

J/ψ Production in $\sqrt{S_{NN}}=200$ GeV Au+Au Collisions at PHENIX

RUPRECHT-KARLS-UNIVERSITÄT

MinJung Kweon Heidelberg University

PI Lunch Meeting, May. 16. 2006.

Outline

Physical Background

- Why Quarkonia?
- Quarkonia in QGP
- Charmonia Production Properties in Nuclear Collision

Experimental Setup

- PHENIX Detector
- Analysis Method

<u>Result</u>

- Previous experiment : SPS Result
- RHIC Result

Summary

Why Quarkonia?

• Quarkonia : bound states of a heavy quark and its antiquark

mc ~ 1.2 – 1.5 GeV mb ~ 4.5 – 4.8 GeV can apply non-relativistic potential theory

 Quarkonium spectroscopy from non-relativistic potential theory
 Ref) H. Satz, hep-ph/0512217

state	J/ψ	χ_c	ψ'	Υ	χ_b	Υ'	χ_b'	Υ''
mass $[GeV]$	3.10	3.53	3.68	9.46	9.99	10.02	10.26	10.36
$\Delta E \; [\text{GeV}]$	0.64	smaller 0.20	0.05	1.10	0.67	0.54	0.31	0.20
$\Delta M \; [\text{GeV}]$	0.02	-0.03	0.03	0.06	-0.06	-0.06	-0.08	-0.07
r_0 [fm]	0.50	<i>larger</i> 0.72	0.90	0.28	0.44	0.56	0.68	0.78

Quarkonia in QGP

- What happens in QGP to the much smaller quarkonia?
- When do they become dissociated?

Disappearance of specific quarkonia signals the presence of a deconfined medium of a specific temperature.

Critical Temperature

 For two light as well as for two light plus one heavier quark flavor, most studies indicate Tc=175+-10 MeV

T-dependence of Bound State Radii for J/ ψ and for χ_c / ψ'

 Divergence of the radii defines quite well the different dissociation points

Quarkonium dissociation temperatures

state	$\mathrm{J}/\psi(1S)$	$\chi_c(1\mathrm{P})$	$\psi'(2S)$	$\Upsilon(1S)$	$\chi_b(1P)$	$\Upsilon(2S)$	$\chi_b(2P)$	$\Upsilon(3S)$
T_d/T_c	2.10	1.16	1.12	> 4.0	1.76	1.60	1.19	1.17

Schematic View of Dissociation Sequence

- With increasing temperature the different charmonium states "melt" sequentially as function of their binding strength;
- The most loosely bound state disappears first, the ground state last.
- The dissociation points of the different quarkonium states provide a way to measure the temperature of the medium.

Charmonium Production in Nuclear Collisions

- Possible/different effects impacting on quarkonium production due to the produced medium
 - Suppression by comover collisions
 - Suppression by color screening
 - Enhancement by recombination
 - Initial state suppression
- Normal nuclear absorption : effect due to the interaction with the surrounding nuclear matter initially produced need accounted by p-A collision

Suppression by comover collisions

Energy Density

J/ψ suppression by comover collision : dissociation by interaction with hadronic comover

Little or no prior suppression in the hadronic regime.

Ref) S. J. Brodsky and A. H. Mueller, Phys. Lett. 206 B (1998) 685; N. Armesto and A. Capella, Phys. Lett. B 430 (1998) 23.

Suppression by Color Screening

- Produced medium affects the intermediate excited states,
- Stepwise onset of suppression
- Sequential J/ψ suppression by color screening

Enhancement through Recombination

- c from one NN collision can also bind with a \bar{c} from another NN collision \implies enhancement J/ ψ production.
- Combination of random c and \bar{c} quarks from different primary nucleon-nucleon interactions becomes more and more likely with increasing energy.

Ref) P. Braun-Munzinger and J. Stachel, Nucl. Phys. A690 (2001) 119; R. L. Thews et al., Phys. Rev. C 63 (2001) 054905

Initial State Suppression

 At large enough A and energy, the density of partons in the transverse plane becomes so large
 partons percolate, producing an internal connected network

sufficient to resolve charmonia

This scenario is similar to suppression by color screening.
It is possible to calculate the percolation point, but its effect on the different charmonium states is not evident.

Experimental Setup

Energy Scale of Heavy-Ion Collisions

- In a high energy heavy-ion collision, a large amount of energy is deposited in a very small volume
- Au+Au collision at RHIC
 - Total energy for the nucleus :
 - 100 GeV * 197 nucleons = 19.7 TeV
 - For collider, lab frame = center of mass frame ; $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - Total of 39.4 TeV is for a short time in a very small volume
- Pb+Pb collision at LHC in CERN (upcoming)
 - Total energy for the nucleus :
 - 2.76 TeV * 207 nucleons = 571 TeV
 - Total 1143 TeV

Energy density vs. maximum collision energies

• Energy density estimates vs. maximum collision energies, for different accelerators, compared to corresponding temperature

• In all cases the energy densities exceed the deconfinement value $\epsilon(T_c) \sim 0.5-1.0 \text{ GeV/fm}^3$

RHIC Facility

- Relativistic Heavy Ion Collider online since 2000.
- Design Gold Gold energy and luminosity achieved.
- All experiments successfully taking data

PHENIX Measurement capability

Year	lons	Luminosity	#Events
2003	p+p @200GeV	350 nb ⁻¹	
	D+Au @200GeV	2.74 nb ⁻¹	
2004	Au+Au @200GeV	241 μb ⁻¹	1.5 x 10 ⁹

PHENIX Experiment

J/w measurement from Run4

Reconstructed ~ 600 J/ ψ \rightarrow e+e- and ~ 5000 J/ ψ \rightarrow m+m-

Invariant J/ψ Yield

Invariant yield :

$$B_{\mu\mu}\frac{dN}{dy}(AA \to J/\psi \to \mu^{+}\mu^{-}) = \frac{N_{J/\psi}}{\Delta y \ A\varepsilon_{J/\psi}\varepsilon_{BBC}^{J/\psi}} / \frac{N_{MB}}{\varepsilon_{BBC}^{MB}}$$

 $N_{J/\psi}$: number of J/ψ 's reconstructed

- $A\varepsilon^{J/\psi}$: probability for a J/ψ thrown and embedded into real data to be found
 - (considering reconstruction and trigger efficiency)
- N_{MB} : total number of events
- $\varepsilon_{\scriptscriptstyle BBC}^{J/\psi}$: BBC trigger efficiency for events with a J/ψ
- ε_{BBC}^{MB} : BBC trigger efficiency for minimum bias events

For Au+Au collision : $\mathcal{E}_{BBC}^{MB} \sim \mathcal{E}_{BBC}^{J/\psi}$

Analysis Procedure

More Detail of Analysis

- Data sets and production S
- Centrality determination
- Cut Variables 🚫
- Efficiency x Acceptance
- Signal extraction
- Systematic (S)

Centrality Determination

Efficiency Determination

- Generate J/ψ using PYTHIA, selecting only those within acceptance
- Embed them in real minimum bias data
 - Match simulated J/ Ψ vertex to real data vertex
 - Realistic response for simulation
 - Consider high voltage and electronics condition of MuTR
 - Consider intrinsic efficiency of MuID
- Measure combined trigger(Level2) and reconstruction efficiencies

Dimuon Reconstruction Efficiency

SOUTH

NORTH

Estimating Combinatorial Background and Signal counting (Event Mixing Used) – Periph.

RESULTS 07-05-2005 (JLN)

SIGNAL INFORMATION:

PRO.64 File L2Filtered Segments South Arm and full ZVertex range

Centrality = 60-93 Percent Central

Mass Range 2.6-3.6 GeV (~ +/-2.5sig)

Like-Sign: S=235.0 +/- 20.4 S/B=2.610

50

Gold-Gold Run-4

- Artificial events constructed from data by mixing particles (tracks) from different events to eliminate possible correlations.
- For the signal extraction, we used event mixing method with the lvl2 filtered set.

, All Rapidity

Example plots)

Mixing(+-): S=204.9 +/- 18.0 S/B=1.706 Mixing(+-): Ga+Ex Fit S=172.6 +/- 16.2 Mixing(+-): Count-ExpFit S=187.3 +/- 18.0 30 Mixing(++): S= 5.4 +/- 5.9 Mixing(--): S= 4.1 +/- 7.9 20 Blue Bands are +/-2 Percent Systematic 2 3 1 FG(++) - Mixed Bkgd FG(--) - Mixed Bkgd South Arm : Centrality 60-93%, All Pt Singal = 204 + - 18(stat)+/-19(sys)2 1 3 2 Mass (GeV)

Estimating Combinatorial Background and Signal counting (Event Mixing Used) – Central.

Systematic Errors

- Error on Acceptance*Efficiency calculation
- Error on counting total number of events
- Error on subtracting background and extracting signal

Result

S-U collisions (NA38) at c.m. energy = 19.4 GeV Pb-Pb Collisions (NA50) at c.m. energy = 17.3 GeV , In-In Collisions (NA60) at c.m. energy = 17.3 GeV

 Charmoni pair produc • Normal nu

Ref) B. Alessandro et al. (NA50), Eur. Phys. J. C 33 (2004) 31.

- Charmonium production rates are measured relative to Drell-Yan pair production $c\sigma^{abs}_{Lab} = 4.18 \pm 0.35 \text{ mb}$
- Normal nuclear absorption is considered $\begin{cases} \sigma_{J/\psi}^{abs} = 4.18 \pm 0.35 \text{ mb} \\ \sigma_{\psi'}^{abs} = 7.3 \pm 1.6 \text{ mb} \end{cases}$

J/ ψ production in $\sqrt{S_{NN}}=200$ GeV p+p collisions

- Total cross section Ref) nucl-ex/0510020
 - = 2.61 + -0.20(fit) + -0.26(abs)µb
 - J/ψ dilepton decay branching ratio of 5.9%
 - PYTHIA predicted rapidity shape using GRV94HO parton distribution function
 - Uncertainty from different PDFs is less than 3%

J/ ψ production in $\sqrt{S_{NN}}$ = 200 GeV d+Au collisions

- Nuclear modification factor
 RdAu=σdAu/(2x197xσpp) vs. rapidity
- Bjorken variable x
 - Forward rapidity : x ~ 0.003 shadowing region
 - Backward rapidity : x ~ 0.09 anti-shadowing region
- nuclear absorption cross section is marginal at order 1-3mb

Nuclear Modification of J/ ψ production in $\sqrt{S_{NN}}=200$ GeV Au+Au collisions

Cold Nuclear Matter Effects

- Compared to R. Vogt prediction Ref) nucl-ex/0507032
 - assuming 3mb Nuclear Absorption and EKS98 Gluon Shadowing
- Evaluated from PHENIX d+Au results
 - σ_{abs} < 3mb and σ_{abs} of 1 mb is the best fit result.

Suppression Models

• Color screening, direct dissociation, co-mover scattering

Suppression + Recombination Models

- Better matching with results compared to suppression models.
- <u>At RHIC energy, recombination compensates stronger</u> suppression?

Predicted Feature : pr and Rapidity Narrowing

$<\rho_T^2 > vs.$ Ncol, BdN/dy vs. Rapidity

- Recombination predicts narrower p_T and rapidity distribution.
 - $< p_T^2 > vs.$ Ncol
 - Predictions of recombination model matches better.
 - BdN/dy vs. Rapidity
 - No significant change in rapidity shape compared to p+p result.
- But charm p_T and rapidity distributions at RHIC is open question.

Summary

- Theoretical background of the in-medium behavior of quarkonia are shown.
- PHENIX has measured J/ψ production as a function of several independent variables and compared with various theory.
 - Observed a factor 3 suppression for the most central events
 - Recombination/regeneration is needed in order not to overestimate the suppression when extrapolating from CERN experiments
 - No large modification of rapidity and transverse momentum distributions in comparing proton-proton but large error bar
- PHENIX hope to have more power on discerning various theories by reducing of our current systematic error and performing future measurement
- It is very challenging to construct models incorporating as many of the observed features as possible

BACKUP SLIDES

Quarkonium Spectroscopy

Quarkonium spectroscopy from non-relativistic potential

theory $V(r) = \sigma r - \frac{\alpha}{r}$								
state	J/ψ	χ_c	ψ'	Υ	χ_b	Υ'	χ_b'	Υ″
mass $[GeV]$	3.10	3.53	3.68	9.46	9.99	10.02	10.26	10.36
$\Delta E \; [\text{GeV}]$	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
$\Delta M \; [\text{GeV}]$	0.02	-0.03	0.03	0.06	-0.06	-0.06	-0.08	-0.07
r_0 [fm]	0.50	0.72	0.90	0.28	0.44	0.56	0.68	0.78

•Delta E : differences between the quarkonium masses and the open charm or beauty threshold

•Delta M : differences between the experimental and the calculated values, less than 1% •R0 : QQbar separation for the states

•Input parameters : $m_c = 1.25 \text{ GeV}, m_b = 4.65 \text{ GeV}, \sqrt{\sigma} = 0.445 \text{ GeV}, \alpha = \pi/12$

T-dependence of binding energy for J/ ψ and for χ_c / ψ'

J/ψ and χ_c spectral functions at different temperature (direct from lattice QCD calculation)

- Spectrum for the ground state J/ψ 0 remains essentially unchanged even at 1.5Tc.
 - At 3Tc, it has disappeared.
- In contrast, χ_c is already absent at 1.1T_c

Recent Lattice QCD results indicate J/ ψ spectral function may persist up to 3 T_c.

Temperature Bound < $3 T_c$ (?)

Normal Nuclear Absorption : Calculate Using Glauber Model

• Charmonia production follows the hard process cross-section

 $\sigma_{\rm p-A} = A \, \sigma_{\rm NN}$

• After production, charmonia states can interact with the surrounding nuclear matter with at given cross-section (σ_{abs})

- Taking into account both processes
 - Production of the charmonia state,
 - Possible absorption on it's way through nuclear matter, we get

$$rac{\sigma_{\mathrm{p-A}}}{A} = \sigma_0 rac{1}{(A-1)\sigma_{abs}} imes \ \int d^2b \ e^{-(A-1)T_A(\vec{b}) \ \sigma_{abs}}$$

 $T_A(ec{b})$: Nuclear thickness function

• Charmonia experimental cross-sections can be fitted using this Glauber model with 2 free parameters : σ_0 , σ_{abs}

NA50 σ_{abs} Result with Glauber Model

- J/ ψ and ψ ' results

Good Run Selection/Data Production

Data samples

• Take total ~1500 Million Minimum Bias events during the Run-4 Au+Au collision

Run selection

- Take into account :
 - MuTr/MuID HV conditions
 - Large number of MuTr clusters/event
 - Low MuTr cluster peak ADC value
 - A number of hot planes/packets or dead planes/packets in MuTr
 - Runs with low hit rate in MuTr or MuID
- Categorize simulation sets and real data sets based on this

Data production

• At CCF, processed ~78% of the entire Run-4 data sample using a Level-2 trigger filtered data sample

Cut Variables

Variables we have to cut on

- Rapidity
- Road depth (deep-deep) due to Level2
- Track z directional momentum (to match road depth)
- Level2 decision for corresponding arm
- Levle2 cuts on associated Level2 primitives
- BBC z-vertex

Additional quality variables

- Road to track association (DG0, DDG0)
- Track chisquare
- Vertex chisquare

Model Prediction for Transverse Momentum

pT Distribution

- Cu+Cu, Au+Au : mu+mu- channel
- Fit function : $A\left[1+(p_t/B)^2\right]^{-6}$

J/w Suppression vs Energy Density

- From theory, J/ψ survive up to ϵ ~10 GeV/fm³
- Suppression of the 40% coming from χ_c and ψ'
- 60% directly produced J/ψ 0.75 remain unaffected until much higher ε
- Onset of suppression occurs at the expected energy density
- J/ψ survival probability converges towards 50-60%

