
Using Condor Effectively Sources for more information

A discussion by Alain Roy Do you have questions about Condor?
Version 1

There is a free mailing list for Condor users (not just Condor users) that you can
join. To subscribe to condor-users send a message to majordomo@cs.wisc.edu
with the body of:

15-Apr-2004

 subscribe condor-users

To unsubscribe from condor-users send a message to majordomo@cs.wisc.edu
with the body of:

unsubscribe condor-users

You can send email to the Condor developers to ask for help. Send your email to
condor-admin@cs.wisc.edu. We will do the best we can to answer your question,
but we do not guarantee an answer. We are pretty good though.

This document may be found online:
http://www.cs.wisc.edu/~roy/effective_condor

Send comments about this document to:
roy@cs.wisc.edu

 20

Table of Contents The user log viewer
If you are submitting lots of jobs and want to understand their progress in a
graphical way, the Java-based user log viewer is nifty and useful. You can find it
in the “contrib.” section of the downloads on the Condor web page. Don’t be put
off by the old version number—it works fine.

Which computer should be removed?
Sometimes a Condor pool administrator would like to remove a computer from
the pool. Which one should be removed? The condor_findhost command will
tell you which host in the pool can be removed with the minimum impact.

Use condor_fetchlog
When you are debugging problems that require the use of the logs from the
daemons on different computers in your pool, use condor_fetchlog instead of
logging in to the computer you want to investigate. See the manual for more
information about condor_fetchlog, including security: you’ll need the correct
security settings to be able to use condor_fetchlog.

Introduction... 3
Always specify a log file in your submit file. 4
Advanced condor_q usage .. 6
Clever use of condor_status .. 8
Why won’t my job run? .. 10
Controlling sets of jobs ... 12
Job policies.. 14
Enhancing Condor’s matchmaking... 16
Sources for more information ... 20

 2 19

Miscellaneous Hints Introduction

Use large jobs We hope that you can use the information in this booklet to use Condor
effectively. Although the basics of using Condor are not hard, there are a lot of
tips and tricks that can help you to use Condor better.

Think carefully about what kind of jobs you submit to a Condor. Some people
submit thousands of jobs that each take 30 seconds to run, then wonder why
they see poor performance. Each job submission has a scheduling overhead, and
you need to submit jobs that are sufficiently long to make this overhead
worthwhile. Instead of submitting 1,000 jobs of 30 seconds each, try submitting
10 jobs of 3,000 seconds each by combining the work into larger portions. You
will see significantly better throughput.

This booklet assumes that you already know the basics of using Condor. If you
do not, please review the Condor manual, particularly the first few sections of
Chapter 2, Users’ Manual. The Condor manual can be found online at the
Condor web site:

Bring it with you http://www.cs.wisc.edu/condor
 Create jobs that do not require any more than necessary from the execution

computer. If you can avoid requiring that software is preinstalled at each node,
you will find it easier to switch to new versions of the software (you do not have
to reinstall it), and easier to avoid problems in the installation (you don’t rely on
someone else installing it correctly). Similarly, if you can avoid relying on
dynamic libraries that are pre-installed, you avoid problems with out of date or
incorrect libraries. Not only will these help you in the short-term, but if you ever
want to run your jobs on another Condor pool or on a grid, you’ll be that much
more ready to run elsewhere.

If you have comments on this booklet, or suggestions for how to make it better,
please let us know. Send email to the Condor team at:

condor-admin@cs.wisc.edu

Synchronized clocks
Keep your clocks synchronized to standard time, and ensure the time zone is
correct. If the clock on your submission machine is not close to the time on the
gatekeeper host, you could experience various surprising behaviors, particularly
if you are using GSI security.

Submitting Java jobs?
When you submit Java jobs, you could use the vanilla universe, and it would
work. But it works better when you use the Java universe. This runs your job in
a wrapper so that we can tell the difference between your job exiting with an
error (which we report to you), and the Java virtual machine exiting with an
error (which may cause us to try to run your job elsewhere.)

Waiting for a job to finish?
If you are waiting for a job to finish, you can use condor_wait to wait for you.
Although it may not be reliable across, say, reboots of your computer, it is a
simple and easy way to wait until a job finishes. See the manual for more
information.

 18 3

Always specify a log file in your submit file.
This expression will be true when a computer is owned by the physics group,
and true is considered to be 1. Otherwise, it’s false, or 0. Therefore physics
computers will have a higher rank than non-physics computers.

(With a note about apparently idle jobs)

Condor tells you important information in log files. For example, look at this
submit file:

Alternatively, you might have computers prefer jobs that were submitted by
physics users. To do this, you instead extend the job ClassAd:

Executable = analysis

1
 Arguments = 500

Universe = vanilla
Input = analysis.in
Output = analysis.output
Error = analysis.error
Log = analysis.log
Notification = Error
Queue

When your job is submitted, Condor will create a file called analysis.log that
shows you what happened to your job, and when it happened. Sometimes when
job is idle there is a problem listed in the submit file. For example, the submit
file says that standard input should come from “analysis.in”, but that file was
deleted before the job could run.

Here’s what I saw in the log file. (Note that the comment lines beginning with a
are comments by me—they are not in the log file.)

000 (018.000.000) 04/04 22:02:05 Job submitted from host:
<128.105.121.21:33944>...
...
Aha—this is our problem!
007 (018.000.000) 04/04 22:02:09 Shadow exception!
 Error from starter on chopin.cs.wisc.edu:
 Failed to open standard input file
 '/scratch/roy/personal-condor/simple/analysis.in':
 No such file or directory (errno 2)

This message showed up repeatedly in my log file. This is because Condor kept
trying to run the job over and over, hoping that the file would eventually show
up. Although this seems like a vain hope, it may not be. Perhaps an NFS server
is down, and the file will eventually become available. During these repeated
attempts, it looked like an idle job to me, because the job ran very briefly, but
remained idle between executions. If I had done condor_q at just the right time, I
would have seen it running.

To fix the problem, I used condor_rm to remove the job, created analysis.in, and
resubmitted the job. (I didn’t have to remove it, in this case.) Now in the log file
I saw:

2

 17

+IsPhysicsJob = True
5

And change the machine’s ranking of a job:

Rank = (IsPhysicsJob =?= True)
6

There is no security here: you have to trust your users to properly declare what
kind of jobs they have.

3) Dynamically adjusting your ClassAds based on the output of a script requires
more details than we can describe in this short handout. Fortunately, it is
documented in the Hawkeye documentation. Hawkeye is an extension to Condor
and is available to anyone with Condor installed. It allows scripts to be run on a
periodic basis, and these scripts can update the ClassAd for a computer.

More information about doing this can be found on the Hawkeye web page:

http://www.cs.wisc.edu/condor/hawkeye/

If you are interested in more clever ways to configure your Condor pool, you
really should check out the Bologna Batch System. It will open your eyes to the
number of cool ways that you can configure Condor. It is described in a short
paper on the Condor Web site.

http://www.cs.wisc.edu/condor/technical.html

 4

Enhancing Condor’s matchmaking
(Or, extending a computer’s ClassAd)

While some people have Condor pools where all of the computers are
effectively identical to each other, and it really does not matter where a job runs,
some pools are more diverse. You might prefer to run a job on one computer
instead of another, when possible, or you might even insist upon it. The easiest
way to do this is to add extra attributes to a computer’s ClassAd.

As we saw above, a computer is described with a series of attributes, called a
ClassAd. You can add any attributes you like to the computer’s ClassAd. Here
are three examples where you would want to extend the computer’s ClassAd:

1) A set of computers have a locked license to a particular piece of
software. Or perhaps the software is only installed on a set of particular
computers.

2) Some computers are owned by a particular research group, and you
prefer to run on their computers first, if they are available.

3) You want to periodically run a benchmark on a computer (network
bandwidth? CPU speed? Your choice) and allow jobs to select
computers based on this benchmark.

Here’s how to do each one:

1) Assume you have MATLAB installed. For those computer, you put this in
your condor_config_file:

HaveMatlab = TRUE
STARTD_EXPRS = HAVE_MATLAB

Then in your jobs, put:

Requirements = (HaveMatlab =?= TRUE)

2) Assume some computers are owned by the physics group. For those
computers, put into their configuration files:

OwnedBy = "physics"
STARTD_EXPRS = OwnedBy

The jobs have:

Rank = (OwnedBy == "physics")

1

2

3

4

 5

This was the above failed job.
3

009 (018.000.000) 04/04 22:02:40 Job was aborted by the user.
 via condor_rm (by user roy)
...
I resubmitted the job a few minutes later
000 (019.000.000) 04/04 22:09:23 Job submitted from host:
<128.105.121.21:33944>
...
And the job ran a few seconds after that
001 (019.000.000) 04/04 22:09:28 Job executing on host:
<128.105.121.21:33943>
......
The job has finished.
005 (019.000.000) 04/04 22:09:33 Job terminated.
 (1) Normal termination (return value 0)

Without the log file, I would have not learned any of this information, nor seen
the timeline for my job’s lifetime. You should always specify a log file when
you submit a job. Never submit a job without a log file. One day you will need
the information in the log file.

Note that you can have multiple jobs using the same log file. You can tell which
job is associated with each message by examining the numbers in parentheses.
For example, the last message above has (019.000.000) in it. That means cluster
19, process 0, sub-process 0. In the condor_q display, you would see it listed as
19.0. (Sub-process is shown for historical reasons, and is not used in Condor
anymore.)

 16

Advanced condor_q usage

When you submit a job to Condor, you probably know that you can get
information about the job using condor_q:

% condor_q
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
22.0 roy 4/4 22:29 0+00:00:21 R 0 0.0 analysis1 Hello 5
1 jobs; 1 idle, 0 running, 0 held

Some people are unaware that they can find out where their job is running:

% condor_q –run
ID OWNER SUBMITTED RUN_TIME HOST(S)
22.0 roy 4/4 22:29 0+00:00:28 chopin.cs.wisc.edu

The –run argument is a nice complement to the basic information that condor_q
provides. But it does not tell you everything that Condor knows about your job.
You can find out all sorts of details about your job if you ask condor_q nicely,
using the –l option:

% condor_q –l

MyType = "Job"
TargetType = "Machine"
ClusterId = 22
QDate = 1081135762
...
JobUniverse = 5
UserLog = "/scratch/roy/personal-condor/simple/van.log"
Requirements = (Arch == "INTEL") && (OpSys == "LINUX")
 && (Disk >= DiskUsage)
 && ((Memory * 1024) >= ImageSize)
 && (TARGET.FileSystemDomain == MY.FileSystemDomain)
RemoteHost = "chopin.cs.wisc.edu"
...

The information you see here is a ClassAd. ClassAds are essentially lists of
name-value pairs. Details about ClassAds are in the manual. The ClassAd listed
here is incomplete, to simplify this discussion. The information in the ClassAd
can be very useful, because you can customize the output that condor_q reports.
What if you submitted multiple jobs to Condor, from different universes? As
you can see from the above output, you normally cannot even tell which
universe a job is in. normally

But notice above that we could find the JobUniverse with the –l option. A bit of
probing would show you that vanilla jobs have a JobUniverse of 5, while

1

2

3

 15

periodic_release = (CurrentTime – EnteredCurrentStatus) > 3600
4

If you prefer to have your job simply killed instead of being put on hold, you
can do that with the periodic_remove expression instead of periodic_hold.

These expressions can refer to anything in the Job ClassAd. You can look at the
ClassAd with condor_q –l to see what attributes you can refer to.

On Exit Expressions
On exit expressions are like periodic expressions, except that they are evaluated
when a job completes, not while it is executing. By default, on_exit_remove is
always true, so when a job finishes, it is removed from the queue. If you set it to
be false, it would always rerun the job. You probably never want that behavior.

But what if you have an ill-behaved job that, if it exits with a segmentation fault
it should be restarted, in order to give it another chance? You can do that:

on_exit_remove = !((ExitBySignal == True) && (ExitSignal == 4))
5

Similarly, you could put the job on hold with on_exit_hold. This would let you
look at the job and decide if you want to remove it with condor_rm or run it
again with condor_release.

 6

Job policies standard universe jobs have a JobUniverse of 1.You can constrain condor_q to
show you just the vanilla jobs by referring to the Job Universe:
 Condor allows you to have great control over the running of a job, in several

different ways.

Job Priorities
You can control the order in which your jobs are run on the Condor pool by
setting the job priority of your job. Jobs with a higher priority run first. For
instance, if some of your jobs are more important than others, you can set the
following in your submit file:

priority = 10

Jobs with a higher priority will run before jobs with lower priority—assuming
everything else is equal. If you have jobs with different requirements, a lower
priority job may run first, simply because it is able to run and the higher priority
job is unable to run. Job priorities range from -20 to +20.

This does not affect interaction with other users’s jobs. Just because you set your
jobs to have a high priority does not mean that you get to run before other
people. It only affects the relative ordering of your jobs.

Periodic Expressions
Not all jobs are well-behaved. What if you have a job that you know must run
less than one hour, but every so often it gets into an infinite loop and runs
forever. If you run the jobs again, it will probably work. Yes, you should fix
your job, but until you do, Condor can help. You can have Condor periodically
check your job and put it on hold if it has been running to long. For instance,
you can do:

periodic_hold = (CurrentTime - JobCurrentStartDate) > 3600

This will put your job on hold after about an hour (Condor doesn’t check every
second, so it may be a bit more than an hour), and that will remove it from the
computer it is running on. You can do run condor_release to start it again, or
you can have another periodic expression to try it again:

periodic_release = TRUE

Or perhaps, if you wanted to release it from hold after at least an hour passed by,
you could do:

1

2

3

 7

% condor_q -constraint 'JobUniverse == 5'
4

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
22.0 roy 4/4 22:29 0+00:04:18 R 0 0.0 analysis1 Hello 5

You can constrain based on any attribute in the ClassAd. See the condor_status
manual page for more information about using constraints.

You can also tell condor_q to format its output differently. For instance, what if
you were annoyed because condor_q chopped off the output in the above
example? In fact, condor_q did chop off the arugments: the second argument to
the analysis program was 500, not 5. You can use the format command to both
show attributes that condor_q does not show, and to show the attributes without
being chopped off. For example, to show the job identifier, the job universe, and
the arguments, you could do: (The command is one line, but formatted for
clarity.)

% condor_q -format "%d" ClusterId -format ".%d" ProcId \
5

 -format ": %d" JobUniverse -format " %s\n" Args
22.0: 5 Hello 500
23.0: 1 Hello 500

The format command uses flags that are identical to the flags for the C printf()
function. If you are familiar with that function, you’re all set. If not, check out
the man pages, or pick up a book on C.

The format command can be extremely useful for getting customized output.
Because the format arguments are so long, you may wish to use a script.

You’ll notice that the job universe was printed as a number. There is no easy
way to have the –format command do translations on the data, though you could
use a simple script to do such translations for you. For instance:

% condor_q -format "%d" ClusterId -format ".%d" ProcId \
 -format ": =U%d" JobUniverse -format " %s\n" Args \
 | sed -e "s/=U5/Vanilla/" -e "s/=U1/Std /"
24.0: Vanilla Hello 500
25.0: Std Hello 500

6

 14

Clever use of condor_status the merge job. If there are any fatal errors, it will create a rescue DAG: you can
fix the cause of the error, submit the rescue DAG, and DAGMan will resume
where it left off.

You probably know that you can find information about all the computers in
your Condor pool with the condor_status command:

DAGMan provides a slew of features to control how DAGs are run. One feature
is the ability to run a script just before or after a job finishes. This script is not a
Condor job, but is directly executed on the computer from which you submit
your DAG.

% condor_status

Name OpSys Arch State Actvty LoadAv Mem ActvtyTime
abulafia.cs.w LINUX INTEL Claimed Busy 1.000 501 0+09:24:57
adenine.stat. LINUX INTEL Owner Idle 0.390 1006 0+00:00:04
algonquin.sta LINUX INTEL Owner Idle 0.000 501 5+20:08:46
...

You can find out all the information you would like about a computer with the -l
argument: (The output has been trimmed to fit the space.)

% condor_status -l c2-022.cs.wisc.edu
MyType = "Machine"
TargetType = "Job"
Name = "vm1@c2-022.cs.wisc.edu"
Machine = "c2-022.cs.wisc.edu"
...
OpSys = "LINUX"
State = "Claimed"
EnteredCurrentState = 1081138050
Activity = "Busy"
...
Start = (TARGET.ImageSize <= ((Memory - 15) * 1024))
RemoteUser = "roy@cs.wisc.edu"
ClientMachine = "beak.cs.wisc.edu"
...

This is a ClassAd, just like the condor_q example above. Notice that the Name
attribute contains the “vm1@”. You will only see this on a computer with
multiple virtual machines—which usually correspond to having multiple CPUs.
The Machine name is the name without the virtual machine identifier.

Now that we know the attributes, we can tell condor_status to only show us
specific computers. For example, we can see all Linux computers that are
claimed by a user. (A claimed computer is either running a job, or just about to.)

% condor_status -constraint \
 'State == "Claimed" && OpSys == "LINUX"'

Name OpSys Arch State Actvty LoadAv Mem ActvtyTime
abulafia.cs. LINUX INTEL Claimed Suspended 0.330 501 0+00:03:33
anfrom.cs.wi LINUX INTEL Claimed Busy 1.000 248 0+13:08:17
arosa.stat.w LINUX INTEL Claimed Busy 0.000 247 0+06:05:04

1

For example, to satisfy the first user request above—“how do I run a script right
after my job completes”—you can make a very simple DAG like this:

2

3

 13

Job A myjob
2

Script POST A myscript

After the job completes, DAGMan will run “myscript”.

DAGMan can be used in many situations for many problems. It is not unusual to
find users that create very small DAGs, and we also people who have regularly
used DAGs with thousands of jobs in them. DAGMan works well in both
scenarios.

This short introduction just scratches the surface of what DAGMan can do. See
Section 2.11 of the Condor manual for more information about DAGMan.

 8

Controlling sets of jobs
This output may be dissatisfying to you though, because the computer names are
chopped off. Just like we can specify a format for condor_q, we can specify a
format for condor_status, and then you will get the exact information you want.

A common question we get from users is something like, “I want to run a script
after my job runs, but I don’t see an option for it that I can put into my submit
file”. Another common question is, “I have three jobs, and when they are done, I
want to merge the output of each of them with another job. How do I do it?”

There are no options to condor_submit to do these things. But all is not lost:
Condor provides an excellent facility called DAGMan for controlling sets of
jobs. Let’s look at the second example first: run three jobs, then another job to
merge the output of these jobs. We have to assume that you can provide the job
that can merge the output, because Condor will not do that for you.

Let’s say that your three jobs are in three submit files names job1.job, job2.job,
and job3.job, and you have a merge job in a submit file named merge-output.job.
You then describe these jobs and their relationships in a DAG file. DAG is an
acronym for directed acyclic graph. If you can draw non-looping arrows
between your jobs to show their order like the picture below, you have a DAG.

Job 1 Job 3Job 2

Merge

Create this DAG file:

Job job1 job1.job
Job job2 job2.job
Job job3 job3.job
Job merge merge-output.job
Parent job1 job2 job3 Child merge.job

This file specifies a mapping between names (like job1) and files (like job1.job).
It also says which jobs should run before other jobs. In this case, jobs 1, 2, and 3
will all run before merge.job, as shown in the picture above.

Note that each submit file must contain exactly one job in it. You cannot
combine jobs into a single submit file.

You are all set. Just submit your jobs with condor_submit_dag, and DAGMan
will submit all of your jobs to Condor in the correct order. It will submit the first
three jobs and wait until all three have finished successfully before submitting

1

 9

% condor_status -constraint \
 'State == "Claimed" && OpSys == "LINUX"' \

4

 -format "%s:\t" Name -format "%s\t" OpSys \
 -format "%s\t" State -format "%s\t" Activity \
 -format "%s\n" RemoteUser | head -10

anfrom.cs.wisc.edu: LINUX Claimed Busy roy@cs.wisc.edu
arosa.stat.wisc.edu: LINUX Claimed Busy roy@cs.wisc.edu
barney.cs.wisc.edu: LINUX Claimed Suspended roy@cs.wisc.edu

Notice how we combined both the constraint and the format. Also note the use
of \t to include tabs in the output. In general, it is hard to get perfectly neat
output using the –format option, but at least you get exactly the information you
want. However, you can use printf-style attributes to get slightly better output.
For instance, if you know that none of your computer names is more than 25
characters long, you can do this:

condor_status -constraint 'State == "Claimed"' \
5

 -format "%25.25s: " Name -format "%s\n" RemoteUser

 adenine.stat.wisc.edu: roy@cs.wisc.edu
 anfrom.cs.wisc.edu: roy@cs.wisc.edu
 arosa.stat.wisc.edu: roy@cs.wisc.edu

Note, if you try to print attribute names that don’t exist, or you use the wrong
printf-style flags (like %s for a floating-point number) you may have surprising
results, or even crashes. Some attributes, like RemoteUser, only exist when a job
is running.

 12

Why won’t my job run? Check the Requirements expression below:

 Requirements = (OpSys == "WINNT") && (Arch == "INTEL") && (Disk
>= DiskUsage) && ((Memory * 1024) >= ImageSize) &&
(TARGET.FileSystemDomain == MY.FileSystemDomain)

A common question from new users is “why won’t my job run?” They submit
their job, but it sits idly in the queue. Or perhaps it runs, but it only runs on the
computer it was submitted from, and not any other computer.

Great—no computers can be used because of my jobs’s requirements? Now
what?

First, check the log file. Did it actually run for a very brief time, but repeatedly
fails? See the example above in the section on log files.

If you are one of the lucky few, you can use condor_analyze to answer this
question for you. This is an enhanced version of condor_q that will tell you
which of your requirements (or which computer requirements are failing). It is
currently only available as a contrib. module on RedHat Linux, but it will be
available on more platforms in the future.

Another common mistake is to have forgotten to tell Condor to transfer files.
Condor decides that two computers have a shared filesystem (like NFS) if they
are in the same FILESYSTEM_DOMAIN. Two common problems arise. First,
the computers share a file system, but the FILESYSTEM_DOMAIN is
configured differently on each computer. Instead of $(FULL_HOSTNAME),
use the domain name your computers are in. For instance, if you are in the
example.com domain, set FILESYTEM_DOMAIN to “example.com”. Second,
if the computers do not share a file system, then you need to transfer files. (On
Windows, you usually need to transfer files.) See Section 2.5.4 for information
on how to transfer files. You will add a couple of lines to your submit file,
probably something like this:

You can analyze this by hand without much difficulty though. Here’s what you
do:

1) Look at the details of your job. Assuming your job has an id of 30.0, you can
do:

should_transfer_files = YES
when_to_transfer_ouput = ON_EXIT
transfer_input_files = file1, file2

You do not need to specify files like your executable or your standard input file
in your transfer_input_files statement: Condor will do those for you
automatically.

Make sure that there are computers in your Condor pool that are not busy, and
are willing to run jobs. If a computer is busy (have you configured it to not
accept jobs when the keyboard is busy?) or running a job, it will not run your
new jobs until it is no longer occupied.

If these three common problems don’t help you in getting your job running, you
may need to get your hands a bit dirtier and look under the hood. We will start
simple with condor_q’s analyze option. I submitted a job that sat idle, and
condor_q can tell me: (I elided some of the output for clarity.)

% condor_q -analyze
030.000: Run analysis summary. Of 2 machines,
 2 are rejected by your job's requirements
WARNING: Be advised:
 No resources matched request's constraints

1

2

 11

condor_q –l 30.0
3

2) Choose a computer that you believe your job should be able to run on.
Pretend the computer’s name is houdin.example.com:

condor_status –l houdin.example.com
4

3) The job and the computer both have a list of requirements. (The computer
lists the requirements in the Start expression.) The job’s requirements state what
must be true about a computer, and the computer’s requirements state what must
be true about the job. If either of these requirements expressions are not satisfied,
then the job will not run.

In the example above, when I looked at the computer, I found:

OpSys = "LINUX"
5

but the job requires it to be WINNT. There is the crux of my problem: the
computer is running Linux, but I require Windows for my job.

Sometimes it takes a while to go through all of the expressions to find the
problem, but it usually will help you track down your problem. It will also teach
a lot about how Condor works.

 10

