Detectors

PSI Lab Course 2014 Dirk Wiedner

The Standard Model

The SM:

- world is made up of quarks and leptons
- interacting by exchanging bosons
- only photons directly visible
- How do we see without seeing?
- What makes Particle Detection possible?

Particle Reactions

- Idealistic View:
 - Elementary Particle Reaction
- Usually cannot "see" the reaction itself
- To reconstruct the
 - o **process** and the
 - particle properties

need maximum information about end-products

Principle of an Elementary Particle Measurement

- Need good:
 - Detectors
 - o Triggers,
 - Readout
 - \succ to reconstruct the mess.
- Need good:
 - o Analyzers
 - to put the raw data into a piece of physics.

Time

Example of two Reactions

Tracks in a Bubble Chamber (Bubble chambers are not used any more).

Simulated Super LHC event. (People started to think about a LHC upgrade).

The decay products of elementary particle reactions can look very complicated!

Global Detector Systems

- Overall design depends on:
 - Number of particles
 - Event topology
 - Momentum/energy
 - Particle identity

- No single detector measures it all...
- Create detector systems

Global Detector Systems

Fixed Target Geometry

Collider Geometry

Limited solid angle dΩ coverage
Easy access (cables, maintenance)

Full" solid angle dΩ coverage
Very restricted access

- charged particles
- neural particles
- photons

- An "ideal" particle detector would provide...
 - . Coverage of full solid angle, no cracks, fine segmentation (why?)
 - . Measurement of momentum and energy
 - Detection, tracking, and identification of all particles (mass, charge, lifetime)
 - . Fast response: no dead time (what is dead time?)
 - . Contain no dead material (what is dead material?)
- However, practical limitations:
 - Technology, Space, Budget

- charged particles
- neural particles
- photons

- An "ideal" particle detector would provide...
 - Coverage of full solid angle, no cracks, fine segmentation (why?)
 - . Measurement of momentum and energy
 - Detection, tracking, and identification of all particles (mass, charge, lifetime)
 - . Fast response: no dead time (what is dead time?)
 - . Contain no dead material (what is dead material?)
- However, practical limitations:
 - Technology, Space, Budget

- charged particles
- neural particles
- photons

- An "ideal" particle detector would provide...
 - . Coverage of full solid angle, no cracks, fine segmentation (why?)
 - . Measurement of momentum and energy
 - Detection, tracking, and identification of all particles (mass, charge, lifetime)
 - Fast response: no dead time (what is dead time?)
 - . Contain no dead material (what is dead material?)
- However, practical limitations:
 - Technology, Space, Budget

- charged particles
- neural particles
- photons

- An "ideal" particle detector would provide...
 - . Coverage of full solid angle, no cracks, fine segmentation (why?)
 - . Measurement of momentum and energy
 - Detection, tracking, and identification of all particles (mass, charge, lifetime)
 - . Fast response: no dead time (what is dead time?)
 - . Contain no dead material (what is dead material?)
- However, practical limitations:
 - Technology, Space, Budget

- charged particles
- neural particles
- photons

- An "ideal" particle detector would provide...
 - Coverage of full solid angle, no cracks, fine segmentation (why?)
 - . Measurement of momentum and energy
 - Detection, tracking, and identification of all particles (mass, charge, lifetime)
 - Fast response: no dead time (what is dead time?)
 - . Contain **no dead material** (what is dead material?)
- However, practical limitations:
 - Technology, Space, Budget

End products:

- charged particles
- neural particles
- photons

- An "ideal" particle detector would provide...
 - Coverage of full solid angle, no cracks, fine segmentation (why?)
 - . Measurement of momentum and energy
 - Detection, tracking, and identification of all particles (mass, charge, lifetime)
 - Fast response: no dead time (what is dead time?)
 - . Contain no dead material (what is dead material?)
- However, practical limitations:

. Technology, Space, Budget

Individual Detector Types

- Modern detectors consist of many different pieces of equipment to measure different aspects of an event.
- Measuring a particle's properties:

е,

- \circ Position
- Momentum
- Energy
- o Charge
- o Type

Particle Decay Signatures

- Particles are detected via their interaction with matter.
- Many types of interactions are involved,
 - mainly electromagnetic.
- In the end, always rely on ionization and excitation of matter.

Particle Decay Signatures in CMS

Particle Decay Signatures in CMS

Particle Decay Signatures in Atlas

Particle Decay Signatures in Atlas

Particle Identification Methods

Constituante	Vertex	Track	PID	Ecal	Hcal	Muon
Electron	Primary	\checkmark	\checkmark	\checkmark	-	-
Photon	Primary	-	-	\checkmark	-	-
u, d, gluon	Primary	\checkmark	-	\checkmark	\checkmark	-
Neutrino	-	-	-	-	-	-
S	Primary	\checkmark	\checkmark	\checkmark	\checkmark	-
c, b, tau	Secondary	\checkmark	\checkmark	\checkmark	\checkmark	-
Muon	Primary	\checkmark	-	MIP	MIP	\checkmark

- PID = Particle ID (TOF, dE/dx)
- MIP = Minimum Ionizing Particle

Particle Detection Methods

Signature	Detector Type	Particle
Jet of hadrons	Calorimeter, Tracking	u, c, t \rightarrow Wb, d, s, b, g
Missing energy	Calorimeter	$\nu_{e'} \nu_{\mu'} \nu_{\tau}$
Electromagnetic shower	EM Calorimeter	e, γ
Purely ionization interactions, dE/dx	Muon absorber	M, τ \rightarrow μν _μ ν _τ
Life time, $c\tau \ge 100 \ \mu m$	Si-Tracking	b, c, τ

Quiz: Decays of a Z boson

- Z bosons have a very short lifetime, decaying in ~10-27 s, so that:
 - only decay particles are seen in the detector.
 - By looking at these detector signatures, identify the daughters of the Z boson.

But some daughters can also decay:

More fun with Z bosons: http://opal.web.cern.ch/Opal/events/opalpics.html

Principles of a measurement

- The particle must **interact** with the detector material:
 - transfer directly or indirectly energy to the medium they are traversing
 - o via ionization or excitation of its constituent atoms.
- An effect of the interaction must be measured:
 o Ionization:

- Excitation and scintillation:
- Cerenkov radiation
- Signals from electron-hole pairs (Si-detectors)
- The particle may also be affected by the interaction:
 o energy loss, scattering and absorption

• Dirk Wiedner

Measurable Properties of particles

- Production / passage of a particle
- Four-Momentum of particle
- Charge of particle
- Lifetime of particle

How does one measure the Four-Momentum?

• Energy:

with a "calorimeter" (see tomorrow)

- Momentum:
 - with a "magnetic field + track detector"

 \bullet \bullet \bullet

Proportional Counters and Drift Chambers

Charged Particle Tracking

- Two main types:
 - Gas wire chambers
 - o Silicon
- Innermost detectors:
 - \blacktriangleright precise tracking \rightarrow use Si-Detectors!
- Outer detectors:
 - o silicon too expensive!
 - (not true for LHC-detectors also use silicon).
- Basic design: ionization chamber with HV sense wire:

Amplification of 10³ - 10⁵ in high field near wire

Ionization Wire Chambers

- Wire Chambers:
 - Most commonly used detection devices in high energy physics experiments.
- The Basics of Wire Chambers:
 - Charged particles travels through a gas
 - Gas is ionized by the particle
 - Ionization drifts & diffuses in an electric field toward an electrode
 - Collection and amplification of anode signal charge
 - detectable signals
 - Measurement of points on trajectory determines p

Processes in Gases

- When a charged particle passes through gases subject to an E field, it loses energy by:
 - Elastic scattering (small)
 - Excitation: gas atoms/molecules
 - \circ Excite then de-excite by γ emission
 - Ionization (most important)
- Ionization:
 - One or more electrons are liberated from atoms of the medium,
 - leaving positive ions and electrons.
 - Energy imparted to atom exceeds ionization potential of gas.

TABLE IX.	
Gas.	Ionization Potential.
Argon	15.6
Nitrogen	15.8
Carbon Monoxide	15.0
Hydrogen	15.1
Helium	20.5
Mercury vapor	10.1
Iodine vapor	8.5

Principle of Gas Detectors

- Primary Ionization
- Secondary Ionization (due to δ-electrons)

Number of Ions v. Voltage

Simplest case: Parallel plate capacitor

Number of Ions v. Voltage

Ionization chamber:

- Voltage increased such that the charge arriving on plates =
 charge formed
- charge formed
- Proportional region:
 - Initial electrons accelerated enough to ionize more;
 - avalanche pulse proportional to primary ionization

 \circ reaches ~10⁸

Proportional Chambers

- Cylindrical proportional tube of
 - outer radius b at
 - voltage V_0 and
 - inner (wire) of radius a at voltage zero.
- Electric field inside the chamber:

•
$$E = \frac{2l}{r}, V_0 = 2l \ln\left(\frac{b}{a}\right), V(r) = V_0 \frac{\ln(r/a)}{\ln(b/a)}, E(r) = \frac{V_0}{r \ln(b/a)}$$

- Charged particle ->
 - > Ionization.
 - e⁻ move toward anode
 - High fields near wire
 - > Multiplication of e-s by collisions:
 - > at small r the energy gain can exceed ionization potential.
 - > Runaway process, like avalanche in PMTs.
- Typical Gas gain~10⁵ 10⁸, Geiger region!

Multi-wire Proportional Chambers

 MWPC invented by Charpak at CERN

- Principle of proportional counter is extended to large areas:
- Stack several wire planes up in different direction to get position location.

Nobel Prize 1992

G Charpak

Multi-wire Proportional Chambers

G. Charpak Nobel Prize 1992

Dirk Wiedner

Drift Chambers - Field Formation

Large Area Drift Chambers

- The "open cell" drift chamber uses
 - field and sense wires:
 - o field wires create shape of electric field,
 - sense wires detect time of arrival of pulse.
- Position of particle: $x = x_{wire} + v_{drift} t_{drift}$

Drift Chamber -Ambiguities

Segmented Silicon Diode Sensors for Particle Detection

- For charged tracks resolution depend on:
 - segmentation pitch (strips, pixels)
 - charge sharing (angle, B-field, diffusion)
 - S/N performance of readout electronics
 - $\circ \ \delta\text{-rays}$

Segmented Silicon Diode Sensors for Particle Detection

- Shared Charge collection on segmented electrodes due to:
 - Diffusion during drift time
 - Lorentz angle due to presence of B-field
 - \circ Tilted tracks
- Individual readout of charge signal on electrodes allows position interpolation that is better than pitch of segmentation.

Segmented Silicon Diode Sensors for Particle Detection

- Silicon microsrip detectors in HEP:
- Strip pitch = $50\mu m$
- Position resolution ~1.5µm achieved

Charge collection

- Electrons and holes
 - separated in the electric field and
 - collected on the implanted strips:
 - Electrons drift 10 ns
 - o Holes drift 25 ns
 - Need high-purity silicon to avoid trapping.

Charge collection

• Position resolution:

- o **5-30 µm**
- \circ for strip pitch of 50-100 μm
- better with pulse-height interpolation
- Silicon detectors are

 fast and have
 high resolution
- Further readout electronics required to amplify the charge
 - Need many channels to cover large areas.

From Strips to Pixels

- very high rate & high multiplicity
 - requires 2 D segmentation of silicon sensors.
- connection to readout electronic chips !!

Hybrid Pixel Detectors

Particle / X-ray → Signal Charge → Electr. Amplifier → Readout → Digital Data
 Dirk Wiedner

CMS Pixel Detector

for the Large Hadron Collider

768 pixel modules ~0.75 m²

48Mega Pixel Detector with 40 MHz Frame Rate

Cherenkov Radiation

P. Cherenkov: 1935 Nobelpreis 1958

A light cone, so called Cherenkov radiation is emitted

- whenever charged particles pass through matter
- with a velocity v exceeding the velocity of light in the medium.
- Measure angle of light cone -> v of particle; Particle ID possible

airplane passing the sonic wall

Event of Super Kamiokande

See http://webphysics.davidson.edu/applets/applets.html for a nice illustration

Dirk Wiedner

Application in Astroparticle Physics

Event Display Magic

Some Literature

• Web:

- The Particle Detector BriefBook: http://rkb.home.cern.ch/rkb/PH14pp/node1.html
- . (there is also a Data Analysis BriefBook)
- http://pdg.lbl.gov/ --> Summary and Reviews

Lectures:

- http://wwwhephy.oeaw.ac.at/p3w/halbleiter/VOTeilchendetekto ren.html
- . http://www.kip.uni-heidelberg.de/~coulon/Lectures/Detectors/
- . http://www.desy.de/~blist/vl-detektor-ws07/
- www.physics.ucdavis.edu/Classes/Physics252b/Lectures/252b_lectureXX.ppt XX = 1,2,3,4
- Script:
 - http://www.physik.tu-dortmund.de/E5/E5-altalt/index.php?content=25&lang=de

More Literature

- Text books:
- C.Grupen: Particle Detectors, Cambridge UP 22008, 680p
- D.Green: The physics of particle Detectors, Cambridge UP 2000
- K.Kleinknecht: Detectors for particle radiation, Cambridge UP, 21998
- W.R. Leo: Techniques for Nuclear and Particle Physics Experiments, Springer 1994
- G.F.Knoll: Radiation Detection and Measurement, Wiley, 32000
- W.Blum, L.Rolandi: Particle Detection with Driftchambers, Springer, 1994
- G.Lutz: Semiconductor radiation detectors, Springer, 1999
- R. Wigmans: Calorimetry, Oxford Science Publications, 2000
- Review articles:
- T.Ferbel (ed): Experimental Techniques in High Energy Physics, Addison-Wesley 1987
- Web:
- Particle Data Group: Review of Particle Properties: pdg.lbl.gov