

Universität Heidelberg

The Transition Radiation Detector for ALICE at LHC

MinJung Kweon for the ALICE TRD Collaboration Physikalisches Institut, Universität Heidelberg

Quarkonia Production

J/ψ Suppression

- screening of color charges
- "melting" of $c\bar{c}$, $b\bar{b}$ bound state
- at SPS, RHIC, LHC

J/ψ Enhancement

- large abundance of c-quark at LHC
- statistical combination to J/ ψ

Quarkonia Production

J/ψ Suppression

- screening of color charges
- "melting" of $c\bar{c}$, $b\bar{b}$ bound state
- at SPS, RHIC, LHC

J/ψ Enhancement

- large abundance of c-quark at LHC
- statistical combination to J/ ψ

Reconstruction: J/ψ , $\Upsilon \rightarrow e^+e^-$

- good electron PID
- large acceptance

QM09, Knoxville, 02 April 2009

Physics Observables Accessible with the TRD

Open Heavy Flavor Electrons

- inclusive electrons
- open charm, beauty from semi-electronic decay
- charm, beauty cross-section

Photon Conversions

- $\gamma \rightarrow e^+e^-$
- direct γ , π^{0} , η

Jets and High-p_T Hadrons

- trigger on high-p⊤ tracks
- energy loss in QGP
- medium-modified fragmentation functions

A Large Ion Collider Experiment

Collaboration: 31 countries, 109 institutes, > 1000 people

Working Principle of TRD (Transition Radiation Detector)

- Drift chambers with cathode pad readout at 10 MHz combined with a fiber/foam sandwich radiator in front
- Transition Radiation (TR) photons are absorbed by high-Z gas mixture (Xe + CO₂)

The ALICE TRD

- Surrounds ALICE TPC
 - radial position 2.9 < *r* < 3.7 m
 - maximal length 7 m
 - full azimuthal coverage
 - |η| < 0.9
- 540 detector modules arranged in:
 - ϕ : 18 super modules
 - *r* : 6 layers
 - *z*: 5 stacks
- 750 m² active area
- 28 m³ detector gas of Xe/CO₂
- X/X₀ \sim 24 %
- 1.7 ton
- 0.5 M Euro per super module

Collaborations for TRD: Bucharest, Darmstadt, Dubna, FH Cologne, Frankfurt, GSI, Heidelberg, Tokyo(CNS), Tsukuba, Worms

TRD Readout Chamber

Designed to be:

- TR absorption length: 1 cm for 10 keV
- drift field: 0.7 kV/cm
- drift time: $2 \mu s$
- gas gain: 5000

Readout Chamber Electronics

Multi Chip Module (MCM)

- PASA: PreAmplfier/ShAper
- TRAP: TRAcklet Processor
 - ADC, digital filter, clustering
 - tracklets calculation for trigger decision
 - raw data readout

<image><image><section-header>

Read Out Chamber

- 6/8 Read Out Boards (ROB)
 - MCMs equipped on ROB
- 1 linux based Detector Control System (DCS) board
 - configuration, FEE monitor
 - clock and trigger decoding and its distribution
- 2 Optical Readout Interfaces (ORI) for data shipping

Send data via ORI to Global Tracking Unit (GTU)

MinJung Kweon

Read Out Chamber

Global Tracking Unit

Installation at CERN

Trigger

- find and reconstruct high-pt tracks from "tracklets"
- calculate momentum
- apply various trigger schemes: di-lepton decay, jets, cosmics,...
- level-1 trigger decision after 6.5 μ s from collision

Raw Data Readout

- collect data from ROCs
- forward to DAQ

Electronics and Super module Integration

- Installation of electronics and water cooling
- Electronics testing
- Assembled in Heidelberg (1st one) and Münster (from 2nd ~)

RMS noise map of one layer of a SM

Very close to design goal

- 1000 *e* ≙ 1 ADC
- dead channels < 0.1 %

Installation at ALICE

- 1st TRD super module installed at October 2006
- 6th super module installed January 2009

Commissioning

ALICE cosmic runs (Dec. 2007, Jul.~Oct. 2008)

- 4-TRD super modules participated (total $\Delta \phi = 80^{\circ}$)
- combined running with other detectors
- TOF pretrigger
 - coincidence of two opposite modules
- GTU L1 trigger
 - 4 tracklets in one stack
 - single super module and one-to-many correlations between super modules
 - L1/L0 ~ 1/20, L1 rate 0.05 Hz
 - purity > 85 %
- 55 k events collected

TRD ready for beam in September 2008

Detector Control System

- User friendly detector control system based on PVSS-II
- Ensure safe/stable detector operation and monitor :
 - 90 power supplies
 - 1080 HV channels
 - 280 k on-detector CPUs
 - 1.2 M channels of preamplifiers and ADCs and digital filters
 - gas systems
 - cooling systems
 - trigger systems
- Based on tree structure of distributed Finite State Machines
- TRD can be operated by half a shift person

Cosmic Event Triggered

Calibration

- Drift velocity \approx 1.62 cm/µs and variation \approx 3.3 %, in the expected range from simulation
- Gain variation \approx 16 %, better than the expected ± 20 % \rightarrow important for trigger

Tracking Performance

*r*φ directional position resolution ≈ 350 µm at 0° incident angle

Various analysis on going:

- TPC-TRD track matching resolution
- alignment

- TRD provide excellent electron identification and fast trigger capability
- 4-TRD super modules were commissioned successfully
- For 2009 LHC run, 8 super modules will be ready
- Full TRD will be ready for 2011 run

TRD is ready and waiting for real collision!

Thank you for your attention!

BACKUP - Different version of plots or pictures

The Transition Radiation Detector for ALICE at LHC

MinJung Kweon for the ALICE TRD Collaboration Physikalisches Institut, Universität Heidelberg

Quarkonia Production

Development of Start of collision quark-gluon plasma Hadronization J/ψ Suppression Low (RHIC) 0 L energy screening of color charges • "melting" of cc, bb bound state • at SPS, RHIC, LHC High (LHC) energy J/ψ Enhancement گر ⊈ 1.2 **RHIC** data large abundance of c-quark at LHC statistical combination to J/ψ 0.8 0.6 Reconstruction: J/ψ , $\Upsilon \rightarrow e^+e^-$ 0.4 Model good electron PID 0.2 LHC RHIC large acceptance 0 350 100 150 200 250 300 50 N_{part}

• TOF pre-trigger setup

Cosmic Event Triggered

CosmicvEventsrariggered

