
DCS Database for the ALICE TRD
T. Dietel, K. Oyama

October 1, 2006

1 Overview

Information about the ALICE TRD is stored in
two databases: gateDB1 and wingDB2. The gat-
eDB is located in Heidelberg and tracks the inte-
gration of the TRD modules. It contains the full
history of the location and status of all compo-
nents, including test results and the possibility to
attach plain-text comments and files of arbitrary
type to each component.

Operation of the TRD requires a second data-
base, called wingDB, that will at CERN be part
of the Configuration DB of the DCS. Other sites
like Heidelberg, Münster and Frankfurt will also
have a wingDB to operate parts of the TRD. The
table structure of the wingDB will be described in
section 2.

The retrieval of configuration files from the
database is done by the Command Coder, which
is part of the InterCom Layer. The basic concepts
and database queries are explained in section 3.

Each wingDB will have to be synchronized with
the gateDB at some time. For the DCS Configura-
tion DB at CERN, it will be sufficient to load the
data from the gateDB once for every Supermod-
ule. Afterwards, no further access to the gateDB
is necessary. The other sites will require more
frequent updates, because the integration will be
recorded in the gateDB, and all changes will have
to be propagated to the local wingDB before op-
eration of the newly installed components is pos-
sible.

2 wingDB

The data required for the operation of the TRD
can be grouped into four classes: information about
the components and their locations in the TRD,
standard configuration files to be downloaded to
the detector, software patches to account for bro-
ken hardware or special configuration requirements,

1Global ALICE TRD Electronics Database
2WingDB is not gateDB

and calibration information like gain correction
tables. For each of these four classes, the data
is contained in one or more tables in the wingDB.

2.1 Detector Components

The DB structure for the components follows the
physical structure of the TRD: the TRD is divided
into 18 Supermodules that contain 5 stacks of 6
read-out chambers (ROCs) each. Each ROC is in-
strumented with 6 or 8 read-out boards (ROBs),
a DCS Board for slow control purposes and 2
optical read-out interfaces (ORIs). The ROBs
are equipped with 17 or 18 multi-chip modules
(MCMs). The wingDB contains tables for Su-
permodules (listing 2.1), ROCs (listing 2.2) and
ROBs (listing 2.3). DCS boards and ORI’s are not
represented by separate tables in the wingDB, but
only as fields in the table for ROCs. It is foreseen
to also include a table for MCMs or to include the
list of mounted MCMs in the ROB table, but this
has not yet been implemented. The information
in this section is referenced by other sections of
the wingDB to identify the parts of the detector
a patch or calibration applies to.

For each component, the location is given by
a foreign key referencing the superordinate com-
ponent and the location therein, e.g. location of
a ROC is given by the Supermodule ID and the
stack and layer coordinates within the SM.

The data volume is dominated by the small-
est and most frequent componentent, i.e. in the
current setup by 4 000-5000 ROBs. If a separate
MCM table is included, there will be about 70 000
entries in that table.

2.2 Configuration Files

From a users point of view, the TRD is controlled
by the means of tags. A tag is an integer num-
ber that identifies an action to be performed by
the detector, usually a configuration or a self-test.
In the database, each tag is mapped to a con-
figuration that is identified by a name and a revi-

1

Listing 2.1 Supermodule table: a SM is identified
by its serial number (sm id), and can sit in one of
the 18 positions in the space-frame (sm slot).

CREATE TABLE sm(

sm_id NUMBER(2) PRIMARY KEY,

sm_slot NUMBER

)

Listing 2.2 Read-Out Chamber table: a ROC
is identified by its type (roc type) and serial
number (roc serial). Its location is given by
the SM (sm id) and position inside the SM
(sm stack,sm layer). The DCS board and ORIs
mounted on this ROC are also listed here (dcs id,
ori a id, ori b id), while the information about
ROBs on a ROC is held in the table “rob”.
CREATE TABLE roc(

roc_type CHAR(4),

roc_serial NUMBER,

sm_id NUMBER,

sm_stack NUMBER,

sm_layer NUMBER,

dcs_id NUMBER,

ori_a_id NUMBER,

ori_b_id NUMBER,

PRIMARY KEY (roc_type,roc_serial),

FOREIGN KEY (sm_id)

REFERENCES sm(sm_id),

UNIQUE (dcs_id),

UNIQUE (sm_id,sm_stack,sm_layer)

)

sion (usually the release number in the Subversion
repository). The configuration determines a set of
scripts that are executed in a defined order. Each
script contains a sequence of commands that are
the atomic unit of the FEE configuration.

The TRD front-end electronics is configured
via the proprietary SCSN bus, that transmits pack-
ages containing one configuration command at a
time, consisting of a destination designating either
a single or all MCMs, a 5-bit command, a 16-bit
address and 32 bits of data. Commands can for
example be a write to or a read from an adress in
memory, sleep commands etc. Address and data
are not used for all commands.

It was a natural choice to use the contents
of these packages as the basic structure for the
configuration of the TRD. Listing 2.4 shows the
representation of this command in the database.

Listing 2.3 Read-Out Board table: a ROB is
identified by its serial number (rob id), the type
defines the positions on a ROC where this ROB
can be mounted. The location of a ROB is given
by the ROC (roc type,roc serial) and the po-
sition on the ROC (roc pos).

CREATE TABLE rob(

rob_id NUMBER,

type CHAR(2),

roc_type CHAR(4),

roc_serial NUMBER,

roc_pos NUMBER,

PRIMARY KEY (rob_id),

FOREIGN KEY (roc_type,roc_serial)

REFERENCES roc,

UNIQUE(roc_type,roc_serial,roc_pos)

)

Apart from command, destination, address and
data it also holds a reference to a script and a
sequence number within the script to model the
ordered 1:n relation between cfdat command and
cfdat script.

Scripts are building blocks for configurations,
containing groups of related commands. The table
cfdat script (listing 2.5) contains just the name
and the release that identify a script and an artifi-
cial primary key. To allow for reuse of the building
blocks, each script can be used in several configu-
rations, requiring an ordered n:m relation that is
implemented in the table cfdat config scripts

(listing 2.6), linking the scripts with entries in the
table cfdat config (listing 2.7) that holds the
name and release of every configuration.

The translation between tags from the user in-
terface and a configuration is done with the table
cfdat tag (listing 2.8) which assigns each integer
tag an entry from cfdat config.

The data is dominated by the configuration
commands, all other tables will hold only small
amounts of data. For one full configuration, a few
thousand commands are needed, and there will be
on the order of ten full configurations for one set
of configuration files, that corresponds to one up-
load of all files from one revision of the subversion
repository. Over the lifetime of the detector, we
expect to accumulate several hundred sets of con-
figurations, so that we would need 1—10 million

2

Listing 2.4 Table for configuration commands.
Each command sent to the FERO electronics is
represented by one entry in this table. The fields
cmd, dest, addr and data are directly sent over the
SCSN bus, while the reference to a script and the
sequence number are used for organization of the
commands. A trigger is supplied to automatically
assign a sequence number.

CREATE TABLE cfdat_command (

PRIMARY KEY (script_id, seq),

script_id NUMBER(8)

NOT NULL

REFERENCES cfdat_script,

seq NUMBER(6),

cmd NUMBER(2),

dest NUMBER(4),

addr NUMBER(6),

data NUMBER(10)

);

CREATE SEQUENCE cfdat_config_id_seq

INCREMENT BY 1 START WITH 1 CACHE 2;

CREATE TRIGGER trigger_config_id_pk

BEFORE INSERT ON cfdat_config

REFERENCING NEW AS NEW OLD AS OLD

FOR EACH ROW

Begin

SELECT cfdat_config_id_seq.nextval

INTO :NEW.cfg_id from DUAL;

End;

entries in that table.

2.3 Patches

In some cases, faults in the electronics require spe-
cial configuration of some parts of the detector,
e.g. disabling of some MCMs or the use of spare
data lines. The database holds information about
all of these problems, with one table for each type
of problem. Listings 2.9, 2.10 and 2.11 give some
examples of these tables: usually, the faulty com-
ponent is identified by a foreign key referencing
one of the component tables, possibly some addi-
tional information about the fault and a validity
period, which by default is long enough to contain
the lifetime of the TRD (Dec 31, 2099).

It is expected to have very few patches per
read-out chamber, so that there will be at most a
few thousand entries in these tables.

Listing 2.5 Table for holding information about
configurations scripts. Each script is identified by
a name and a version number. The script id is in-
troduced as an artificial primary key, that is gen-
erated by a trigger.

CREATE TABLE cfdat_script (

PRIMARY KEY (script_id),

script_id NUMBER(8) NOT NULL,

name VARCHAR(100) NOT NULL,

svn_rel NUMBER(6) NOT NULL

);

CREATE SEQUENCE cfdat_script_id_seq

INCREMENT BY 1 START WITH 1 CACHE 2;

CREATE TRIGGER trigger_script_id_pk

BEFORE INSERT ON cfdat_script

REFERENCING NEW AS NEW OLD AS OLD

FOR EACH ROW

Begin

SELECT cfdat_script_id_seq.nextval

INTO :NEW.script_id from DUAL;

End;

Listing 2.6 n:m relation of configurations and
scripts. seq gives the order of scripts for a config-
uration.
CREATE TABLE cfdat_config_scripts (

PRIMARY KEY (cfg_id,seq),

cfg_id NUMBER(10) NOT NULL

REFERENCES cfdat_config,

seq NUMBER(6) NOT NULL,

script_id NUMBER(8) NOT NULL

REFERENCES cfdat_script

);

2.4 Calibration Data

Th largest fraction of the data that will be re-
quired by the TRD are the gain settings for each
of approximately 1.4 million channels. Each chan-
nel requires a 9 bit gain factor and 5 bit offset, the
two values can be combined into a single 16-bit
integer. Updates to the gain tables will be rare,
with probably only a few changes per year.

Due to the amount of data it is necessary to
put the gain parameters for several channels into
one row in the database. It is foreseen to group
the 336 channels of one ROB into one row, requir-
ing 4104 rows to store the information for the full

3

Listing 2.7 Table for FEE configurations. Each
configuration is identified by a name and a release,
an artificial primary key is used as a reference in
other tables.
CREATE TABLE cfdat_config (

PRIMARY KEY (cfg_id),

cfg_id NUMBER(10) NOT NULL,

name VARCHAR(100) NOT NULL,

svn_rel NUMBER(6) NOT NULL

);

Listing 2.8 cfdat tag translates between the
user-accessible tags and configurations stored in
the database.
CREATE TABLE cfdat_tag (

PRIMARY KEY(tag),

tag NUMBER(10) NOT NULL,

cfg_id NUMBER(10) NOT NULL

REFERENCES cfdat_config

);

TRD.

3 Command Coder

Configuration data for the TRD is created by the
Command Coder (CoCo), that retrieves all rele-
vant information from the configuration database
and assembles one configuration data block per
ROC of the TRD. The CoCo is compiled into the
InterCom Layer and is executed for every config-
uration request for a ROC, i.e. 540 times to con-
figure the full TRD at the beginning of a run.

To assemble the configuration file, the CoCo
queries the four parts of the wingDB and com-
bines the data into one configuration block, that
is then sent to the feeservers running on the DCS
boards. The configuration blocks are in binary
format, which is defined by structs in the C lan-
guage as shown in listing 3.1.

3.1 Configuration file format

The header of a configuration block contains gen-
eral information about the block, information about
the ROC to be configured and pointers to the
base configuration data and — in the future —
to patches and calibration data. The general sec-
tion consists of a start marker which is always
“CFDAT\0\0\0”, the size of the header, the ver-
sion of the file format, one dword to check the

Listing 2.9 Table: Network Interface Errors

CREATE TABLE err_rob_ni (

rob_id NUMBER NOT NULL

REFERENCES rob,

port NUMBER,

pattern NUMBER,

start_time TIMESTAMP NOT NULL,

end_time TIMESTAMP

DEFAULT TO_DATE(’31-DEC-2099’,

’DD-MON-YYYY’)

NOT NULL

);

Listing 2.10 Table: General MCM Errors, that
require disabling of the MCM

CREATE TABLE err_mcm_all (

rob_id NUMBER NOT NULL

REFERENCES rob,

mcm_pos NUMBER,

start_time TIMESTAMP NOT NULL,

end_time TIMESTAMP

DEFAULT TO_DATE(’31-DEC-2099’,

’DD-MON-YYYY’)

NOT NULL

);

endianness of the structure, and the two param-
eters that the CoCo has been called with: target
name and tag.

Information about the ROC that is contained
in the header includes the serial number of the
DCS board, the type and serial number of the
ROC and the types and serial numbers of all ROBs
on the ROC. It is also foreseen to also send infor-
mation about all MCMs mounted on the ROBs,
but the data structures are not yet filled.

The remainder of the header consists of offset
and number of SCSN commands contained in the
base configuration of the, the version number of
this base configuration and a checksum, that is
however not yet used. Similar contributions are
planned for patches and calibration data.

3.2 DB Queries

One of the possible bottlenecks during the config-
uration of the detectors are the queries to the DCS
configuration database. In the case of the TRD,
the CoCo is called 540 times, and it has to run
several queries to gather the information for the

4

Listing 2.11 Table: MCM CPU Errors, that in-
validate data from the MCM, but leave the net-
work interface intact.
CREATE TABLE err_mcm_cpu (

rob_id NUMBER NOT NULL

REFERENCES rob,

mcm_pos NUMBER,

start_time TIMESTAMP NOT NULL,

end_time TIMESTAMP

DEFAULT TO_DATE(’31-DEC-2099’,

’DD-MON-YYYY’)

NOT NULL

);

configuration files. These queries are described in
this section.

The first query simply determines ROC type
and serial number and the ID of the DCS board
of the. Then, the serial numbers of the ROBs on
the chamber are determined. These queries re-
turn very little data and should not pose a prob-
lem. It is also inteded to write information about
all MCM IDs on the ROC into the configuration
block, which would require another query, that re-
turns either 17 or 18 additional fields for each row
in the ROB table, or an additional query to an
MCM table would be necessary, returning 104 or
138 rows per ROC.

The query to the second part of the wingDB,
the base configuration is more complex. The state-
ment used to retrieve the base configuration is
shown in listing 3.2. The query returns all com-
mands that belong to the scripts for one configu-
ration, the results have to be sorted in the order
of scripts and commands, and the data has to be
transferred to the CoCo. As in the current imple-
mentation this is done for each invocation of the
CoCo, it is a potential bottleneck. If this turns
out to be true, there are two possibilities to speed
this up: by storing assembled script files as large
objects in the DB instead of single commands, or
by caching the result of the query in the CoCo, so
that it can be reused in subsequent invocations.
No performance measurements have so far been
done to determine if this is necessary.

The queries for patches are not implemented,
but as they will only return very few rows per
ROC, the load due to this part of the configuration
data will be minimal.

The largest part of the configuration data is
contained in the gain calibration tables for all chan-
nels. To minimize the administative overhead, it

Listing 3.1 Format of configuration files sent
from the Command Coder to the feeserver on the
DCS boards. For a description see text.
struct cfdat_robinfo

{

signed int rob_id;

signed int rob_type;

signed int mcm_id[18];

};

struct cfdat_command

{

unsigned cmd : 5;

unsigned dest : 11;

unsigned short addr;

signed int data;

};

struct cfdat_header

{

char hd_marker[8];

signed short hd_size;

signed short cfdat_ver;

unsigned int endian_tag;

unsigned char target_name[20];

signed int tag;

signed short dcs_id;

signed short roc_type;

signed short roc_serial;

cfdat_robinfo robinfo[8];

signed int svn_ver;

signed int n_cmd;

signed int offset_cmd;

signed int checksum_cmd;

signed int checksum_hd;

};

is necessary to group gain parameters for several
channels into one row. To determine the optimum
row size for organizing the data, performance mea-
surements were done with an Oracle 10g database
running on an AMD Sempron 2800+ with 1GB
of memory, with server and client running on the
same machine. A total of 1M fields was inserted
into the DB and retrieved from it again. The
number of fields per row was varied from 20 to
1000, and the number of rows adjusted accord-
ingly. Above about 100 fields per row, the re-
trieval time depended only weakly on the number
of fields, below this number, the administrative

5

Listing 3.2 Query for configuration data
SELECT cmd,dest,addr,data,

cfdat_config_scripts.script_id,

cfdat_config_scripts.seq AS sseq,

cfdat_command.seq AS cseq

FROM cfdat_config_scripts,cfdat_command

WHERE cfdat_config_scripts.script_id=

cfdat_command.script_id AND

cfdat_config_scripts.cfg_id=

(SELECT cfg_id FROM cfdat_tag

WHERE tag=REQUESTED_TAG)

ORDER BY cfdat_config_scripts.seq,

cfdat_command.seq

overhead seemed to dominate the retrieval time,
slowing down the query. The time to retrieve the
full dataset in a single query was below 2s for large
rows with at least 100 fields.

6

