

• AliTracker and subclasses: The AliTracker is the base class for all the
trackers in the different detectors. It fixes the interface needed to find and
propagate tracks. The actual implementation is done in the derived classes.

• AliESDTrack: This class combines the information about a track from dif-
ferent detectors. It knows the current status of the track (AliExternalTrackParameters)
and it has (non-persistent) pointers to the individual AliKalmanTrack ob-
jects from each detector which contributed to the track. It knows about
some detector specific quantities like the number or bit pattern of assigned
clusters, dEdx, χ2, etc.. And it can calculate a conditional probability for
a given mixture of particle species following the Bayesian approach. It de-
fines a track label pointing to the corresponding simulated particle in case
of Monte Carlo. The combined track objects are the basis for a physics
analysis.

Example
The example below shows reconstruction with non-uniform magnetic field

(the simulation is also done with non-uniform magnetic field by adding the fol-
lowing line in the Config.C: field-¿SetL3ConstField(1)). Only the barrel detectors
are reconstructed, a specific TOF reconstruction has been requested, and the RAW
data have been used:

void rec() {

AliReconstruction reco;

reco.SetOption("TOF","MI");

reco.SetRunReconstruction("ITS TPC TRD TOF");

reco.SetNonuniformFieldTracking();

reco.SetInput("raw.root");

TStopwatch timer;

timer.Start();

67

reco.Run();

timer.Stop();

timer.Print();

}

4.2 Event summary data
The classes which are needed to process and analyze the ESD are packed together
in a standalone library (libESD.so) which can be used separately from the AliRoot
framework. The main class is AliESD, which contains all the information needed
during the physics analysis:

• fields to identify the event such as run number, event number, trigger word,
version of the reconstruction, etc.;

• reconstructed ZDC energies and number of participant;

• primary vertex;

• T0 estimation of the primary vertex;

• array of ESD tracks;

• arrays of HLT tracks both from the conformal mapping and from the Hough
transform reconstruction;

• array of MUON tracks;

• array of PMD tracks;

• arrays of reconstructed V 0 vertexes, cascade decays and kinks;

• indexes of the information from PHOS and EMCAL detectors in the array
of the ESD tracks.

5 Analysis
5.1 Introduction
The analysis of experimental data is the final stage of event processing and it is
usually repeated many times. Analysis is a very diverse activity, where the goals
of each particular analysis pass may differ significantly.

68

The ALICE detector [?] is optimized for the reconstruction and analysis of
heavy-ion collisions. In addition, ALICE has a broad physics programme devoted
to p–p and p–A interactions.

The main points of the ALICE heavy-ion programme can be summarized as
follows[?]:

• global event characteristics: particle multiplicity, centrality, energy den-
sity, nuclear stopping;

• soft physics: chemical composition (particle and resonance production,
particle ratios and spectra, strangeness enhancement), reaction dynamics
(transverse and elliptic flow, HBT correlations, event-by-event dynamical
fluctuations);

• hard probes: jets, direct photons;

• heavy flavors: quarkonia, open charm and beauty production.

The p–p and p–A programme will provide, on the one hand, reference points
for comparison with heavy ions. On the other hand, ALICE will also pursue
genuine and detailed p–p studies. Some quantities, in particular the global char-
acteristics of interactions, will be measured during the first days of running ex-
ploiting the low-momentum measurement and particle identification capabilities
of ALICE.

The ALICE computing framework is described in details in the Computing
Technical Design Report [?]. This article is based on Chapter 6 of the document.

5.1.1 The analysis activity

We distinguish two main types of analysis: scheduled analysis and chaotic anal-
ysis. They differ in their data access pattern, in the storage and registration of
the results, and in the frequency of changes in the analysis code. The detailed
definition is given in Section ??.

In the ALICE Computing Model the analysis starts from the Event Summary
Data (ESD). These are produced during the reconstruction step and contain all the
information for the analysis. The size of the ESD is about one order of magnitude
lower than the corresponding raw data. The analysis tasks produce Analysis Ob-
ject Data (AOD) specific to a given set of physics objectives. Further passes for
the specific analysis activity can be performed on the AODs, until the selection
parameter or algorithms are changed.

A typical data analysis task usually requires processing of selected sets of
events. The selection is based on the event topology and characteristics, and is

69

done by querying the tag database. The tags represent physics quantities which
characterize each run and event, and permit fast selection. They are created after
the reconstruction and contain also the unique identifier of the ESD file. A typical
query, when translated into natural language, could look like “Give me all the
events with impact parameter in <range> containing jet candidates with energy
larger than <threshold>”. This results in a list of events and file identifiers to be
used in the consecutive event loop.

The next step of a typical analysis consists of a loop over all the events in the
list and calculation of the physics quantities of interest. Usually, for each event,
there is a set of embedded loops on the reconstructed entities such as tracks, V0

candidates, neutral clusters, etc., the main goal of which is to select the signal
candidates. Inside each loop a number of criteria (cuts) are applied to reject the
background combinations and to select the signal ones. The cuts can be based
on geometrical quantities such as impact parameters of the tracks with respect to
the primary vertex, distance between the cluster and the closest track, distance of
closest approach between the tracks, angle between the momentum vector of the
particle combination and the line connecting the production and decay vertexes.
They can also be based on kinematics quantities such as momentum ratios, min-
imal and maximal transverse momentum, angles in the rest frame of the combi-
nation. Particle identification criteria are also among the most common selection
criteria.

The optimization of the selection criteria is one of the most important parts of
the analysis. The goal is to maximize the signal-to-background ratio in case of
search tasks, or another ratio (typically Signal/

√
Signal + Background) in case

of measurement of a given property. Usually, this optimization is performed using
simulated events where the information from the particle generator is available.

After the optimization of the selection criteria, one has to take into account the
combined acceptance of the detector. This is a complex, analysis-specific quantity
which depends on the geometrical acceptance, the trigger efficiency, the decays of
particles, the reconstruction efficiency, the efficiency of the particle identification
and of the selection cuts. The components of the combined acceptance are usually
parametrized and their product is used to unfold the experimental distributions or
during the simulation of some model parameters.

The last part of the analysis usually involves quite complex mathematical treat-
ments, and sophisticated statistical tools. Here one may include the correction for
systematic effects, the estimation of statistical and systematic errors, etc.

5.2 Organization of the data analysis
The data analysis is coordinated by the Physics Board via the Physics Working
Groups (PWGs). At present the following PWG have started their activity:

70

• detector performance;

• global event characteristics and soft physics (including proton–proton physics);

• hard probes: jets and direct photons;

• heavy flavors.

Scheduled analysis

The scheduled analysis typically uses all the available data from a given period,
and stores and registers the results using Grid middleware. The tag database is up-
dated accordingly. The AOD files, generated during the scheduled analysis, can
be used by several subsequent analyses, or by a class of related physics tasks. The
procedure of scheduled analysis is centralized and can be considered as data fil-
tering. The requirements come from the PWGs and are prioritized by the Physics
Board taking into account the available computing and storage resources. The
analysis code is tested in advance and released before the beginning of the data
processing.

Each PWG will require several sets of AOD per event, which are specific for
one or a few analysis tasks. The creation of the AOD sets is managed centrally.
The event list of each AOD set will be registered and the access to the AOD files
will be granted to all ALICE collaborators. AOD files will be generated via Grid
tools at different computing centers and will be stored on the corresponding stor-
age elements. The processing of each file set will thus be done in a distributed
way on the Grid. Some of the AOD sets may be quite small and would fit on a
single storage element or even on one computer; in this case the corresponding
tools for file replication, available in the ALICE Grid infrastructure, will be used.

Chaotic analysis

The chaotic analysis is focused on a single physics task and typically is based
on the filtered data from the scheduled analysis. Each physicist also may access
directly large parts of the ESD in order to search for rare events or processes.
Usually the user develops the code using a small subsample of data, and changes
the algorithms and criteria frequently. The analysis macros and software are tested
many times on relatively small data volumes, both experimental and Monte Carlo.
The output is often only a set of histograms. Such a tuning of the analysis code
can be done on a local data set or on distributed data using Grid tools. The final
version of the analysis will eventually be submitted to the Grid and will access
large portions or even the totality of the ESDs. The results may be registered in the
Grid file catalog and used at later stages of the analysis. This activity may or may

71

not be coordinated inside the PWGs, via the definition of priorities. The chaotic
analysis is carried on within the computing resources of the physics groups.

5.3 Infrastructure tools for distributed analysis
5.3.1 gShell

The main infrastructure tools for distributed analysis have been described in Chap-
ter 3. The actual middleware is hidden by an interface to the Grid, gShell[?],
which provides a single working shell. The gShell package contains all the com-
mands a user may need for file catalog queries, creation of sub-directories in the
user space, registration and removal of files, job submission and process monitor-
ing. The actual Grid middleware is completely transparent to the user.

The gShell overcomes the scalability problem of direct client connections to
databases. All clients connect to the gLite[?] API services. This service is imple-
mented as a pool of preforked server daemons, which serve single-client requests.
The client-server protocol implements a client state which is represented by a cur-
rent working directory, a client session ID and time-dependent symmetric cipher
on both ends to guarantee client privacy and security. The server daemons execute
client calls with the identity of the connected client.

5.3.2 PROOF – the Parallel ROOT Facility

The Parallel ROOT Facility, PROOF[?] has been specially designed and devel-
oped to allow the analysis and mining of very large data sets, minimizing response
time. It makes use of the inherent parallelism in event data and implements an ar-
chitecture that optimizes I/O and CPU utilization in heterogeneous clusters with
distributed storage. The system provides transparent and interactive access to
terabyte-scale data sets. Being part of the ROOT framework, PROOF inherits
the benefits of a performing object storage system and a wealth of statistical and
visualization tools. The most important design features of PROOF are:

• transparency – no difference between a local ROOT and a remote parallel
PROOF session;

• scalability – no implicit limitations on number of computers used in parallel;

• adaptability – the system is able to adapt to variations in the remote envi-
ronment.

PROOF is based on a multi-tier architecture: the ROOT client session, the
PROOF master server, optionally a number of PROOF sub-master servers, and

72

PROOF

PROOFPROOF

Proof slave servers

Site 1

PROOF

Proof slave servers

Site 2

���
���
���

���
���
���

���
���
���

���
���
���

�����
�����
�����

���
���
���

���
���
���

���
���
���

Grid catalogue

Authentication

Grid access control

TGrid UI/Queue UI

LFN+MSN

Proof slave servers

Site 3

Grid service
interfaces

startup
Proofd

User session

PROOF master
server

Figure 8: Setup and interaction with the Grid middleware of a user PROOF session
distributed over many computing centers.

the PROOF worker servers. The user connects from the ROOT session to a master
server on a remote cluster and the master server creates sub-masters and worker
servers on all the nodes in the cluster. All workers process queries in parallel and
the results are presented to the user as coming from a single server.

PROOF can be run either in a purely interactive way, with the user remaining
connected to the master and worker servers and the analysis results being returned
to the user’s ROOT session for further analysis, or in an ‘interactive batch’ way
where the user disconnects from the master and workers (see Fig. ??). By re-
connecting later to the master server the user can retrieve the analysis results for
that particular query. This last mode is useful for relatively long running queries
(several hours) or for submitting many queries at the same time. Both modes will
be important for the analysis of ALICE data.

5.4 Analysis tools
This section is devoted to the existing analysis tools in ROOT and AliRoot. As
discussed in the introduction, some very broad analysis tasks include the search
for some rare events (in this case the physicist tries to maximize the signal-over-

73

background ratio), or measurements where it is important to maximize the signal
significance. The tools that provide possibilities to apply certain selection criteria
and to find the interesting combinations within a given event are described below.
Some of them are very general and are used in many different places, for example
the statistical tools. Others are specific to a given analysis.

5.4.1 Statistical tools

Several commonly used statistical tools are available in ROOT [?]. ROOT pro-
vides classes for efficient data storage and access, such as trees and ntuples. The
ESD information is organized in a tree, where each event is a separate entry. This
allows a chain of the ESD files to be made and the elaborated selector mecha-
nisms to be used in order to exploit the PROOF services. Inside each ESD object
the data is stored in polymorphic containers filled with reconstructed tracks, neu-
tral particles, etc. The tree classes permit easy navigation, selection, browsing,
and visualization of the data in the branches.

ROOT also provides histogramming and fitting classes, which are used for the
representation of all the one- and multi-dimensional distributions, and for extrac-
tion of their fitted parameters. ROOT provides an interface to powerful and robust
minimization packages, which can be used directly during some special parts of
the analysis. A special fitting class allows one to decompose an experimental
histogram as a superposition of source histograms.

ROOT also has a set of sophisticated statistical analysis tools such as principal
component analysis, robust estimator, and neural networks. The calculation of
confidence levels is provided as well.

Additional statistical functions are included in TMath.

5.4.2 Calculations of kinematics variables

The main ROOT physics classes include 3-vectors and Lorentz vectors, and op-
erations such as translation, rotation, and boost. The calculations of kinematics
variables such as transverse and longitudinal momentum, rapidity, pseudorapidity,
effective mass, and many others are provided as well.

5.4.3 Geometrical calculations

There are several classes which can be used for measurement of the primary ver-
tex: AliITSVertexerZ, AliITSVertexerIons, AliITSVertexerTracks, etc.
A fast estimation of the z-position can be done by AliITSVertexerZ, which
works for both lead–lead and proton–proton collisions. An universal tool is pro-
vided by AliITSVertexerTracks, which calculates the position and covariance

74

matrix of the primary vertex based on a set of tracks, and also estimates the χ2

contribution of each track. An iterative procedure can be used to remove the sec-
ondary tracks and improve the precision.

Track propagation to the primary vertex (inward) is provided in AliESDtrack.
The secondary vertex reconstruction in case of V0 is provided by AliV0vertexer,

and in case of cascade hyperons by AliCascadeVertexer. An universal tool
is AliITSVertexerTracks, which can be used also to find secondary vertexes
close to the primary one, for example decays of open charm like D0 → K−π+ or
D+ → K−π+π+. All the vertex reconstruction classes also calculate distance of
closest approach (DCA) between the track and the vertex.

The calculation of impact parameters with respect to the primary vertex is done
during the reconstruction and the information is available in AliESDtrack. It is
then possible to recalculate the impact parameter during the ESD analysis, after an
improved determination of the primary vertex position using reconstructed ESD
tracks.

5.4.4 Global event characteristics

The impact parameter of the interaction and the number of participants are esti-
mated from the energy measurements in the ZDC. In addition, the information
from the FMD, PMD, and T0 detectors is available. It gives a valuable estimate of
the event multiplicity at high rapidities and permits global event characterization.
Together with the ZDC information it improves the determination of the impact
parameter, number of participants, and number of binary collisions.

The event plane orientation is calculated by the AliFlowAnalysis class.

5.4.5 Comparison between reconstructed and simulated parameters

The comparison between the reconstructed and simulated parameters is an im-
portant part of the analysis. It is the only way to estimate the precision of the
reconstruction. Several example macros exist in AliRoot and can be used for this
purpose: AliTPCComparison.C, AliITSComparisonV2.C, etc. As a first step
in each of these macros the list of so-called ‘good tracks’ is built. The definition
of a good track is explained in detail in the ITS[?] and TPC[?] Technical Design
Reports. The essential point is that the track goes through the detector and can
be reconstructed. Using the ‘good tracks’ one then estimates the efficiency of the
reconstruction and the resolution.

Another example is specific to the MUON arm: the MUONRecoCheck.C macro
compares the reconstructed muon tracks with the simulated ones.

There is also the possibility to calculate directly the resolutions without ad-
ditional requirements on the initial track. One can use the so-called track label

75

and retrieve the corresponding simulated particle directly from the particle stack
(AliStack).

5.4.6 Event mixing

One particular analysis approach in heavy-ion physics is the estimation of the
combinatorial background using event mixing. Part of the information (for ex-
ample the positive tracks) is taken from one event, another part (for example the
negative tracks) is taken from a different, but ‘similar’ event. The event ‘similar-
ity’ is very important, because only in this case the combinations produced from
different events represent the combinatorial background. Typically ‘similar’ in
the example above means with the same multiplicity of negative tracks. One may
require in addition similar impact parameters of the interactions, rotation of the
tracks of the second event to adjust the event plane, etc. The possibility for event
mixing is provided in AliRoot by the fact that the ESD is stored in trees and one
can chain and access simultaneously many ESD objects. Then the first pass would
be to order the events according to the desired criterion of ‘similarity’ and to use
the obtained index for accessing the ‘similar’ events in the embedded analysis
loops. An example of event mixing is shown in Fig. ??. The background distri-
bution has been obtained using ‘mixed events’. The signal distribution has been
taken directly from the Monte Carlo simulation. The ‘experimental distribution’
has been produced by the analysis macro and decomposed as a superposition of
the signal and background histograms.

5.4.7 Analysis of the High-Level Trigger (HLT) data

This is a specific analysis which is needed in order to adjust the cuts in the HLT
code, or to estimate the HLT efficiency and resolution. AliRoot provides a trans-
parent way of doing such an analysis, since the HLT information is stored in the
form of ESD objects in a parallel tree. This also helps in the monitoring and
visualization of the results of the HLT algorithms.

5.4.8 Visualization

The visualization classes give the possibility for prompt inspection of the simula-
tion and reconstruction results. The initial version of the visualization is available
in the AliDisplay class. Another more elaborated module DISPLAY is under
development.

76

2), GeV/c-K+M(K
0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08

2
En

tri
es

/0
.0

01
 G

eV
/c

0

100

200

300

400

500

600

Data

Signal + Background

Background

Signal

 meson mass (120000 pp events)φ

Figure 9: Mass spectrum of the φ meson candidates produced inclusively in the
proton–proton interactions.

5.5 Existing analysis examples in AliRoot
There are several dedicated analysis tools available in AliRoot. Their results were
used in the Physics Performance Report and described in ALICE internal notes.
There are two main classes of analysis: the first one based directly on ESD, and
the second one extracting first AOD, and then analyzing it.

77

• ESD analysis

V0 and cascade reconstruction/analysis
The V0 candidates are reconstructed during the combined barrel track-
ing and stored in the ESD object. The following criteria are used for
the selection: minimal-allowed impact parameter (in the transverse
plane) for each track; maximal-allowed DCA between the two tracks;
maximal-allowed cosine of the V0 pointing angle (angle between the
momentum vector of the particle combination and the line connecting
the production and decay vertexes); minimal and maximal radius of
the fiducial volume; maximal-allowed χ2. The last criterion requires
the covariance matrix of track parameters, which is available only in
AliESDtrack. The reconstruction is performed by AliV0vertexer.
This class can be used also in the analysis. An example of recon-
structed kaons taken directly from the ESDs is shown in Fig.??.

), GeV/c^2-π+πM(
0.44 0.46 0.48 0.5 0.52 0.54 0.56

 / ndf 2χ 580 / 57
 0

SNumber of K 6.644e+04
Mass 0.4971
Sigma 0.003244

), GeV/c^2-π+πM(
0.44 0.46 0.48 0.5 0.52 0.54 0.56

En
tri

es
/0

.0
02

 G
eV

/c
^2

310

410

 / ndf 2χ 580 / 57
 0

SNumber of K 6.644e+04
Mass 0.4971
Sigma 0.003244

 mass (3840 PbPb events)0
SK

Figure 10: Mass spectrum of the K0
S meson candidates produced inclusively in the

Pb–Pb collisions.

The cascade hyperons are reconstructed using the V0 candidate and
‘bachelor’ track selected according to the cuts above. In addition, one
requires that the reconstructed V0 effective mass belongs to a certain
interval centered in the true value. The reconstruction is performed by
AliCascadeVertexer, and this class can be used in the analysis.

78

Open charm
This is the second elaborated example of ESD analysis. There are
two classes, AliD0toKpi and AliD0toKpiAnalysis, which contain
the corresponding analysis code. The decay under investigation is
D0 → K−π+ and its charge conjugate. Each D0 candidate is formed
by a positive and a negative track, selected to fulfill the following re-
quirements: minimal-allowed track transverse momentum, minimal-
allowed track impact parameter in the transverse plane with respect
to the primary vertex. The selection criteria for each combination in-
clude maximal-allowed distance of closest approach between the two
tracks, decay angle of the kaon in the D0 rest frame in a given re-
gion, product of the impact parameters of the two tracks larger than a
given value, pointing angle between the D0 momentum and flight-line
smaller than a given value. The particle identification probabilities are
used to reject the wrong combinations, namely (K,K) and (π, π), and
to enhance the signal-to-background ratio at low momentum by re-
quiring the kaon identification. All proton-tagged tracks are excluded
before the analysis loop on track pairs. More details can be found in
Ref.[?].
Quarkonia analysis
Muon tracks stored in the ESD can be analyzed for example by the
macro MUONmassPlot ESD.C. This macro performs an invariant-mass
analysis of muon unlike-sign pairs and calculates the combinatorial
background. Quarkonia ptand rapidity distribution are built for J/ψ
and Υ. This macro also performs a fast single-muon analysis: pt,
rapidity, and θ vs ϕ acceptance distributions for positive and negative
muon tracks with a maximal-allowed χ2.

• AOD analysis
Often only a small subset of information contained in the ESD is needed
to perform an analysis. This information can be extracted and stored in
the AOD format in order to reduce the computing resources needed for the
analysis.
The AOD analysis framework implements a set of tools like data readers,
converters, cuts, and other utility classes. The design is based on two main
requirements: flexibility and common AOD particle interface. This guaran-
tees that several analyses can be done in sequence within the same comput-
ing session.
In order to fulfill the first requirement, the analysis is driven by the ‘analysis
manager’ class and particular analyses are added to it. It performs the loop

79

over events, which are delivered by an user-specified reader. This design
allows the analyses to be ordered appropriately if some of them depend on
the results of the others.
The cuts are designed to provide high flexibility and performance. A two-
level architecture has been adopted for all the cuts (particle, pair and event).
A class representing a cut has a list of ‘base cuts’. Each base cut implements
a cut on a single property or performs a logical operation (and, or) on the
result of other base cuts.
A class representing a pair of particles buffers all the results, so they can be
re-used if required.

Particle momentum correlations (HBT) – HBTAN module
Particle momentum correlation analysis is based on the event-mixing
technique. It allows one to extract the signal by dividing the appropri-
ate particle spectra coming from the original events by those from the
mixed events.
Two analysis objects are currently implemented to perform the mixing:
the standard one and the one implementing the Stavinsky algorithm[?].
Others can easily be added if needed.
An extensive hierarchy of the function base classes has been imple-
mented facilitating the creation of new functions. A wide set of the
correlation, distribution and monitoring functions is already available
in the module. See Ref.[?] for the details.
The package contains two implementations of weighting algorithms,
used for correlation simulations (the first developed by Lednicky [?]
and the second due to CRAB [?]), both based on an uniform interface.
Jet analysis
The jet analysis[?] is available in the module JETAN. It has a set of
readers of the form AliJetParticlesReader<XXX>, where XXX =
ESD, HLT, KineGoodTPC, Kine, derived from the base class AliJetParticlesReader.
These provide an uniform interface to the information from the kine-
matics tree, from HLT, and from the ESD. The first step in the analysis
is the creation of an AOD object: a tree containing objects of type
AliJetEventParticles. The particles are selected using a cut on
the minimal-allowed transverse momentum. The second analysis step
consists of jet finding. Several algorithms are available in the classes
of the type Ali<XXX>JetFinder. An example of AOD creation is
provided in the createEvents.C macro. The usage of jet finders is
illustrated in findJets.C macro.

80

V0 AODs
The AODs for V0 analysis contain several additional parameters, cal-
culated and stored for fast access. The methods of the class AliAODv0
provide access to all the geometrical and kinematics parameters of a
V0 candidate, and to the ESD information used for the calculations.
MUON
There is also a prototype MUON analysis provided in AliMuonAnalysis.
It simply fills several histograms, namely the transverse momentum
and rapidity for positive and negative muons, the invariant mass of the
muon pair, etc.

The analysis framework is one of the most active fields of development. Many
new classes and macros are in preparation. Some of them are already tested on
the data produced during the Physics Data Challenge 2004 and will become part
of the ALICE software.

6 Analysis Foundation Library
The result of the reconstruction chain is the Event Summary Data (ESD) object.
It contains all the information that may be useful in any analysis. In most cases
only a small subset of this information is needed for a given analysis. Hence,
it is essential to provide a framework for analyses, where user can extract only
the information required and store it in the Analysis Object Data (AOD) format.
This is to be used in all his further analyses. The proper data preselecting allows
to speed up the computation time significantly. Moreover, the interface of the
ESD classes is designed to fulfill the requirements of the reconstruction code.
It is inconvenient for most of analysis algorithms, in contrary to the AOD one.
Additionally, the latter one can be customized to the needs of particular analysis,
if it is only required.

We have developed the analysis foundation library that provides a skeleton
framework for analyses, defines AOD data format and implements a wide set of
basic utility classes which facilitate the creation of individual analyses. It contains
classes that define the following entities:

• AOD event format

• Event buffer

• Particle(s)

• Pair

81

• Analysis manager class

• Base class for analyses

• Readers

• AOD writer

• Particle cuts

• Pair cuts

• Event cuts

• Other utility classes

It is designed to fulfill two main requirements:

1. Allows for flexibility in designing individual analyses Each analysis has
its most performing solutions. The most trivial example is the internal rep-
resentation of a particle momentum: in some cases the Cartesian coordinate
system is preferable and in other cases - the cylindrical one.

2. All analyses use the same AOD particle interface to access the data This
guarantees that analyses can be chained. It is important when one analysis
depends on the result of the other one, so the latter one can process exactly
the same data without the necessity of any conversion. It also lets to carry
out many analyses in the same job and consequently, the computation time
connected with the data reading, job submission, etc. can be significantly
reduced.

The design of the framework is described in detail below.

6.1 AOD
The AliAOD class contains only the information required for an analysis. It is not
only the data format as they are stored in files, but it is also used internally through-
out the package as a particle container. Currently it contains a TClonesArray of
particles and data members describing the global event properties. This class is
expected to evolve further as new analyses continue to be developed and their
requirements are implemented.

82

6.2 Particle
AliVAODParticle is a pure virtual class that defines a particle interface. Each
analysis is allowed to create its own particle class if none of the already existing
ones meet its requirements. Of course, it must derive from AliVAODParticle.
However, all analyses are obliged to use the interface defined in AliVAODParticle
exclusively. If additional functionality is required, an appropriate method is also
added to the virtual interface (as a pure virtual or an empty one). Hence, all other
analyses can be ran on any AOD, although the processing time might be longer in
some cases (if the internal representation is not the optimal one).

We have implemented the standard concrete particle class called AliAODParticle.
The momentum is stored in the Cartesian coordinates and it also has the data
members describing the production vertex. All the PID information is stored in
two dynamic arrays. The first array contains probabilities sorted in descending
order, and the second one - corresponding PDG codes (Particle Data Group). The
PID of a particle is defined by the data member which is the index in the arrays.
This solution allows for faster information access during analysis and minimizes
memory and disk space consumption.

6.3 Pair
The pair object points to two particles and implements a set of methods for the
calculation of the pair properties. It buffers calculated values and intermediate
results for performance reasons. This solution applies to quantities whose com-
putation is time consuming and also to quantities with a high reuse probability.
A Boolean flag is used to mark the variables already calculated. To ensure that
this mechanism works properly, the pair always uses its own methods internally,
instead of accessing its variables directly.

The pair object has pointer to another pair with the swapped particles. The ex-
istence of this feature is connected to the implementation of the mixing algorithm
in the correlation analysis package: if particle A is combined with B, the pair with
the swapped particles is not mixed. In non-identical particle analysis their order is
important, and a pair cut may reject a pair while a reversed one would be accepted.
Hence, in the analysis the swapped pair is also tried if a regular one is rejected. In
this way the buffering feature is automatically used also for the swapped pair.

6.4 Analysis manager class and base class
The analysis manager class (AliRunAnalysis) drives all the process. A particu-
lar analysis, which must inherit from AliAnalysis class, is added to it. The user
triggers analysis by calling the Process method. The manager performs a loop

83

over events, which are delivered by a reader (derivative of the AliReader class,
see section ??). This design allows to chain the analyses in the proper order if any
depends on the results of the other one.

The user can set an event cut in the manager class. If an event is not rejected,
the ProcessEvent method is executed for each analysis object. This method
requires two parameters, namely pointers to a reconstructed and a simulated event.

The events have a parallel structure, i.e. the corresponding reconstructed par-
ticles and simulated particles have always the same index. This allows for easy
implementation of an analysis where both are required, e.g. when constructing
residual distributions. It is also very important in correlation simulations that use
the weight algorithm[?]. By default, the pointer to the simulated event is null, i.e.
like it is in the experimental data processing.

An event cut and a pair cut can be set in AliAnalysis. The latter one points
two particle cuts, so an additional particle cut data member is redundant because
the user can set it in this pair cut.

AliAnalysis class has the feature that allows to choose which data the cuts
check:

1. the reconstructed (default)

2. the simulated

3. both.
It has four pointers to the method (data members):

1. fkPass1 – checks a particle, the cut is defined by the cut on the first particle
in the pair cut data member

2. fkPass2 – as above, but the cut on the second particle is used

3. fkPass – checks a pair

4. fkPassPairProp – checks a pair, but only two particle properties are con-
sidered

Each of them has two parameters, namely pointers to reconstructed and simulated
particles or pairs. The user switches the behavior with the method that sets the
above pointers to the appropriate methods. We have decided to implement this
solution because it performs faster than the simpler one that uses boolean flags
and ”if” statements. These cuts are used mostly inside multiply nested loops, and
even a small performance gain transforms into a noticeable reduction of the overall
computation time. In the case of an event cut, the simpler solution was applied.
The Rejected method is always used to check events. A developer of the analysis
code must always use this method and the pointers to methods itemized above to
benefit from this feature.

84

6.5 Readers
A Reader is the object that provides data far an analysis. AliReader is the base
class that defines a pure virtual interface.

A reader may stream the reconstructed and/or the simulated data. Each of
them is stored in a separate AOD. If it reads both, a corresponding reconstructed
and simulated particle have always the same index.

Most important methods for the user are the following:

• Next – It triggers reading of a next event. It returns 0 in case of success and
1 if no more events are available.

• Rewind – Rewinds reading to the beginning

• GetEventRec and GetEventSim – They return pointers to the reconstructed
and the simulated events respectively.

The base reader class implements functionality for particle filtering at a read-
ing level. A user can set any number of particle cuts in a reader and the particle is
read if it fulfills the criteria defined by any of them. Particularly, a particle type is
never certain and the readers are constructed in the way that all the PID hypothe-
ses (with non-zero probability) are verified. In principle, a track can be read with
more than one mass assumption. For example, consider a track which in 55% is
a pion and in 40% a kaon, and a user wants to read all the pions and kaons with
the PID probabilities higher then 50% and 30%, respectively. In such cases two
particles with different PIDs are added to AOD. However, both particle have the
same Unique Identification number (UID) so it can be easily checked that in fact
they are the same track.

AliReader implements the feature that allows to specify and manipulate mul-
tiple data sources, which are read sequentially. The user can provide a list of
directory names where the data are searched. The ReadEventsFromTo method
allows to limit the range of events that are read (e.g. when only one event of
hundreds stored in an AOD is of interest). AliReader has the switch that enables
event buffering, so an event is not deleted and can be quickly accessed if requested
again.

Particles within an event are frequently sorted in some way, e.g. the parti-
cle trajectory reconstruction provides tracks sorted according to their transverse
momentum. This leads to asymmetric distributions where they are not expected.
The user can request the reader to randomize the particle order with SetBlend

method.
The AOD objects can be written to disk with the AliReaderAOD using the

static method WriteAOD. As the first parameter user must pass the pointer to an-
other reader that provides AOD objects. Typically it is AliReaderESD, but it also

85

can be other one, f.g. another AliReaderAOD (to filter out the desired particles
from the already existing AODs).

Inside the file, the AODs are stored in a TTree. Since the AOD stores particles
in the clones array, and many particles formats are allowed, the reading and writ-
ing is not straight forward. The user must specify what is the particle format to be
stored on disk, because in a general case the input reader can stream AODs with
not consistent particle formats. Hence, the careful check must be done, because
storing an object of the different type then it was specified in the tree leads to the
inevitable crash. If the input AOD has the different particle type then expected it
is automatically converted. Hence, this method can be also used for the AOD type
conversion.

6.6 AODs buffer
Normally the readers do not buffer the events. Frequently an event is needed
to be kept for further analysis, f.g. if uncorrelated combinatorial background is
computed. We have implemented the FIFO (First In First Out) type buffer called
AliEventBuffer that caches the defined number of events.

6.7 Cuts
The cuts are designed to guarantee the highest flexibility and performance. We
have implemented the same two level architecture for all the cuts (particle, pair
and event). Cut object defines the ranges of many properties that a particle, a pair
or an event may posses and it also defines a method, which performs the necessary
check. However, usually a user wants to limit ranges of only a few properties. For
speed and robustness reasons, the design presented in Fig.?? was developed.

The cut object has an array of pointers to base cuts. The number of entries in
the array depends on the number of the properties the user wants to limit. The base
cut implements checks on a single property. It implements maximum and mini-
mum values and a virtual method Rejected that performs a range check of the
value returned by pure virtual method GetValue. Implementation of a concrete
base cut is very easy in most cases: it is enough to implement GetValue method.
The ANALYSIS package already implements a wide range of base cuts, and the
cut classes have a comfortable interface for setting all of them. For example it
is enough to invoke the SetPtRange(min,max) method and behind the scenes a
proper base cut is created and configured.

The base cuts performing a logical operation (and,or) on the result of two
other base cuts are also implemented. This way the user can configure basically
any cut in a macro. Supplementary user defined base cuts can be added in the user

86

AliAODParticleCut
AliAODParticleBaseCut

fMin
fMax

fBaseCuts []

AliAODYCut

AliAODPIDCut

AliAODPtCut

Figure 11: Cut classes diagram on the example of the particle cut.

provided libraries. In case the user prefers to implement a complicated cut in a
single method (class) he can create his base cut performing all the operations.

The pair cut in addition to an array of pointers to the base pair cuts it has two
pointers to particle cut, one for each particle in the pair.

6.8 Other classes
We have developed a few classes that are used in correlation analyses, but they
can be also useful in the others. The first is the TPC cluster map, which is the
bitmap vector describing at which pad-rows a track has a cluster. It is used by the
anti-splitting algorithm in the particle correlation analysis.

Another example is the AliTrackPoints class, that stores track space coor-
dinates at requested distances from the center of the detector. It is used in the
particle correlation analysis by the anti-merging cut. The coordinates are calcu-
lated assuming the helix shape of a track. Different options that define the way
they are computed are available.

7 Data input, output and exchange subsystem of Ali-
Root

This section is taken from[?].
A few tens of different data types is present within AliRoot because hits,

summable digits, digits and clusters are characteristic for each sub-detector. Writ-
ing all of the event data to a single file, as it used to be implemented, was causing
number of limitations. Moreover, the reconstruction chain introduces rather com-
plicated dependences between different components of the framework, what is
highly undesirable from the point of view of software design. In order to solve
both problems, we have designed a set of classes that manage data manipulation

87

i.e. storage, retrieval and exchange within the framework.
It was decided to use the “white board” concept, which is a single exchange

object where were all data are stored and publicly accessible. For that purpose
I have employed TFolder facility of ROOT. This solution solves the problem of
inter-module dependencies.

There are two most frequently occurring use-cases concerning the way a user
deals with the data within the framework:

1. data production – produce - write - unload (clean)

2. data processing – load (retrieve) - process - unload

Loaders are the utility classes that encapsulate and automatize the tasks written in
bold font. They limit the user’s interaction with the I/O routines to the necessary
minimum, providing friendly and very easy interface, which for the use-cases
considered above, consists of only 3 methods:

• Load – retrieves the requested data to the appropriate place in the white
board (folder)

• Unload – cleans the data

• Write – writes the data

Such an insulation layer has number of advantages. It

• makes the data access easier for the user.

• allows to avoid the code duplication throughout the framework.

• minimize the risk of a bug occurrence resulting from the improper I/O man-
agement. The ROOT object oriented data storage extremely simplifies the
user interface, however, there are a few pitfalls that are frequently unknown
to an unexperienced user.

To make the description more clear we need to introduce briefly basic concepts
and the way the AliRoot program operates. The basic entity is an event, i.e. all the
data recorded by the detector in a certain time interval plus all the reconstructed
information from these data. Ideally the data are produced by the single collision
selected by a trigger for recording. However, it may happen that the data from
the previous or proceeding events are present because the bunch crossing rate is
higher then the maximum detector frequency (pile-up), or simply more than one
collision occurred within one bunch crossing.

Information describing the event and the detector state is also stored, like
bunch crossing number, magnetic field, configuration, alignment, etc.., In the case

88

of a Monte-Carlo simulated data, information concerning the generator, simula-
tion parameters is also kept. Altogether this data is called the header.

For the collisions that produce only a few tracks (best example are the pp
collisions) it may happen that total overhead (the size of the header and the ROOT
structures supporting object oriented data storage) is non-negligible in comparison
with the data itself. To avoid such situations, the possibility of storing an arbitrary
number of events together within a run is required. Hence, the common data can
be written only ones per run and several events can be written to a single file.

It was decided that the data related to different detectors and different process-
ing phases should be stored in different files. In such a case only the required data
need to be downloaded for an analysis. It also allows to alter the files easily if
required, for example when a new version of the reconstruction or simulation is
needed to be run for a given detector. Hence, only new files are updated and all the
rest may stay untouched. It is especially important because mass storage systems
practically do not allow to erase files. This also gives the possibility for an easy
comparison of the data produced with competing algorithms.

All the header data, configuration and management objects are stored in a
separate file, which is usually named galice.root (for simplicity we will further
refer to it as galice).

7.1 The “White Board”
The folder structure is presented in Fig.??. It is subdivided into two parts:

• event data that have the scope of single event

• static data that do not change from event to event, i.e. geometry and align-
ment, calibration, etc.

During startup of AliRoot the skeleton structure of the ALICE white board
is created. The AliConfig class (singleton) provides all the functionality that is
needed to construct the folder structures.

An event data are stored under a single sub-folder (event folder) named as
specified by the user when opening a session (run). Many sessions can be opened
at the same time, providing that each of them has an unique event folder name, so
they can be distinguished by this name. This functionality is crucial for superim-
posing events on the level of the summable digits, i.e. analog detector response
without the noise contribution (the event merging). It is also useful when two
events or the same event simulated or reconstructed with a competing algorithm,
need to be compared.

89

Figure 12: The folders structure. An example event is mounted under “Event”
folder.

90

ProducerData

QA QATask
. . . ProducerData

QA QATask
. . .

Header
BaseLoaders []

Kine
BaseLoaders []

. . .

DataLoaders []

BaseLoaders []BaseLoaders []

. . .
BaseLoaders [] BaseLoaders [] BaseLoaders []

. . .
Hits SDigits Digits

ITSLoader

Hits SDigits
BaseLoaders []

DataLoaders []DataLoaders []

KineDataLoader

DetectorLoaders []
HeaderDataLoader

Digits

TRDLoaderTPCLoader

Event Name

Figure 13: Loaders diagram. Dashed lines separate layers serviced by the dif-
ferent types of the loaders (from top): AliRunLoder, AliLoader, AliDataLoader,
AliBaseLoader.

7.2 Loaders
I have implemented a set of classes that simplify the data access and storage.
The loaders can be represented as a four layer, tree like structure (see Fig.??). It
represents the logical structure of the detector and the data association.

1. AliBaseLoader – One base loader is responsible for posting (finding in a
file and putting in a folder) and writing (finding in a folder and putting in a
file) of a single object. AliBaseLoader is a pure virtual class because writing
and posting depend on the type of an object. the following concrete classes
are currently implemented:

• AliObjectLoader – It handles TObject, i.e. basically any object
within ROOT and AliRoot since an object must inherit from this class
to be posted to the white board (added to TFolder).

• AliTreeLoader – It is the base loader for TTrees, which requires
special handling, because they must be always properly associated
with a file.

• AliTaskLoader – It handles TTask, which need to be posted to the
appropriate parental TTask instead of TFolder.

AliBaseLoader has always the same name as the object it manages (to
be able to find it in a file or folder). The user normally does not need to

91

use these classes directly and they are rather utility classes employed by
AliDataLoader.

2. AliDataLoader – It manages a single data type, for example digits for a de-
tector or kinematics tree. Since a few objects are normally associated with a
given data type (data itself, quality assurance data (QA), a task that produces
the data, QA task, etc.) AliDataLoader has an array of AliBaseLoaders,
so each of them is responsible for each object. Hence, AliDataLoader can
be configured individually to meet specific requirements of a certain data
type.
A single file contains the data corresponding to a single processing phase
and solely of one detector. By default the file is named according to the
schema Detector Name + Data Name + .root but it can be changed in run-
time if needed so the data can be stored in or retrieved from an alternative
source. When needed, the user can limit the number of events stored in a
single file. If the maximum number is exceeded, a file is closed and a new
one is opened with the consecutive number added to its name before .root
suffix. Of course, during the reading process, files are also automatically
interchanged behind the scenes and it is invisible to the user.
The AliDataLoader class performs all the tasks related to file management
e.g. opening, closing, ROOT directories management, etc. Hence, for each
data type the average file size can be tuned. It is important because it is
undesirable to store small files on the mass storage systems and on the other
hand, all file systems have a maximum file size allowed (e.g. currently 2 GB
on the Linux ext2).

3. AliLoader – It manages all the data associated with a single detector (hits,
digits, summable digits, reconstructed points, etc.). It has an array of AliDataLoaders
and each of them manages a single data type.
The AliLoader object is created by an class representing a detector (inher-
iting from AliDetector). Its functionality can be extended and customized
to the needs of a particular detector by creating a specialized class that de-
rives from AliLoader, as it was done, for instance, for ITS or PHOS. The
default configuration can be easily modified either in AliDetector::MakeLoader
or by overriding the method AliLoader::InitDefaults.

4. AliRunLoader – It is a main handle for data access and manipulation in
AliRoot. There is only one such an object in each run. It is always named
RunLoader and stored on the top (ROOT) directory of a galice file.
It keeps an array of AliLoader’s, one for each detector. It also manages

92

the event data that are not associated with any detector i.e. Kinematics and
Header and it utilizes AliDataLoader’s for this purpose.
The user opens a session using a static method AliRunLoader::Open. This
method has three parameters: the file name, event folder name and mode.
The mode can be ”new” and in this case a file and a run loader are created
from scratch. Otherwise, a file is opened and a run loader is searched in. If
successful, the event folder with a provided name (if such does not exist yet)
is created and the structure presented in Fig.?? is created within the folder.
The run loader is put in the event folder, so the user can always find it there
and use it for data management.
AliRunLoader provides a simple method GetEvent(n) to loop over events
within a run. Calling it causes that all currently loaded data are cleaned and
the data for the newly requested event are automatically posted.
In order to facilitate the way the user interacts with the loaders, AliRunLoader
provides the wide set of shortcut methods. For example, if digits are re-
quired to be loaded, the user can call AliRunLoader::LoadDigits("ITS
TPC"), instead of finding the appropriate AliDataLoader’s responsible for
digits for ITS and TPC, and then request to load the data for each of them.

8 Calibration and alignment
8.1 Calibration framework
The calibration framework is based on the following principles:

• the calibration and alignment database contains ROOT TObjects stored into
ROOT files;

• calibration and alignment objects are RUN DEPENDENT objects;

• the database is READ-ONLY (automatic versioning of the stored objects)

• three different database structures are (currently) available:

– a GRID folder containing Root files, each one containing one single
Root object. The Root files are created inside a directory tree defined
by the object’s name and run validity range;

– a LOCAL folder containing Root files, each one containing one single
Root object, with a structure similar to the Grid one;

93

– a LOCAL Root (dump) file containing one or more objects. The ob-
jects are stored into Root TDirectories defined by the object’s name
and run range.

• object storing and retrieval techniques are transparent to the user: he/she
should only specify the kind of storage he wants to use (”grid”, ”local”,
”dump”). Object are stored and retrieved using the AliCDBStorage public
classes:

Bool_t AliCDBStorage::Put(...)

and

AliCDBEntry* AliCDBStorage::Get(...)

In addition, multiple objects can be retrieved using:

TList* AliCDBStorage::GetAll(...) (returns list of AliCDBEntry objects).

• During object retrieval, the user has the possibility to retrieve the highest
version of the object or to specify a particular version by means of one or
more selection criteria.

New features of the CDB storage classes
A schema of the new framework can be found on the slides of the September

1 Alice weekly meeting talk (page 6). The main new features are:

• new MANAGER class AliCDBManager. It is a singleton which handles
the instantiation, usage and destruction of all the storage classes. It allows
the instantiation of more than one storage type at a time, keeping tracks of
the list of active storages. The instantiation of a storage element is done by
means of AliCDBManager public method GetStorage. A storage element is
identified by its ”URI” (a string) or by its ”parameters”. The set of param-
eters defining each storage is contained in its specific AliCDBParam class
(AliCDBGridParam, AliCDBLocalParam, AliCDBDumpParam).

• new versioning schema. In order to avoid version clashes when objects are
transferred from grid to local and vice versa, we have introduced a new
versioning schema. Basically the objects are defined by TWO version num-
bers: a ”Grid” version and a ”Local” version (subVersion). In local storage

94

only the local version is increased, while in Grid storage only the Grid ver-
sion is increased. When the object is transferred from local to Grid the Grid
version is increased by one; when the object is transferred from Grid to Lo-
cal the Grid version is kept and the subVersion is reset to zero. You can find
a plot of this schema on my talk (page 11).

• The container class of the object and its metadata (AliCDBEntry) has been
redesigned. The metadata of the object has been divided into two classes:
one which contains the data used to store and retrieve the object (”identity”
of the object, AliCDBId) and the other containing the metadata which is not
used during storage and retrieval (AliCDBMetaData).
The AliCDBId object in turn contains:

– an object describing the name (path) of the object (AliCDBPath). The
path name must have a fixed, three-level directory structure: ”level1/level2/level3”

– an object describing the run validity range of the object (AliCDBRun-
Range)

– the version and subversion numbers (automatically set during storage)
– a string (fLastStorage) specifying from which storage the object was

retrieved (”new”, ”grid”, ”local”, ”dump”)

The AliCDBId object has two functions:

– during storage it is used to specify the path and run range of the object;
– during retrieval it is used as a ”query”: it contains the path of the

object, the required run and (if needed) the version and subversion to
be retrieved (if version and/or subversion are not specified the highest
ones are looked for).

Some usage examples
The following use cases are illustrated:

• A pointer to the single instance of the AliCDBManager class is obtained
with:

AliCDBManager::Instance()

• A storage is activated and a pointer to it is returned using the AliCDBManager::GetStorage(const
char* URI) method. Here are some examples of how to activate a storage
via an URI string. The URI’s must have a well defined syntax, for example
(local cases):

95

– ”local://DBFolder” to local storage with base directory ”DBFolder”
created (if not existing from the working directory)

– ”local://$ALICE ROOT/DBFolder” to local storage with base direc-
tory ”$ALICE ROOT/DBFolder” (full path name)

– ”dump://DBFile.root” to Dump storage. The file DBFile.root is looked
for or created in the working directory if the full path is not specified

– ”dump://DBFile.root;ReadOnly” to Dump storage. DBFile.root is opened
in read only mode.

• Concrete examples (local case):

AliCDBStorage *sto =

AliCDBManager::Instance()->GetStorage("local://DBFolder"):

AliCDBStorage *dump =

AliCDBManager::Instance()->GetStorage("dump:///data/DBFile.root;ReadOnly"):

• Creation and storage of an object. Example of how an object can be created
and stored in a local database

– Let’s suppose our object is an AliZDCCalibData object (container of
arrays of pedestals constants), whose name is ”ZDC/Calib/Pedestals”
and is valid for run 1 to 10.

AliZDCCalibData *calibda = new AliZDCCalibData();

// ... filling calib data...

// creation of the AliCDBId object (identifier of the object)

AliCDBId id("ZDC/Calib/Pedestals",1,10);

// creation and filling of the AliCDBMetaData

AliCDBMetaData *md = new AliCDBMetaData();

md->Set... // fill meta data object, see list of setters...

// Activation of local storage

AliCDBStorage *sto =

AliCDBManager::Instance()->GetStorage("local://$HOME/DBFolder");

// put object into database

96

sto->Put(calibda, id, md);

The object is stored into local file: $HOME/DBFolder/ZDC/Calib/Pedestals/Run1 10 v0 s0.root
– Examples of how to retrieve an object

// Activation of local storage

AliCDBStorage *sto =

AliCDBManager::Instance()->GetStorage("local://$HOME/DBFolder");

// Get the AliCDBEntry which contains the object "ZDC/Calib/Pedestals",

valid for run 5, highest version

AliCDBEntry* entry = sto->Get("ZDC/Calib/Pedestals",5)

// alternatively, create an AliCDBId query and use sto->Get(query) ...

// specifying the version: I want version 2

AliCDBEntry* entry = sto->Get("ZDC/Calib/Pedestals",5,2)

// specifying version and subversion: I want version 2 and subVersion 1

AliCDBEntry* entry = sto->Get("ZDC/Calib/Pedestals",5,2,1)

– Selection criteria can be also specified using AliCDBStorage::AddSelection(...)
methods:

// I want version 2_1 for all "ZDC/Calib/*" objects for runs 1-100

sto->AddSelection("ZDC/Calib/*",1,100,2,1);

// and I want version 1_0 for "ZDC/Calib/Pedestals" objects for runs 5-10

sto->AddSelection("ZDC/Calib/Pedestals",5,10,1,0)

AliCDBEntry* entry = sto->Get("ZDC/Calib/Pedestals",5)

See also: AliCDBStorage::RemoveSelection(...), RemoveAllSelections(),

PrintSelectionList()

– Retrieval of multiple objects with AliCDBStorage::GetAll()

TList *list = sto->GetAll("ZDC/*",5)

• Use of Default storage and Drain storages

97

AliCDBManager allows to set pointers to a ”default storage” and to a ”drain
storage”. In particular, if the drain storage is set, all the retrieved objects are
automatically stored into it.
The default storage is automatically set as the first active storage. To set the
default storage to another storage:

AliCDBManager::Instance()->SetDefaultStorage("uri")

The default storage can be then used by:

AliCDBEntry *entry =

AliCDBManager::Instance()->GetDefaultStorage()->Get(...)

The drain storage can be set in a similar way:

AliCDBManager::Instance()->SetDrain("uri")

There are some AliCDBManager public methods to handle the default and
storage methods:

Bool_t IsDefaultStorageSet()

void RemoveDefaultStorage()

Bool_t IsDrainSet()

void RemoveDrain()

• Example of how to use default and drain storage:

AliCDBManager::Instance()->SetDefaultStorage("local://$HOME/DBFolder");

AliCDBManager::Instance()->SetDrain("dump://$HOME/DBDrain.root");

AliCDBEntry *entry =

AliCDBManager::Instance()->GetDefaultStorage()->Get("ZDC/Calib/Pedestals",5)

// Retrieved entry is automatically stored into DBDrain.root !

• To destroy the AliCDBManager instance and all the active storages:

AliCDBManager::Instance()->Destroy()

98

References
[1] CERN/LHCC 2003-049, ALICE Physics Performance Report, Volume 1 (7

November 2003);
ALICE Collaboration: F. Carminati et al., J. Phys. G: Nucl. Part. Phys. 30
(2004) 1517–1763.

[2] CERN-LHCC-2005-018, ALICE Technical Design Report: Computing,
ALICE TDR 012 (15 June 2005).

[3] http://www.redhat.com

[4] http://fedora.redhat.com

[5] http://www.linux.org

[6] http://linux.web.cern.ch/linux

[7] http://gcc.gnu.org

[8] http://www.intel.com/cd/software/products/asmo-na/eng/compilers/index.htm

[9] http://www.intel.com/cd/software/products/asmo-na/eng/vtune/index.htm

[10] http://www.intel.com/products/processor/itanium2/index.htm

[11] http://www.amd.com

[12] http://www.cvshome.org

[13] http://ximbiot.com/cvs/manual

[14] http://root.cern.ch

[15] http://cewrn.ch/geant4

[16] http://cern.ch/clhep

[17] http://www.fluka.org

[18] http://cern.ch/castor

[19] X. N. Wang and M. Gyulassy, Phys. Rev. D44 (1991) 3501.
M. Gyulassy and X. N. Wang, Comput. Phys. Commun. 83 (1994) 307-331.
The code can be found in http://www-nsdth.lbl.gov/∼xnwang/hijing/

[20] J. Ranft, Phys. Rev. D 51 (1995) 64.

99

[21] ALICE-INT-2003-036

[22] F. Abe et al., (CDF Collaboration), Phys. Rev. Lett.61 (1988) 1819.

[23] B. Andersson, et al., Phys. Rep. 97 (1983) 31.

[24] B. Andersson, et al., Nucl. Phys. B281 (1987) 289;
B. Nilsson-Almqvist and E. Stenlund, Comput. Phys. Commun. 43 (1987)
387.

[25] A. Capella, et al., Phys. Rep. 236 (1994) 227.

[26] H.-U. Bengtsson and T. Sjostrand, Comput. Phys. Commun. 46 (1987) 43;
the code can be found in http://nimis.thep.lu.se/∼torbjorn/Pythia.html

T. Sjostrand, Comput. Phys. Commun. 82 (1994) 74;
the code can be found in http://www.thep.lu.se/∼torbjorn/Pythia.html

[27] A. Morsch, http://home.cern.ch/∼morsch/AliGenerator/AliGenerator.html

and http://home.cern.ch/∼morsch/generator.html

[28] NA35 Collaboration, T. Alber et al., Z. Phys. C 64 (1994) 195.

[29] NA35 Collaboration, T. Alber et al., Eur. Z. Phys. C2 (1998) 643.

[30] D. Kharzeev: Phys. Lett. B 378 (1996) 238.

[31] A. Capella and B. Kopeliovich, Phys. Lett. B381 (1996) 325.

[32] R. V. Barrett and D. F. Jackson, Nuclear sizes and structure, Clarendon
Press, Oxford, 1977.

[33] S. Roesler, R. Engel and J. Ranft, Phys. Rev. D57 (1998) 2889.

[34] S. Roesler, personal communication, 1999.

[35] M. Glück, E. Reya and A. Vogt: Z. Phys. C67 (1995) 433.

[36] M. Glück, E. Reya and A. Vogt, Eur. Phys. J. C5 (1998) 461.

[37] L. Ray and R.S. Longacre, STAR Note 419.

[38] S. Radomski and Y. Foka, ALICE Internal Note 2002-31.

[39] http://radomski.home.cern.ch/∼radomski/AliMevSim.html

[40] http://home.cern.ch/∼radomski

100

[41] L. Ray and G.W. Hoffmann. Phys. Rev. C 54, (1996) 2582, Phys. Rev. C60,
(1999) 014906.

[42] P. K. Skowroński, ALICE HBT Web Page,
http://aliweb.cern.ch/people/skowron

[43] A. Alscher, K. Hencken, D. Trautmann, and G. Baur. Phys. Rev. A 55,
(1997) 396.

[44] K. Hencken, Y. Kharlov, and S. Sadovsky, ALICE Internal Note 2002-27.

[45] A.M. Poskanzer and S.A. Voloshin, Phys. Rev. C 58, (1998) 1671.

[46] http://nuclear.ucdavis.edu/ jklay/ALICE

[47] A. Fassò, A. Ferrari, P.R. Sala, G. Tsiledakis, Implementation of Xenon
capture gammas in FLUKA for TRD background calculation, ALICE-INT-
2001-28.

[48] http://root.cern.ch/root/doc/RootDoc.html

[49] P. Billoir; NIM A225 (1984) 352, P. Billoir et al.; NIM A241 (1985) 115,
R.Fruhwirth; NIM A262 (1987) 444, P.Billoir; CPC (1989) 390.

[50] CERN/LHCC 2005-049, ALICE Physics Performance Report, Volume 2 (5
December 2005);

[51] V. Karimäki, CMS Note 1997/051 (1997).

[52] http://alien.cern.ch/download/current/gClient/gShell Documentation.html

[53] http://glite.web.cern.ch/glite

[54] http://root.cern.ch/root/PROOF.html

[55] CERN/LHCC 99-12.

[56] CERN/LHCC 2000-001.

[57] A. Dainese, PhD Thesis, University of Padova, 2003, [arXiv:nucl-
ex/0311004].

[58] A. Stavinsky et al, NUKLEONIKA 49 (Supplement 2) (2004) 23–25;
http://www.ichtj.waw.pl/ichtj/nukleon/back/full/vol49 2004/v49s2p023f.pdf

[59] P.K. Skowroński for ALICE Collaboration, [arXiv:physics/0306111].

101

[60] R. Lednický and V.L. Lyuboshitz, Sov. J. Nucl. Phys. 35 (1982) 770.

[61] http://www.nscl.msu.edu/ pratt/freecodes/crab/home.html

[62] C. Loizides, PhD Thesis, University of Frankfurt, 2005, [arXiv:nucl-
ex/0501017].

[63] P.Skowronski, PhD Thesis.

102

