PI Monday Morning Meeting 24.01.2011

Student report

Daniel Lohner

I) TRD PID:

dEdx normalization in experimental data

II) Azimuthal anisotropy of the π^{0} yield v2 and $R_{\Lambda\Lambda}$ & Discovery of Jet Quenching at RHIC Method to determine v2 for π° Reaction Plane Angle Ψ **Reaction Plane Resolution** π^{0} reconstruction via photon conversions π° yield and R_A w.r.t. reaction plane -> v2 Status and Outlook

I) TRD PID:

dEdx normalization in experimental data

II) Azimuthal anisotropy of the π^{0} yield v2 and R_{*} & Discovery of Jet Quenching at RHIC Method to determine v2 for π° Reaction Plane Angle Ψ **Reaction Plane Resolution** π^{0} reconstruction via photon conversions π^{0} yield w.r.t. reaction plane -> v2 Status and Outlook

TRD PID: dEdx normalization

- Q of tracklet = Accumulated Q of attached clusters
- 2 options to normalize:
 - Based on geometrical track length in drift volume
 - Normalize Q for every cluster by the 'space' which is occupied by the cluster (depends strongly on calibration)
- We have to handle the loss of clusters correctly
 - Due to energy fluctuations?
 - Due to systematic effects?

We observed systematic loss (TRD weekly meeting, 13.01.2011)

What is the length of the tracklets?

PH distribution shows that we lose signal at large drift times

- Besidesnormal tracklets we observed 'shorter' tracklets with systematic loss
 - Those make up 20 % off all reconstructed tracklets

• We need to understand these observations

Daniel Lohner, University of Heidelberg, lohner@physi.uni-heidelberg.de

I) TRD PID:

dEdx normalization in experimental data

II) Azimuthal anisotropy of the π^{0} yield v2 and $R_{_{AA}}$ & Discovery of Jet Quenching at RHIC

Method to determine v2 for π°

Reaction Plane Angle Ψ

Reaction Plane Resolution

 π ° reconstruction via photon conversions

 π^{o} yield w.r.t. reaction plane -> v2

Status and Outlook

Jet Quenching describes the in-medium energy loss of high momentum partons

- No energy loss for γ in QGP
 - Linear Scaling of the direct photon yield from pp to AuAu collisions

$$- R_{AA} = 1$$

 $-R_{AA}<1$

- Jet quenching = Energy loss of partons in the QGP
 - Suppression of i.e. the π^{0} yield in AuAu collisions at large momenta

 $R_{AA} = \frac{dN_{AA}/dp_t}{N_{coll} dN_{pp}/dp_t}$

Discovery of Jet Quenching at RHIC

(PHENIX Collaboration, S.S. Adler et al., Phys. Rev. Lett. 96, 202 301 (2006))

Path length dependent π^{o} suppression

Anisotropy of the $\pi^{\,\text{o}}$ yield observed at RHIC

(PHENIX Collaboration, A. Adare et al., Phys. Rev. Lett. 105, 142 301 (2010))

- v2 is a measure of the magnitude of the anisotropy
- v2 increases with decreasing centrality
 - Low momenta: Collective flow
 - Higher momenta: Path length dependent jet quenching

I) TRD PID:

dEdx normalization in experimental data

II) Azimuthal anisotropy of the π^{0} yield v2 and R_{AA} & Discovery of Jet Quenching at RHIC Method to determine v2 for π^{0} Reaction Plane Angle Ψ Reaction Plane Resolution π^{0} reconstruction via photon conversions π^{0} yield w.r.t. reaction plane -> v2 Status and Outlook

I) TRD PID:

dEdx normalization in experimental data

II) Azimuthal anisotropy of the π^{0} yield v2 and R_{AA} & Discovery of Jet Quenching at RHIC Method to determine v2 for π^{0} Reaction Plane Angle Ψ Reaction Plane Resolution

> π^{o} reconstruction via photon conversions π^{o} yield w.r.t. reaction plane -> v2 Status and Outlook

Reaction Plane Determination

Calculate Q vector from AOD tracks (weight=pt)

$$Q_x \equiv Q_n \cos(n\Psi_n) = \sum_i^M w_i \cos(n\phi_i),$$

$$Q_y \equiv Q_n \sin(n\Psi_n) = \sum_i^M w_i \sin(n\phi_i),$$

$$\Psi_n = \frac{1}{n} \tan^{-1}\left(\frac{Q_y}{Q_x}\right),$$

• Select TPC tracks for the RP angle calculation

Phenix AN: "Measurements of elliptic and hexadecapole f ow in Au+Au collisions at s = 200 GeV"

RP angular distribution

• Acceptance (holes) in ITS

I) TRD PID:

dEdx normalization in experimental data

II) Azimuthal anisotropy of the π^{0} yield v2 and R_{AA} & Discovery of Jet Quenching at RHIC Method to determine v2 for π^{0} Reaction Plane Angle Ψ Reaction Plane Resolution π^{0} reconstruction via photon conversions π^{0} yield w.r.t. reaction plane -> v2

Status and Outlook

Calculate Reaction Plane Resolution with two subevent method

- Need RP resolution to correct measured v2: $v_2 = \frac{v_{2,raw}}{\sigma_{raw}}$
- Divide event into 2 subevents (e.g. by random)

1. option
$$\langle \cos(2(\Psi_2^{S(N)} - \Psi_{RP})) \rangle = \sqrt{\langle \cos(2(\Psi_2^S - \Psi_2^N)) \rangle}$$

2. option
$$\frac{dN}{d\Delta\phi_R} = \frac{e^{-\chi_I^2}}{2} \left[\frac{2}{\pi} (1+\chi_I^2) + z(I_0(z) + L_0(z)) + \chi_I^2(I_1(z) + L_1(z)) \right]$$

$$\left\langle \cos(km(\Psi_m - \Psi_{RP})) \right\rangle = \frac{\sqrt{\pi}}{2\sqrt{2}} \chi_m \exp(-\chi_m^2/4) \left[I_{\frac{k-1}{2}}(\chi_m^2/4) + I_{\frac{k+1}{2}}(\chi_m^2/4) \right]$$

Phenix AN: "Measurements of elliptic and hexadecapole f ow in Au+Au collisions at s = 200 GeV"

RP Resolution Fit

There is some "background" which is here handeled by additional parameter

RP Resolution Correction Factor

 Difference between Fit and Mean due to "background" mentioned before

Daniel Lohner, University of Heidelberg, lohner@physi.uni-heidelberg.de

10

20

30

50

40

60

70

centrality percentile

80

0.1

I) TRD PID:

dEdx normalization in experimental data

II) Azimuthal anisotropy of the π^{0} yield v2 and R_{AA} & Discovery of Jet Quenching at RHIC Method to determine v2 for π^{0} Reaction Plane Angle Ψ Reaction Plane Resolution π^{0} reconstruction via photon conversions π^{0} yield w.r.t. reaction plane -> v2 Status and Outlook

π^{o} Reconstruction in pp

Counts/ 2.0e+00 MeV/c

- $\pi^{\circ} \rightarrow 2 \gamma$ (99%)
- π^{0} decays at primary vertex (c τ = 25.1 nm)

Reconstruct γ conversions into e⁺e⁻
 (conversion probability X₀=8 %)

ALICE Collaboration, Kathrin Koch, hard probes 2010

I) TRD PID:

dEdx normalization in experimental data

II) Azimuthal anisotropy of the π^{0} yield v2 and R_{AA} & Discovery of Jet Quenching at RHIC Method to determine v2 for π^{0} Reaction Plane Angle Ψ Reaction Plane Resolution π^{0} reconstruction via photon conversions π^{0} yield w.r.t. reaction plane -> v2 Status and Outlook

- Fill Inv. Mass Histograms with different bins for pt,centrality and (6) bins for Δφ(φ w.r.t. reaction plane) Same for background
- 2) Extract π° yield in each $\Delta \varphi$ bin at given centrality and pt
- 3) Fit v2 (see figure)
- 4) Correct v2 by the reaction plane resolution factor

Rui Wei, High pT Azimuthal Anisotropy in Au Au collisions at 200 GeV, 2010

II) The Invariant Mass Method

- 1) Fill Inv. Mass Histograms with different bins for pt and centrality
- 2) Decomposition: $N^{\text{pair}}(M_{\text{lnv}}) = N^{\text{BG}}(M_{\text{lnv}}) + N^{\pi 0}(M_{\text{lnv}})$

$$N^{pair}(M_{Inv})v_{2}^{pair} = N^{\pi^{0}}(M_{Inv})v_{2}^{\pi^{0}} + N^{BG}(M_{Inv})v_{2}^{BG}$$

II) The Invariant Mass Method (2)

3) Fill
$$\triangle \varphi(M_{lnv})$$
 and extract the Fourier coefficient
 $v_{2}^{pair}(M_{lnv}) = \langle \cos(2\Delta \varphi) \rangle \langle M_{lnv} \rangle$
(for Signal + Background)
4) Linear Fit for v_{2}^{BG} (red line)
5) Fit $v_{2}^{pair}(M_{lnv}) = v_{2}^{\pi^{0}} \frac{N^{\pi^{0}}}{N^{pair}}(M_{lnv}) + v_{2}^{BG} \frac{N^{BG}}{N^{pair}}(M_{lnv})$
(black curve) and extract $v_{2}^{\pi^{0}}$
Bui Wei, High pT Azimuthal Anisotropy
in Au Au collisions at 200 GeV, 2010

I) TRD PID:

dEdx normalization in experimental data

II) Azimuthal anisotropy of the π^{0} yield v2 and R_{AA} & Discovery of Jet Quenching at RHIC Method to determine v2 for π^{0} Reaction Plane Angle Ψ Reaction Plane Resolution π^{0} reconstruction via photon conversions π^{0} yield w.r.t. reaction plane -> v2 Status and Outlook

Status and Outlook

Implementation

- Ongoing for ESDs
- Missing Parameters for photon reconstruction in AODs
 - External Track Parameters missing in AOD VOs
- Pi0 v2 analysis implemented for Gamma Conversion AOD Satellites
 - Tests with Rosella's AOD production (GSI LHC10h):
 - About 200k pi0s in 5.5 Mio Events
 - Already observation of v2 in collective flow momentum range
 - Very low statistics in the momentum range of interest for jet quenching (pt>6 GeV/c)

