

Universität Heidelberg

Summary of Hard Probes 2012

"Heavy Particles"

MinJung Kweon University of Heidelberg July 16 2012, Group meeting Heavy flavours are produced in hard scattering processes in the early phase of the collisions

- Present from the early times
- In the highest density phase
- Travel and interact in the medium, experience the full collision history

provide underlying energy loss mechanism of heavy quarks and medium properties

Parton energy loss by:

- Medium-induced gluon radiation
- Collisions with medium partons

Depends on

- Colour charge (Casimir factor, $\Delta E_{q} > \Delta E_{u,d,s}$)
- Parton mass (dead cone effect, $\Delta E_{b} < \Delta E_{c} < ...$)

$$\Delta E_g > \Delta E_c > \Delta E_b$$

"suppression": $\pi > D > B$

Elliptic flow of heavy flavours

 \rightarrow information on medium transport properties: thermalization in QGP (low p_t) and path length dependence of the parton energy loss (high p_t)

- In HI collisions, electroweak bosons (γ, W, Z) are not expected to interact with hot and dense strongly interacting medium.
- Photons already studied at previous experiments, and LHC conditions (energy, luminosity) have made Z & W bosons available.
- Establish a reference for other particles whose properties change in the bulk or provide normalization to other processes.
- Profit from leptonic decays of W, Z bosons as they suffer negligible energy loss in the medium

Focus on PbPb results, select some of pp results

Tried to put together results of same observable from different experiments

- Υ(nS) in pp, PbPb
- χ_c in pp
- J/ ψ , J/ ψ from beauty hadrons in pp, PbPb
- ψ(2S) in pp, PbPb
- D mesons, muons, electrons from heavy flavour decays in pp
- Single muon and D mesons RAA
- Elliptic flow of D mesons
- Elliptic flow of J/ψ
- Photon, W, Z RAA
- Elliptic flow of Z boson

Only experimental sides are shown

$[\Upsilon(nS)/\Upsilon(1S)]_{PbPb} / [\Upsilon(nS)/\Upsilon(1S)]_{PF}$ and Nuclear Modification Factor

µ⁺µ⁻γ

NEW

CMS Experiment at LHC, CERN

CMS Experiment at LHC, CERN

mi section: 31 bt/Crossing: 8045444 / 2047

μ⁺μ

Data recorded: Thu Oct 14 08:17:48 2010 CEST Run/Event: 147929 / 30084678

Production of χ_c mesons studied with $\chi_c \rightarrow J/\psi + \gamma$ radiative decay tracker-seeded γ conversion

00.1.

n ²³ †'L _J	I ^G (J ^{PC})			
1 ³ P ₀	0+(0++)	χ _{c0} (1 <i>P</i>)	3,414.75	±0.31
1 ³ P1	0+(1++)	χ _{c1} (1 <i>P</i>)	3,510.66	±0.07
1 ³ P ₂	0+(2++)	$\chi_{c2}(1P)$	3,556.20	±0.09

dimuon |v| < 1.0: $p_{\tau}(\gamma) > 0.5 \text{ GeV}$

(which can change the results by up to around ± 2

J/Y from B-hadron's decay in pp collisions

rompt

round

GeV/c

2 ι_{J/ψ} (mm)

Christophe Suire Carlos Lourenço (CERN)

9

R_{AA} of Inclusive and Prompt J/ ψ

ALICE inclusive (low pt), CMS prompt (high pt)

R_{AA} of Inclusive and Prompt J/ ψ

Comparisons

RAA of Prompt(B \rightarrow) J/ ψ vs N_{part}

Not quite different from last QM results CMS has a plan to show finer binned results for both pt and Npart for coming QM

Double ratio of $[\psi(2S) / J/\psi]_{PbPb} / [\psi(2S) / J/\psi]_{pp}$

- For p_T >3 GeV/c and 1.6<|y|<2.4: For p_T >6.5 GeV/c and |y|<1.6: • large uncertainties on pp Indication of $\psi(2S)$ being less suppressed than J/ψ , but need more statistics (in particular pp)!
- $\psi(2S)$ are more suppressed than J/ψ

Energy dependence of HF cross sections

pp at $\sqrt{s} = 2.76$, 7 TeV: D mesons, muons, electrons

R_{AA} compilation

Charm and beauty: no evidence of mass effects yet (dead cone,)

Pions, charm and beauty RAA: similar. Hint of a hierarchy?

19

Elliptic flow of D

Hint of centrality dependence: $D^0 v_2^{}$ flow larger in less central collisions Comparable with charged hadrons elliptic flow

Challenge for the models: Describe both RAA and v2

16 p (GeV/c)

18

J/ψ elliptic flow

Sensitive to transport properties, and production mechanisms Primordial/Initial

pQCD: isotropic in phi.

Coalescence/Regeneration

Thermalized, flowing charm: large v2 Can light quarks move heavy quarks?

Measurement of isolated photon production in pp and PbPb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV \approx

Establish a baseline for further analyses with isolated photons

Study of Z Boson Production in PbPb Collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

Z elliptic flow is consistent with zero

$W^{\pm} \rightarrow \mu^{\pm} \nu$

Different yields expected for $W^+ \rightarrow \mu^+ \nu$ and $W^- \rightarrow \mu^- \nu$

- ♦ W production: At LO, W bosons are produced by fusion of a valence quark and an antiquark from the sea: ud → W⁺ and ūd → W⁻
 ♦ W is boosted in valence quark direction
- → Different phase space (rapidity) for W⁺ and W⁻
- W[±] decay into lepton+neutrino is not charge symmetric, due to V-A EWK coupling (v lefthanded)
 - \clubsuit different angular distributions for decay μ^+ and μ^-
- Strong isospin effect since Pb has higher d/u than proton
 - Cancels for $W^+ + W^-$

Production of Photon, W and Z bosons in PbPb collisions, scale with the number of binary NN interactions.

 $R_{AA} \approx 1$ (10-20% uncertainty)

Carriers of the electromagnetic and the weak force, their production and propagation in the medium results unaltered, for the region of mass/ p_T ~100 GeV/c

..... unlike other particles (strongly interacting hadrons and mesons) whose production in PbPb is strongly suppressed relative to pp.

Backup Slides

Feed-down fraction from the excited states

Y(nS) yield extraction: pp

Unbinned max likelihood fit

Signal

➡ 3 Crystal-ball: Gaussian core & power law tail

$$f_{CB}(m) = \begin{cases} \frac{N}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(m-m_0)^2}{2\sigma^2}\right), & \text{for } \frac{m-m_0}{\sigma} > -\alpha; \\ \frac{N}{\sqrt{2\pi\sigma}} \left(\frac{n}{|\alpha|}\right)^n \exp\left(-\frac{|\alpha|^2}{2}\right) \left(\frac{n}{|\alpha|} - |\alpha| - \frac{m-m_0}{\sigma}\right)^{-n}, & \text{for } \frac{m-m_0}{\sigma} \le -\alpha. \end{cases}$$

Free parameters:

- yield, resolution and mass for $\Upsilon(1S)$
- yield ratios: $\Upsilon(2S+3S)/\Upsilon(1S)$, $\Upsilon(2S)/\Upsilon(1S)$
- tail parameter, α (transition Gaussian \rightarrow power-law)

Fixed parameters:

- n (MC), exponent for tail description
- resolution forced to scale with PDG mass ratios

Background

- 2nd order polynomial
- Free parameters: all

$$\frac{\text{Raw ratios}}{(\text{no acceptance or efficiency corrected})}$$
$$\frac{\Upsilon(2S)}{\Upsilon(1S)}|_{pp} = 0.56 \pm 0.13 \pm 0.01$$
$$\frac{\Upsilon(3S)}{\Upsilon(1S)}|_{pp} = 0.41 \pm 0.11 \pm 0.02$$

Y(nS) yield extraction: PbPb

- Unbinned max likelihood fit
- Signal (same as for pp)
 - ♦ 3 Crystal-ball: Gaussian core & power law tail
 - Free parameters:
 - yield, resolution and mass for $\Upsilon(1S)$
 - yield ratios: $\Upsilon(2S+3S)/\Upsilon(1S)$, $\Upsilon(2S)/\Upsilon(1S)$
 - tail parameter, α (transition Gaussian \rightarrow power-law)
 - Fixed parameters:
 - n (MC), exponent for tail description
 - resolution forced to scale with PDG mass ratios
- **Background** ('shoulder'-like structure)
 - exponential x error function
 - Free parameters: all $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$
 - exponential decay constant
 - error fct shoulder mean and width

$$\frac{\text{Raw ratios (0-100\%)}}{(\text{no acceptance or efficiency corrected})}$$
$$\frac{\Upsilon(2S)}{\Upsilon(1S)}|_{PbPb} = 0.12 \pm 0.03 \pm 0.01$$
$$\frac{\Upsilon(3S)}{\Upsilon(1S)}|_{PbPb} < 0.07 (95\% C.L.)$$

