Detectors

PSI Lab Course 2014 Dirk Wiedner

Individual Detector Types

- Modern detectors consist of many different pieces of equipment to measure different aspects of an event.
- Measuring a particle's properties:

е,

- \circ Position
- Momentum
- Energy
- o Charge
- o Type

Particle Decay Signatures

- Particles are detected via their interaction with matter.
- Many types of interactions are involved,
 - mainly electromagnetic.
- In the end, always rely on ionization and excitation of matter.

Particle Decay Signatures in CMS

Particle Decay Signatures in CMS

Energy loss by Ionization

• • •

Bethe-Bloch formula

- Ionization main electromagnetic energy loss for charged particles.
 - Except when the projectile is highly relativistic
- The mean energy loss due to ionization given by the Bethe-Bloch formula:

$$-\left\langle \frac{dE}{dx} \right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right] \left[\cdot \rho \right]$$

Bethe-Bloch formula

- Ionization main electromagnetic energy loss for charged particles.
 - Except when the projectile is highly relativistic
- The mean energy loss due to ionization given by the Bethe-Bloch formula:

$$-\left\langle \frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right] \left[\cdot \rho\right]$$

- z : Charge of incident particle
- M : Mass of incident particle
- Z : Charge number of medium
- A : Atomic mass of medium
 - : Mean excitation energy of medium
- δ : Density correction [transv. extension of electric field]

 $N_A = 6.022 \cdot 10^{23}$ [Avogardo's number]

$$\label{eq:rescaled} \begin{array}{rcl} r_{\mbox{\scriptsize e}} &=& e^2/4\pi\epsilon_0 M_{\mbox{\scriptsize e}} c^2 = 2.8 \mbox{ fm} \\ \mbox{[Classical electron radius]} \end{array}$$

 $m_{e} = 511 \text{ keV}$ [Electron mass]

```
\beta = v/C
[Velocity]
```

```
\gamma = (1 - \beta^2)^{-2}
[Lorentz factor]
```

```
Validity:
.05 < βγ < 500
M > m<sub>u</sub>
```

density

Energy loss of π in Cu

Minimum ionizing particles (MIP): $\beta \gamma = 3-4$

dE/dx falls ~ β^{-2} ; kinematic factor [precise dependence: - $\beta^{-5/3}$]

dE/dx rises ~ $\ln (\beta \gamma)^2$; relativistic rise [rel. extension of transversal E-field]

Saturation at large $(\beta\gamma)$ due to density effect (correction δ) [polarization of medium]

Units: MeV g⁻¹ cm²

MIP looses ~ 13 MeV/cm [density of copper: 8.94 g/cm³]

Energy loss of Pi in Cu

$1/\beta^2$ -dependence:

Remember:

$$\Delta p_{\perp} = \int F_{\perp} dt = \int F_{\perp} \frac{dx}{v}$$

i.e. slower particles feel electric force of atomic electron for longer time ...

Relativistic rise for $\beta \gamma > 4$:

High energy particle: transversal electric field increases due to Lorentz transform; $E_y \rightarrow \gamma E_y$. Thus interaction cross section increases ...

Corrections:

low energy : shell corrections high energy : density corrections

dE/dx and Particle Identification

- Measurements of energy loss to identify particles
 when giving enough care to calibration problems
- simultaneous measurement of momentum required

Calorimetry

• • •

Introduction

- Energy of a particle measured destructively
- Particle must be completely stopped in detectors to measure its full energy

Introduction

- Energy of a particle measured destructively
- Particle must be completely stopped in detectors to measure its full energy
- Energy is deposited in a localized space
 - position can be determined with accuracy dependent on:
 - o transverse energy fluctuations
 - o detector design.
- Accuracy of energy measurement:
 - Constant term: Uniformity of the detector medium
 - Stochastic term: Active sampling wrt total detector volume
- Calorimetry can provide momentum of a particle
 - o redundantly to the inner tracking measurements
 - o useful in cleaning up backgrounds.

Shower in cloud chamber

Electron and γ @Interactions

pair production

- At E> 10 MeV, interactions of γs and e^{-s} in matter dominated by:
 - e⁺e⁻ pair production and
 - Bremsstrahlung
- At lower energies, lonization becomes important.
- The ratio of the energy loss for these processes is:

$$R = \left(\frac{dE}{dx}\right)_{Brems} / \left(\frac{dE}{dx}\right)_{Ion}$$
$$\approx \frac{ZE}{580MeV}$$

Critical Energy: When energy loss due to Bremsst. and energy loss due to ionization are equal.

e-

e+

e⁻

$$E_c \approx \frac{610 MeV}{Z + 1.24}$$

• Dirk Wiedner

bremsstrahlung

Electron energy loss and critical energy

relative energy loss for electrons

- Critical energy loss due to

 Bremsstrahlung and
 - o ionization are equal to

$$E_c \approx \frac{610 MeV}{Z + 1.24}$$

• High Z material gives more signal: shower stop later

Electromagnetic Showers

- Radiation Length X₀:
 - Scaling variable for the probability of occurrence of bremsstrahlung pair production
 - and for the variance of the angle of multiple scattering.
 - Average energy loss due to bremsstrahlung for an electron of energy E is related to the radiation length:

 $(dE/dx)_{brems} = E/X_0$

Electromagnetic Showers

- Radiation Length X₀:
 - Scaling variable for the probability of occurrence of bremsstrahlung pair production
 - and for the variance of the angle of multiple scattering.
- Average energy loss due to bremsstrahlung for an electron of energy E is related to the radiation length:

 $(dE/dx)_{brems} = E/X_0$

Simple Shower Model

- Start with a high energy electron: E0
- After 1 X_0 : 1e⁻ and 1 γ each with E0/2
- After 2 X_0 : 2e⁻, 1e⁺and 1 γ each with E0/4
- After kX₀: total N=2^k, each with <E>=E₀/2^k
- At <E> = E_c pair production and bremsstrahlung stop
- Compton- or photo-effect and ionization take over.
- The shower ranges out.
- $k_{max} = Ig_2(E_0/E_c) \rightarrow Shower depth grows logarithmically with E_0$
- $N_{max} = 2k_{max} = E_0/E_c \rightarrow Number of$ shower particles grows linearly with E_0 .

Simple Shower Model

- Start with a high energy electron: E0
- After 1 X_0 : 1e⁻ and 1 γ each with E0/2
- After 2 X_0 : 2e⁻, 1e⁺and 1 γ each with E0/4
- After kX₀: total N=2^k, each with <E>=E₀/2^k
- At <E> = E_c pair production and bremsstrahlung stop
- Compton- or photo-effect and ionization take over.
- The shower ranges out.
- $k_{max} = Ig_2(E_0/E_c) \rightarrow Shower depth grows logarithmically with E_0$
- $N_{max} = 2k_{max} = E_0/E_c \rightarrow Number of$ shower particles grows linearly with E_0 .

Energy Measurement

- Total number of particle in the shower in the simple model: $\Rightarrow \mathbf{N}_{tot} = \Sigma_k \ 2^k = 2 \ 2^{kmax} - 1 \simeq \mathbf{2} \ \mathbf{E}_0 \ / \ \mathbf{E}_c$
- 2/3 of N_{tot} are charged (e⁺+e⁻), \Rightarrow N_{ch} =4/3 E₀/E_c
- Each e travels 1 X0 between interactions \Rightarrow total path length L_{ch} $\simeq 4/3 X_0 E_0 / E_c$
- Electrons and positrons also ionize the medium, collect charge or fluorescence light. \Rightarrow The measured signal S ~ X₀ E₀ / E_c
- After calibration, S is an energy measurement!
- Shower fluctuations: particle production is a Poisson process: $\Rightarrow \sigma(N) = \sqrt{N}$
- $\Rightarrow \sigma(S) / S = 1 / \sqrt{S}$
- The relative energy resolution improves as $1/\sqrt{E_0}$

Energy Measurement

- Total number of particle in the shower in the simple model: $\Rightarrow \mathbf{N}_{tot} = \Sigma_k \ 2^k = 2 \ 2^{kmax} - 1 \simeq \mathbf{2} \mathbf{E}_0 \ / \mathbf{E}_c$
- 2/3 of N_{tot} are charged (e⁺+e⁻), \Rightarrow N_{ch} =4/3 E₀/E_c
- Each e travels 1 X0 between interactions \Rightarrow total path length L_{ch} \simeq 4/3 X₀ E₀ / E_c
- Electrons and positrons also ionize the medium, collect charge or fluorescence light. \Rightarrow The measured signal S ~ X₀ E₀ / E_c
- After calibration, S is an energy measurement!
- . Shower fluctuations: particle production is a Poisson process: $\Rightarrow \sigma(N) = \sqrt{N}$
- $\Rightarrow \sigma(S) / S = 1 / \sqrt{S}$
- The relative energy resolution improves as $1/\sqrt{E_0}$

A sophisticated shower simulation

energy profile

Electromagnetic Calorimeter Types

- Homogeneous "shower counters":
 - Best performance from unorganic scintillating crystals.
 - Also use lead glass, detects Cerenkov light of electrons, limited by photoelectrons statistics.
- Sampling calorimeters:
 - Layers of inactive absorber (such as Pb) alternating with active detector layers, such as scintillator or liquid. Resolutions $\sim 7\%/\sqrt{E}$ or so.
- Liquid noble gases:
 - Counters based on liquid noble gases (with lead plates, for example) can act as ionization chambers. LAr Pb versions obtain ~10%/ \sqrt{E} . Ionization read out by electrodes attached to plates (no PMTs!).
 - Disadvantage: slow collection times (~1 μs).

Electromagnetic Calorimeter Types

• "Lead-scintillator sandwich" calorimeter Energy resolutions:

PMT

PMT

PMT

e γ_____

• Exotic crystals (BGO, PbW, ...)

 $\Delta E/E \sim 20\%/\sqrt{E}$

 $\Delta E/E \sim 1\%/\sqrt{E}$

е

 $[\]Delta E/E \sim 18\%/\sqrt{E}$

CMS PbWO Crystals

Charged particles create scintillation light: ~120 /MeV

fast: 95% < 25 ns.

CMS ECAL

Dirk Wiedner

Energy Resolution

- Look at Detector Response for given energy E_0 .
- For interaction following Poisson statistics
- Detector Response for many interactions become Gaussian.
- Fit Response with Gaussian and look at σ (Resolution).

Test beam calibration

Response of a PbWO₄ calo to a 120 GeV e⁻ test beam:

CMS ECAL Test beam with final electronics.

0.85 mm at 50 GeV.

Energy resolution terms

- The intrinsic shower fluctuations give $\sigma(E) \sim \sqrt{E}$
- Fluctuations in the photo-electron yield also give $\sigma(E) \sim \sqrt{E}$
- Noise (electronics, radiation) gives a constant term: $\sigma(E) = c$
- Inhomogeneities and leakage give $\sigma(E) \sim E$

Hadron Calorimeters

- Strongly interacting particle > 5 GeV enters matter
 - inelastic and
 - elastic scattering between particles and nucleons occur.
- Cascade ceases when hadron energies small enough to
 - stop by ionization energy loss
 - o or nuclear absorption.
 - Hadronic Shower: Material $\lambda(g/cm^2)$ X (g/cm^2) Spatial scale for shower development given by nuclear absorption length λN . H_2 63 52.4 Mean free path of a particle before A1 24 106 undergoing a non-elastic interaction in a 132 Fe 13.8 given medium. Pb 6.3 193 Compare X₀ for high-Z materials
- hadron calorimeters large compared to EM calorimeters.

•

Hadronic showers

- Hadronic interaction have high multiplicity:
- Shower 95% contained in \sim 7 λ at 50 GeV (1.2m of iron)
- Hadronic interactions produce π⁰:

 π⁰→γγ, leading to local EM showers ('hot spots', ~30%)
- Some energy lost in nuclear breakup and neutrons

 'invisible energy', 15-35%
- Stronger fluctuations in a hadronic shower:
 - Worse energy resolution

Hadronic showers

Electromagnetic & Hadronic showers

N

• Dirk Wiedner

-- V

u

Ks

Electromagnetic & Hadronic showers

Hadronic showers

Hadronic showers may already start in the ECAL and extend into the HCAL.

Hadronic interaction length

- Pion-proton cross section σ(πp) ≈ 25 mbarn above a few GeV.
- $\sigma(\pi A) \approx \sigma(\pi p) A^{2/3}$ (black disk limit).
- hadronic interaction length:

$$\lambda_I = \frac{A}{\sigma N_A \rho} = \frac{35 cm}{\rho} A^{1/3}$$

- $\lambda_{\rm I} = 17$ cm in Fe or Pb.
- Much larger than X_0 .

2 hadronic showers

A good hadron calorimeter should have

- equal response to hadrons and electrons ('hardware compensation')
- or high granularity to isolate the hot spots ('software compensation')
 Dirk Wiedner

Hadron shower transverse

- Transverse shower development:
 - Secondaries have significant transverse momenta
 - They produce a wide shower
 - compared with EM showers
 - Part of the shower gets an electromagnetic nature
 - i.e. The decay of the π^0 produced in the interaction
 - remains inside a narrow cylinder:
 - two times the Moliere radius

T.S. Virdee, Proc. of the 1998 European School of High-Energy Physics, CERN 99-04

Compensating Calorimeters

- Improvements in energy resolution can be achieved if
 - o showers induced by electrons and hadrons of same energy
 - > produce same visible energy (detector response).
- Requires the losses to be "compensated"
- Three methods:
 - Energy lost by nuclear reactions made up for by fission of ²³⁸U
 - \circ liberating n and soft γ -rays
 - response close to equal:
 - \circ proton-rich detector \rightarrow em shower decreases
 - hadron shower increases due to more nuclear reactions
- If have lots of H₂:
 - compensation achieved with high absorber material:
 - o in inelastic collision of hadrons w/ absorber nuclei,
 - \circ neutrons are produced \rightarrow recoil protons, larger signal.
- Reduce fluctuation in EM component:
 - weight individual counter responses
 - even response out across the board

Sampling calorimeter

<u>Absorber and detector</u> are separated as <u>passive and active</u> layers.

- The active detector material **samples** a fraction F of the shower.
- The detector signal is proportional to the incident energy.
- Allows longitudinal segmentation
- Good for hadrons
- Energy resolution is degraded $\sim 1/\sqrt{F}$ ('sampling fluctuations').
- Less expensive.

Dirk Wiedner

Sampling Calorimeters

ATLAS LAr ECAL

3 sections:

- strips for position resolution
- middle for energy measurement
- back for leakage control

- Pb absorber in LAr
- Accordion geometry for routing of readout signals to the back
- Allows dense packing and fine granularity.

ATLAS LAr ECAL

Cu electrodes at +HV

Spacers define LAr gap 2×2 mm

² mm Pb absorber clad in stainless steel.

Scintillators:

- A scintillator is a material which exhibits the property of luminescence when excited by ionizing radiation.
- Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate, i.e. re-emit the absorbed energy in the form of a small flash of light, typically in the visible range.

Scintillators General Characteristics

- Principle:
 - dE/dx converted to visible light
 - Light detection via photo-sensors
- Main features:
 - Sensitivity to energy of particle
 - Fast response
 - Pulse Shape discrimination
- Requirements:
 - High efficiency for the conversion of exciting energy to fluorescent radiation
 - Transparency to its fluorescent radiation to allow light transmission
 - Emission of light in a detectable spectral range
 - Short decay time to allow fast response

Scintillators - Basic Setup

- Photo-sensors
 - o Photomultiplier
 - Avalanche Photodiodes
 - 0 ...
- Scintillator Types
 - Organic Scintillators
 - Inorganic Scintillators
 - Noble Gases

Inorganic Crystals

- Material
 - Sodium iodide (Nal)
 - Cesium iodide (Csl)
 - o BGO
 - 0 ...
- Mechanism
 - Energy deposition by ionization
 - Energy transfer to impurities
 - Radiation of scintillation photons

Energy bands in impurity activated crystal

Inorganic Crystals - Light Output

Inorganic Crystals - Light Output

Organic Scintillators

- Aromatic hydrocarbon compounds:
 - \circ Naphthalene (C₁₀H₈)
 - \circ Antracene (C₁₄H₁₀)
 - \circ Stilbene (C₁₄H₁₂)
- Very fast decay time
- Scintillation light arises from delocalized electrons in π-orbitals

Scintillators Comparison

Inorganic Scintillators

- Advantages:
 - high light yield
 - high density
 - good energy resolution
- Disadvantages:
 - complicated crystal growth
 - large temperature dependence
 - o Expensive

Organic Scintillators

- Advantages:
 - o very fast
 - o easily shaped
 - small temperature dependence
- Disadvantages:
 - Lower light yield
 - radiation damage
 - o Cheap

Transport of Optical Photons

- Unavoidable or desirable to have the photodetector remote from the scintillator:
 - Space limitations
 - Photo detector out of the magnetic field
 - Couple a large scintillator surface (volume) to a single photo-detector

0 ...

Use optical wave guides:
 o Total internal reflection

Transport of Optical Photons

CMS Hcal read out

- Scintillators coupled to readout fibers.
- Bundles of fibers coupled to an avalanche photodiode

Time Constants

γ, e separation based on time constant

- e interacts in plastic sc.
- γ interacts in BGO
 o Decay times BGO ~300ns
 o plastic sc ~10ns
- use different integration times!

γ, e separation based on time constant

- scatter plot of 22Na decay spectrum \
- no short signal for γ

• ²²Na decay spectrum

• only BGO, no fast signal

Wavelength Shifting

Principle:

- converts the short wavelength light (λ<400nm) emitted by scintillation or Cherenkov radiation
- into a longer wavelength (blue light, λ >400nm)
- Adapt light to spectral sensitivity of photosensor

BGO

- Best suited for gamma detection (high Z)
- High density
- Temperature
 dependence!!!

Scintillation Detector

Couple scintillator to an electronic light sensor

Source Scintillator

Eye

Electronic Signal

Electronic Hardware

Energy Measurement with BGO

- BGO: $Bi_4Ge_3O_{12}$
- Luminescence: Optical transition of Bi³⁺ ion
- n(t): #exitedBi³⁺ ions per dt
- ==> $N = \int_{-\infty}^{\infty} n(t)dt \approx \int_{-\infty}^{t_{gate}} n(t)dt = N_{measured}$

N_meas. ~ 4photons/keV (BGO)

• ==>
$$E_{\gamma,pos.} = N \alpha E_{\gamma,Bi^{3+}}$$

Light Detectors

• • •

Photomultiplier Tube (PM)

- Light falls on a photo-cathode
- Photo-electron is emitted
 - Photo effect
 - Quantum Efficiency depends on
 - Cathode material and
 - Wavelength (QE ~ 25%)
- Photo-electron focused and accelerated towards the first dynode by electric field
- Photo-electron strikes dynode

 Several electrons are emitted
- Several dynodes (10-15) give hight gain 10⁷
- High speed: few ns transmit time
- Gain much lower in magnetic field

Source: Cutnell and Johnson, 7th edition image gallery

PM Response

peaks: single photo electrons

 Integrated PM response of 2 PM with different dynode multiplication factors:

 $\delta = \frac{\text{number of secondary electrons emitted}}{\text{number of primary incident electrons}}$

Avalanche Photodiode (APD)

- 85% quantum efficiency
- Photoelectrons create cascade of electron-hole pairs in the bulk.
- Gain ~100 in linear mode
- Low sensitivity to magnetic field.
- APD gain decreases by 2.3%/°C .
 - Need temperature stabilization within 0.1°C in ECAL!

Vacuum photo-triodes

- ~20% quantum efficiency
- Single stage photomultiplier
- Gain ~ 10 at B=4T

radiation resistant UV glass window used in CMS ECAL

Time of Flight

Basic idea:

Measure signal time difference between two detectors with good time resolution [start and stop counter; also: beam-timing & stop counter]

Typical detectors:

Scintillation counter Resistive Plate Chamber (RPC)

> multichannel analyzer

Coincidence setup or TDC measurement with common start/stop from interaction time

time

Time of Flight

Distinguishing particles with ToF: [particles have same momentum p]

- Particle 1 : velocity v₁, β₁; mass m₁, energy E₁
- Particle 2 :

For L = 2 m:

Scintillator counter

velocity v_2 , β_2 ; mass m_2 , energy E_2

Distance L : distance between ToF counters

Requiring $\Delta t \ge 4\sigma_t K/\pi$ separation possible

: **σ**t ≈ 80 ps ...

up to p = 1 GeV if $\sigma_t \approx 200$ ps ...

Cherenkov counter, RPC : $\sigma_t \approx 40 \text{ ps} \dots$

Relativistic particles, $E \simeq pc \gg m_i c^2$:

$$\Delta t \approx \frac{L}{pc^2} \left[\left(pc + \frac{m_1^2 c^4}{2pc} \right) - \left(pc + \frac{m_2^2 c^4}{2pc} \right) \right]$$
$$\Delta t = \frac{Lc}{2p^2} \left(m_1^2 - m_2^2 \right)$$

 $\Delta t = L\left(\frac{1}{L} - \frac{1}{L}\right) = \frac{L}{L}\left(\frac{1}{L} - \frac{1}{L}\right)$

Example:

Pion/Kaon separation ... [$m_{K} \approx 500$ MeV, $m_{\pi} \approx 140$ MeV]

Assume:

 $p = 1 \text{ GeV}, L = 2 \text{ m} \dots$

→
$$\Delta t \approx \frac{2 \text{ m} \cdot c}{2 (1000)^2 \text{ MeV}^2/c^2} (500^2 - 140^2) \text{ MeV}^2/c^4$$

≈ 800 ps
Time of Flight

Difference in time-of-flight in σ_t ... [L = 2 m]

Time of Flight

Use: $\beta = L/\tau$

Mass resolution ...

$$p = \beta \gamma m \qquad \gamma = (1 - \beta^2)^{-1}$$

$$m^2 = p^2 \left(\frac{1}{\beta^2} - 1\right) = p^2 \left(\frac{\tau^2}{L^2} - 1\right) \qquad [c = 1]$$

$$\Rightarrow \quad \delta(m^2) = 2p \,\delta p \left(\frac{\tau^2}{L^2} - 1\right) + 2\tau \delta \tau \frac{p^2}{L^2} - 2\frac{\delta L}{L^3} p^2 \tau^2 \qquad * \frac{p^2 \tau^2}{L^2} = m^2 + p^2 = E^2$$

$$= 2m^2 \frac{\delta p}{p} + 2E^2 \frac{\delta \tau}{\tau} - 2E^2 \frac{\delta L}{L}$$

$$\Rightarrow \quad \sigma(m^2) = 2 \left[m^4 \left(\frac{\sigma_p}{p}\right)^2 + E^4 \left(\frac{\sigma_\tau}{\tau}\right)^2 + E^4 \left(\frac{\sigma_L}{L}\right)^2\right]^{1/2}$$
Hence we have a set of the set of the

Usually:

$$\frac{\delta L}{L} \ll \frac{\delta p}{p} \ll \frac{\delta \tau}{\tau} \quad \Bigg] \quad \twoheadrightarrow \quad \sigma(m^2) = 2E^2 \frac{\sigma_\tau}{\tau}$$

Г

Uncertainty in time measurement dominates ...

Some Literature

• Web:

- The Particle Detector BriefBook: http://rkb.home.cern.ch/rkb/PH14pp/node1.html
- . (there is also a Data Analysis BriefBook)
- http://pdg.lbl.gov/ --> Summary and Reviews

Lectures:

- http://wwwhephy.oeaw.ac.at/p3w/halbleiter/VOTeilchendetekto ren.html
- . http://www.kip.uni-heidelberg.de/~coulon/Lectures/Detectors/
- . http://www.desy.de/~blist/vl-detektor-ws07/
- www.physics.ucdavis.edu/Classes/Physics252b/Lectures/252b_lectureXX.ppt XX = 1,2,3,4
- Script:
 - http://www.physik.tu-dortmund.de/E5/E5-altalt/index.php?content=25&lang=de

More Literature

• Text books:

- C.Grupen:
- o D.Green:
- K.Kleinknecht:
- W.R. Leo: Springer 1994
- Particle Detectors, Cambridge UP 22008, 680p The physics of particle Detectors, Cambridge UP 2000 Detectors for particle radiation, Cambridge UP, 21998 Techniques for Nuclear and Particle Physics Experiments,
- o G.F.Knoll: Radiation Detection and Measurement, Wiley, 32000
- W.Blum, L.Rolandi: Particle Detection with Driftchambers, Springer, 1994
- o G.Lutz:
- Semiconductor radiation detectors, Springer, 1999 Calorimetry, Oxford Science Publications, 2000
- Review articles:

• R. Wigmans:

- T.Ferbel (ed):
 Wesley 1987
- Experimental Techniques in High Energy Physics, Addison-

• Web:

Particle Data Group: Review of Particle Properties: pdg.lbl.gov

• Dirk Wiedner

Backup Slides . .

The Standard Model

The SM:

- world is made up of quarks and leptons
- interacting by exchanging bosons
- > only photons directly visible
- How do we see without seeing?
- What makes Particle Detection possible?

Particle Reactions

- Idealistic View:
 - Elementary Particle Reaction
- Usually cannot "see" the reaction itself
- To reconstruct the
 - o **process** and the
 - particle properties

need maximum information about end-products

Principle of an Elementary Particle Measurement

- Need good:
 - Detectors
 - o Triggers,
 - Readout
 - \succ to reconstruct the mess.
- Need good:
 - o Analyzers
 - to put the raw data into a piece of physics.

Time

Example of two Reactions

Tracks in a Bubble Chamber (Bubble chambers are not used any more).

Simulated Super LHC event. (People started to think about a LHC upgrade).

The decay products of elementary particle reactions can look very complicated!

Global Detector Systems

- Overall design depends on:
 - Number of particles
 - Event topology
 - Momentum/energy
 - Particle identity

- No single detector measures it all...
- Create detector systems

Global Detector Systems

Fixed Target Geometry

Collider Geometry

Limited solid angle dΩ coverage
Easy access (cables, maintenance)

Full" solid angle dΩ coverage
Very restricted access

- charged particles
- neural particles
- photons

- An "ideal" particle detector would provide...
 - . Coverage of full solid angle, no cracks, fine segmentation (why?)
 - . Measurement of momentum and energy
 - Detection, tracking, and identification of all particles (mass, charge, lifetime)
 - . Fast response: no dead time (what is dead time?)
 - . Contain no dead material (what is dead material?)
- However, practical limitations:
 - Technology, Space, Budget

- charged particles
- neural particles
- photons

- An "ideal" particle detector would provide...
 - . Coverage of full solid angle, no cracks, fine segmentation (why?)
 - . Measurement of momentum and energy
 - Detection, tracking, and identification of all particles (mass, charge, lifetime)
 - . Fast response: no dead time (what is dead time?)
 - . Contain no dead material (what is dead material?)
- However, practical limitations:
 - Technology, Space, Budget

- charged particles
- neural particles
- photons

- An "ideal" particle detector would provide...
 - Coverage of full solid angle, no cracks, fine segmentation (why?)
 - . Measurement of momentum and energy
 - Detection, tracking, and identification of all particles (mass, charge, lifetime)
 - Fast response: no dead time (what is dead time?)
 - . Contain no dead material (what is dead material?)
- However, practical limitations:
 - Technology, Space, Budget

- charged particles
- neural particles
- photons

- An "ideal" particle detector would provide...
 - Coverage of full solid angle, no cracks, fine segmentation (why?)
 - . Measurement of momentum and energy
 - Detection, tracking, and identification of all particles (mass, charge, lifetime)
 - . Fast response: no dead time (what is dead time?)
 - . Contain no dead material (what is dead material?)
- However, practical limitations:
 - Technology, Space, Budget

- charged particles
- neural particles
- photons

- An "ideal" particle detector would provide...
 - Coverage of full solid angle, no cracks, fine segmentation (why?)
 - . Measurement of momentum and energy
 - Detection, tracking, and identification of all particles (mass, charge, lifetime)
 - Fast response: no dead time (what is dead time?)
 - . Contain **no dead material** (what is dead material?)
- However, practical limitations:
 - Technology, Space, Budget

End products:

- charged particles
- neural particles
- photons

- An "ideal" particle detector would provide...
 - Coverage of full solid angle, no cracks, fine segmentation (why?)
 - . Measurement of momentum and energy
 - Detection, tracking, and identification of all particles (mass, charge, lifetime)
 - Fast response: no dead time (what is dead time?)
 - . Contain no dead material (what is dead material?)
- However, practical limitations:

. Technology, Space, Budget

Particle Decay Signatures in Atlas

Particle Decay Signatures in Atlas

Particle Identification Methods

Constituante	Vertex	Track	PID	Ecal	Hcal	Muon
Electron	Primary	\checkmark	\checkmark	\checkmark	-	-
Photon	Primary	-	-	\checkmark	-	-
u, d, gluon	Primary	\checkmark	-	\checkmark	\checkmark	-
Neutrino	-	-	-	-	-	-
S	Primary	\checkmark	\checkmark	\checkmark	\checkmark	-
c, b, tau	Secondary	\checkmark	\checkmark	\checkmark	\checkmark	-
Muon	Primary	\checkmark	-	MIP	MIP	\checkmark

- PID = Particle ID (TOF, dE/dx)
- MIP = Minimum Ionizing Particle

Particle Detection Methods

Signature	Detector Type	Particle
Jet of hadrons	Calorimeter, Tracking	u, c, t \rightarrow Wb, d, s, b, g
Missing energy	Calorimeter	$\nu_{e'} \nu_{\mu'} \nu_{\tau}$
Electromagnetic shower	EM Calorimeter	e, γ
Purely ionization interactions, dE/dx	Muon absorber	M, τ \rightarrow μν _μ ν _τ
Life time, $c\tau \ge 100 \ \mu m$	Si-Tracking	b, c, τ

Quiz: Decays of a Z boson

- Z bosons have a very short lifetime, decaying in ~10-27 s, so that:
 - only decay particles are seen in the detector.
 - By looking at these detector signatures, identify the daughters of the Z boson.

But some daughters can also decay:

More fun with Z bosons: http://opal.web.cern.ch/Opal/events/opalpics.html

Principles of a measurement

- The particle must **interact** with the detector material:
 - transfer directly or indirectly energy to the medium they are traversing
 - o via ionization or excitation of its constituent atoms.
- An effect of the interaction must be measured:
 o Ionization:

- Excitation and scintillation:
- Cerenkov radiation
- Signals from electron-hole pairs (Si-detectors)
- The particle may also be affected by the interaction:
 o energy loss, scattering and absorption

• Dirk Wiedner

Measurable Properties of particles

- Production / passage of a particle
- Four-Momentum of particle
- Charge of particle
- Lifetime of particle

How does one measure the Four-Momentum?

• Energy:

with a "calorimeter" (see tomorrow)

- Momentum:
 - with a "magnetic field + track detector"

 \bullet \bullet \bullet

Proportional Counters and Drift Chambers

Charged Particle Tracking

- Two main types:
 - Gas wire chambers
 - o Silicon
- Innermost detectors:
 - \blacktriangleright precise tracking \rightarrow use Si-Detectors!
- Outer detectors:
 - o silicon too expensive!
 - (not true for LHC-detectors also use silicon).
- Basic design: ionization chamber with HV sense wire:

Amplification of 10³ - 10⁵ in high field near wire

Ionization Wire Chambers

- Wire Chambers:
 - Most commonly used detection devices in high energy physics experiments.
- The Basics of Wire Chambers:
 - Charged particles travels through a gas
 - Gas is ionized by the particle
 - Ionization drifts & diffuses in an electric field toward an electrode
 - Collection and amplification of anode signal charge
 - detectable signals
 - Measurement of points on trajectory determines p

Processes in Gases

- When a charged particle passes through gases subject to an E field, it loses energy by:
 - Elastic scattering (small)
 - Excitation: gas atoms/molecules
 - \circ Excite then de-excite by γ emission
 - Ionization (most important)
- Ionization:
 - One or more electrons are liberated from atoms of the medium,
 - leaving positive ions and electrons.
 - Energy imparted to atom exceeds ionization potential of gas.

TABLE IX.	
Gas.	Ionization Potential.
Argon	15.6
Nitrogen	15.8
Carbon Monoxide	15.0
Hydrogen	15.1
Helium	20.5
Mercury vapor	10.1
Iodine vapor	8.5

Principle of Gas Detectors

- Primary Ionization
- Secondary Ionization (due to δ-electrons)

Number of Ions v. Voltage

Simplest case: Parallel plate capacitor

Number of Ions v. Voltage

Ionization chamber:

- Voltage increased such that the charge arriving on plates =
 charge formed
- Proportional rogio
- Proportional region:
 - Initial electrons accelerated enough to ionize more;
 - avalanche pulse proportional to primary ionization

 \circ reaches ~10⁸

Proportional Chambers

- Cylindrical proportional tube of
 - outer radius b at
 - voltage V_0 and
 - inner (wire) of radius a at voltage zero.
- Electric field inside the chamber:

•
$$E = \frac{2l}{r}, V_0 = 2l \ln\left(\frac{b}{a}\right), V(r) = V_0 \frac{\ln(r/a)}{\ln(b/a)}, E(r) = \frac{V_0}{r \ln(b/a)}$$

- Charged particle ->
 - > Ionization.
 - e⁻ move toward anode
 - High fields near wire
 - > Multiplication of e-s by collisions:
 - > at small r the energy gain can exceed ionization potential.
 - > Runaway process, like avalanche in PMTs.
- Typical Gas gain~10⁵ 10⁸, Geiger region!

Multi-wire Proportional Chambers

MWPC invented by Charpak at CERN

- Principle of proportional counter is extended to large areas:
- Stack several wire planes up in different direction to get position location.

G Charpak

Multi-wire Proportional Chambers

G. Charpak Nobel Prize 1992

Drift Chambers - Field Formation

Large Area Drift Chambers

- The "open cell" drift chamber uses
 - field and sense wires:
 - o field wires create shape of electric field,
 - sense wires detect time of arrival of pulse.
- Position of particle: $x = x_{wire} + v_{drift} t_{drift}$

Drift Chamber -Ambiguities

Segmented Silicon Diode Sensors for Particle Detection

- For charged tracks resolution depend on:
 - segmentation pitch (strips, pixels)
 - charge sharing (angle, B-field, diffusion)
 - S/N performance of readout electronics
 - $\circ \ \delta\text{-rays}$

Segmented Silicon Diode Sensors for Particle Detection

- Shared Charge collection on segmented electrodes due to:
 - Diffusion during drift time
 - Lorentz angle due to presence of B-field
 - \circ Tilted tracks
- Individual readout of charge signal on electrodes allows position interpolation that is better than pitch of segmentation.

Segmented Silicon Diode Sensors for Particle Detection

- Silicon microsrip detectors in HEP:
- Strip pitch = $50\mu m$
- Position resolution ~1.5µm achieved

Charge collection

- Electrons and holes
 - separated in the electric field and
 - collected on the implanted strips:
 - Electrons drift 10 ns
 - o Holes drift 25 ns
 - Need high-purity silicon to avoid trapping.

Charge collection

• Position resolution:

- o **5-30 µm**
- \circ for strip pitch of 50-100 μm
- better with pulse-height interpolation
- Silicon detectors are

 fast and have
 high resolution
- Further readout electronics required to amplify the charge
 - Need many channels to cover large areas.

From Strips to Pixels

- very high rate & high multiplicity
 - requires 2 D segmentation of silicon sensors.
- connection to readout electronic chips !!

Hybrid Pixel Detectors

Particle / X-ray \rightarrow Signal Charge \rightarrow Electr. Amplifier \rightarrow Readout \rightarrow Digital Data

CMS Pixel Detector

for the Large Hadron Collider

768 pixel modules ~0.75 m²

48Mega Pixel Detector with 40 MHz Frame Rate

Cherenkov Radiation

A light cone, so called Cherenkov radiation is emitted

- whenever charged particles pass through matter
- with a velocity v exceeding the velocity of light in the medium.
- Measure angle of light cone -> v of particle; Particle ID possible

airplane passing the sonic wall

Event of Super Kamiokande

See http://webphysics.davidson.edu/applets/applets.html for a nice illustration

Dirk Wiedner

P. Cherenkov: 1935 Nobelpreis 1958

Application in Astroparticle Physics

Event Display Magic

