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You are going to perform a data analysis: 
Compare measured distributions to  
theoretical predictions 

Tools for data analysis: 
	 Probability density functions,  
	 Histograms,  
	 Fits,  
	 Errors   

This is not a statistics course; no proofs, not too many  
details 
(Attend C. Grab’s or my/Oleg Brandt’s course for more...) 
Thanks to C. Grab for most of the material



Niklaus Berger – PSI course  2014 – Slide 3

Probability vs. Statistics

Probability: From theory to data 
	 Start with a well-defined problem, 
	 calculate all possible experimental outcomes 
 
 

Statistics: From data to theory 
	 Inverse problem: Start with (messy) data,  
	 deduce rules, laws: Data Analysis 
	 Parameter estimation: Determine parameter & error  
	 in an efficient and unbiased way 
	 Hypothesis testing: agreement, confidence... 
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Probability Density Functions
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Probability and density function
Define:  
	 Probability = #success / #trials 
	 (classical, frequentist sense - think of throwing dice) 
 
Experiment measures observable x many times -  
	 results will be distributed according to some 
	 Probability distribution: 
 
		  - 	 Individual measurements fluctuate because of  
			   uncontrolled random parameters 
			   e.g. noise in a voltage measurements 
 
		  - 	 The underlying physics can be probabilistic 
			   e.g. particle lifetimes, scattering 
 
	 Probabilty distributions can be discrete or continuous (dice/lifetime)
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•	 Repeat experiment measuring a single continuous variable x 
 

•	 The probability to measure x in the interval (x, x+dx) is given by the probability density 
function (pdf ) f(x): 
 
 

•	 P is a measure of how often a value of x occurs in a given interval 
 
 

•	 The pdf is positive definite and normalised to 1:

Probability density function (pdf )

prob_eq1

f(x) = lim  from{dx rightarrow 0} {{P(x leslant result
leslant x+dx) } over  {dx}}

f (x)=lim
dx→0

P (x⩽result⩽x+dx)
dx

prob_eq2

P(x_1 leslant x leslant x_2) =int from{x_1} to {x_2}
f(x)dx  

P (x
1
⩽x⩽x

2
)=∫

x
1

x
2

f (x)dx

prob_eq3

int from {x_min} to {x_max} f(x')dx' = 1

∫
xmin

xmax

f (x ' )dx '=1
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Cumulative distribution function F(x), also known as probability distribution function

•	 F(x) is the probability that in am measurement, we find a value less than x

•	 F(x) is a continuously non-decreasing function

•	 F(- ∞) = 0,   F(∞) = 1

•	 F(x) is dimensionless

•	 related to the pdf f(x) by: 
 
 
 

•	 and for well-behaved distributions:

Cumulative distribution function

prob_eq4

F(x) = int from{x_min} to{x} f(x') dx' 

F (x)=∫
xmin

x

f (x ' )dx '

prob_eq5

f(x) = {dF(x)} over {dx}

f (x)=
dF (x)
dx
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Relation: pdf f(x) and cdf F(x)

prob_eq5

f(x) = {dF(x)} over {dx}

f (x)=
dF (x)
dx

prob_eq4

F(x) = int from{x_min} to{x} f(x') dx' 

F (x)=∫
xmin

x

f (x ' )dx '

prob_eq6

P(x_1 leslant x leslant x_2) = int from {x_1} to {x_2}
f(x') dx' = F(x_2) - F(x_1)  

P (x
1
⩽x⩽x

2
)=∫

x
1

x
2

f (x ' )dx '=F (x
2
)−F (x

1
)
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•	 Expectation value = mean value 
 
 
 
 

•	 Variance σ2 = square of the standard deviation = measure of the variations of x around 
the mean value E[x] 
 
 
 

•	 Note: σ measures how spread-out the distribution is, not how accurate the mean is  
determined

Properties of distributions

prob_eq7

E[x] = int from {x_min} to {x_max} x f(x)dx = langle x
rangle = %my   

E [ x ]=∫
xmin

xmax

x f (x)dx=〈 x 〉=μ

prob_eq8

V[x] = E[(x-%my)^2] = int from {x_min} to {x_max}
(x-%my)^2 f(x)dx = %sigma^2 =  langle (x-%my)^2
rangle = langle x^2 rangle - %my^2   

V [ x ]=E [(x−μ)2]=∫
xmin

xmax

(x−μ)2 f (x)dx=σ2=〈(x−μ)2〉=〈 x2〉−μ2
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•	 True mean and variance: both unknown... 
 
 
 
 

•	 For discrete measurements: x is an unbiased estimator for the mean 
 
 

•	 and the sample variance s2 is an unbiased estimator for σ2 
 
 

Properties of distributions

prob_eq7

E[x] = int from {x_min} to {x_max} x f(x)dx = langle x
rangle = %my   

E [ x ]=∫
xmin

xmax

x f (x)dx=〈 x 〉=μ

prob_eq9

%sigma^2 = int from {x_min} to {x_max} (x-%my)^2
f(x)dx

σ2=∫
xmin

xmax

(x−μ)2 f (x)dx

prob_eq10

bar x = 1 over N sum from i x_i  

x̄=
1

N
∑
i

x
i

prob_eq11

s^2 = 1 over {N-1} sum from i (x_i-bar x)^2  

s
2=

1

N−1
∑
i

(x
i
− x̄)2

prob_eq12

E[bar x] = %my

E [ x̄ ]=μ

prob_eq13

E[s^2] = %sigma^2

E [ s
2
]=σ

2
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Examples of 
Probability Density Functions
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•	 Example: Polar angle distribution of  
muons in e+e- → μ+μ- 

Uniform distribution
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•	 Example: Lifetime of the pion, muon...  

Exponential distribution
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•	 N independent, fixed trials; probability for success = p

•	 Distribution of n successful outcomes in N trials

•	 Example: Throwing a coin/dice, chance of obtaining n heads, sixes in N throws) 

Binomial distribution
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•	 Limit of the binomial distribution for many trials, rare events

•	 N → ∞, p → 0 with Np = Ν finite 

Poisson distribution
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•	 Example for the Poisson distribution is: 
 
P(n;Ν) = Probability of observing a number of n independent events in time interval t, 
when the average counting rate is μ; (expected number of events Ν = μ t): 
 
 
 
 
 

•	 Note: The variance of the Poisson distribution is equal to the expectation value Ν: 
 
This is the origin of the formula (N ± √N) used for statistical errors when counting events 
during fixed intervals

Poisson distribution
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•	 Also known as normal distribution

•	 Most important pdf...

Gaussian distribution

•	 Can convert any Gaussian to standard 
distribution G(μ = 0, σ = 1)  by variable 
transformation: 
		  x’ = (x - μ)/σ
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•	Sum of n independent random variables xi  
is Gaussian distributed for n → ∞

•	Individual distributions do not matter!

Central limit theorem
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•	 Symmetric around x = μ

•	 σ characterises the width

•	 Height of the curve at x = μ±σ is 1/√e 
of the height at x = μ

•	 σ is roughly half the width at half the 
height

Properties of the Gaussian distribution
•	 Integrate area: see below; 

In 1D:  	 ± 1σ : 68%   (2 in 3) 
			   ± 2σ : 95% 
			   ± 3σ : 99.5% 
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•	 If x1...xn are independent, Gaussian  
distributed variables with mean μ and 
variance σ, then  

Χ2 distribution

prob_eq14

z = sum from n ((x_i - %my)/%sigma)^2

z=∑
n

((x
i
−μ)/σ)2

 
 
 
is distributed according to the Χ2  
distribution



Niklaus Berger – PSI course  2014 – Slide 21

Relations between distributions
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Histograms
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Many different ways to display quantitative 
data

•	 Ideographs,

•	 Pie charts,

•	 Tables,

•	 Frequency polygons

•	 Histograms 

Think about what you do... 
 
Literature: Tufte

Data presentation
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Discrete outcomes of an experiment x1...xn

•	 Fill into bins of a histogram

•	 Shape of the histogram will approximate 
underlying distribution: 
Can compare to (smooth) expectation/
theory curve 

•	 Use care in choosing bin sizes, number of 
bins...

Histograms
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•	 For many entries N, histogram should  
approximate the probability density  
function 
Interpret histogram as an approximation 
to an underlying pdf 

•	 What does “approximate” mean here? 

•	 Have to look at: 
- Errors of a histogram entry 
- Normalized histograms 
- Mean values - useful or not?

Histograms
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Histogram: Interpretation and Errors
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Use errors on histogram bin values!
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Small numbers of events
Be aware that for small event numbers, Gaussian errors are wrong...
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•	Choice of bin width 

•	Choice of bin range  
(underflow, overflow - important for normalisation) 

•	Steeply falling and quickly varying distributions

Histograms: Things to watch out for
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Make sure that bins contain a reasonable number of entries

Choice of bin width
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•	Take into account the experimental resolution for the variable 

•	Overall “statistics” (number of entries) available per bin 

•	Bin migration: Number of events migrating into and out of bin 
(due to resolution) should balance

Choice of bin width
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Example: Steeply falling (momentum) distribution

Choice of bin width
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•	 Watch out for very steep or quickly changing functions

Comparing histograms and smooth distributions
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Parameter estimation and fitting
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•	 Set of measurements xi  
		  (e.g. lifetimes of individual pions) 

•	 Assumed to be distributed according to a pdf with free parameter(s) 
		  (e.g. an exponential distribution for a lifetime Τ) 

•	 Determine an estimate of the free parameter from the data 
		  (fit for the lifetime Τ) 

•	 Most commonly used methods: 
		  - Least squares 
		  - Maximum likelihood

Parameter estimation and fitting
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•	 Set of measurements (yi ± σi) 

•	 Calculate the χ2(a) function with parameters a, using the fit function f(x,a): 
 
 
 
 
 
 
 

•	 Best estimate for a is obtained by minimizing χ2(a) 

•	 For histograms: Bin content of bin i can be interpreted as yi

Method of least squares
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•	 Fitting of functions to histograms is built into data analysis packages  
(e.g. root, see tomorrow) 

•	 The actual minimizing is done by a time honoured software package called MINUIT 
(gradient descent method)

In practice

Parameter a

Pa
ra

m
et

er
 b
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Least squares...
Look at goodness of fit!

•	 By eye! Fit function and histogram should be similar 

•	 The χ2 is a measurement of the goodness of fit  
(for a fixed number of degrees of freedom) 

•	 If the data are Gaussian distributed, variances are known, the model is linear in the fit  
parameters, and it is the right model then: 
- χ2  sum is distributed according to the χ2  distribution 
- Expectation value =  
			   number of degrees of freedom =  
			   number of bins - number of parameters 
- Prob(χ2, ndf ) is flat 
- if χ2  >> ndf: Bad fit: error estimates to small, model wrong, minimization failed 
- if χ2  << ndf: Error estimates to large
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•	 If x1...xn are independent, Gaussian  
distributed variables with mean μ and 
variance σ, then  

Reminder: χ2 distribution

prob_eq14

z = sum from n ((x_i - %my)/%sigma)^2

z=∑
n

((x
i
−μ)/σ)2

 
 
 
is distributed according to the Χ2  
distribution
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Disadvantages

•	 Information lost due to binning

•	 Have to be very careful with bins with few 
entries: 
- Need some ≥ 10 entries 
- No zeroes 
Else: Errors non-Gaussian, do not expect 
χ2  distribution

•	 Be careful if there are large bin-to-bin 
correlations  
(need to invert covariance matrix)

Least squares: Pro and con
Advantages

•	 Easy to use (implement)

•	 Fast (also for huge data samples)

•	 Goodness of fit estimate available

•	 Useful general method to compare two 
distributions
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Maximum Likelihood
•	 Set of measurements xi 

•	 Calculate the Likelihood function with parameters a, using the fit function f(x,a): 
 
 
 
 

•	 Then go to the negative logarithm of the Likelihood function 
 
 
 

•	 Minimize this function to obtain an estimate of the parameter(s) a 

prob_eq15

L = prod from {i=0} to n f(x_i,a)

L=∏
i=0

n

f (xi , a)

prob_eq16

- log L = -sum from {i=0} to n log f(x_i,a)

−log L=−∑
i=0

n

log f (xi , a)
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Disadvantages

•	 A bit more tedious to implement

•	 Can be slow for large data sets

•	 No absolute goodness of fit

•	 Model needs to be normalised

Maximum likelihood: Pro and con
Advantages

•	 No loss of information due to binning

•	 Good for very uneven pdfs

•	 No requirements on linearity of model

•	 No issues with correlations if events are 
independent 

•	 For n → ∞: Is the best possible estimator
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What if the data contain contributions from different sources?

•	 Add different pdfs...

•	 Example: Search for a new resonance, after selection, data still contain some background

Example: Signal and Background
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Can have many components
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Performing a lifetime measurement with a finite time resolution

•	 Lifetimes distributed exponentially, with lifetime τ: f(τ,t)

•	 Measurements smeared with a resolution σ (assume Gaussian) around their true value 
R(t,t’)

•	 Measured distribution will be a convolution of the two:

Example: Taking into account resolution
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Measurement with resolution
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Uncertainties (errors)
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The accuracy of the measurement will be limited by the number of 
data events

•	For N large, the statistical error goes as √N

•	For N towards infinity, the relative error goes to 0 

 

Counting errors
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Fit Errors

Parameter a
Pa

ra
m

et
er

 b

•	 MINUIT returns parameters and errors

•	 Error given by change of objective function by 1 (χ2) or 0.5 (log LH)

•	 MINUIT normally estimates error from gradient at minimum

•	 Calling HESSE after MINUIT also gives you correlations (the error matrix)

•	 MINOS will actually scan the parameters and return asymmetric errors 

•	Fit errors DO NOT tell you about the 
goodness of fit 
(only about the size of your data sample)



Niklaus Berger – PSI course  2014 – Slide 50

 
The accuracy of the measurement will be limited by the number of 
data events

•	For N large, the statistical error goes as √N

•	For N towards infinity, the relative error goes to 0 

But is the large N measurement really arbitrarily precise? 

Statistical errors
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No, the measurement can still be systematically off

•	 Clock running slow

•	 Calorimeter not perfectly calibrated

•	 Cable delays not properly accounted for

•	 Fitting an inadequate model

•	 etc. 
 

These errors lead to systematic uncertainties

•	 Description of how well we understand the measurement

Systematic errors
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Systematic errors

“ [T]here are known knowns; there are things we know 
that we know. 

There are known unknowns; that is to say there are 
things that, we now know we don't know. 

But there are also unknown unknowns – there are 
things we do not know, we don't know. ”

—United States Secretary of Defense,  
Donald Rumsfeld
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Determining statistical errors is a science 
 

Estimating systematic errors is an art

Systematic errors 
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Estimating systematic errors is a very important part of the analysis 

•	 What assumptions went into the measurement? 

•	 How well do you understand these assumptions? 

•	 Can you make auxiliary measurements to test assumptions/obtain calibrations? 
 
e.g. use a beam of particles of known energy to calibrate a calorimeter 
 

•	 You can never be totally sure that you have taken into account every single possible  
effect 

•	 Think about systematics before starting the analysis

Systematic errors
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Correlations
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•	 Let f(x, y) be the joint pdf to 
observe 
x in [x, x + dx] 
y in [y, y + dy] 

•	 Useful tool here: 2D-histograms, 
often drawn as scatterplots 

•	 f(x,y) = density of points =  
 #entries 

More than one variable
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•	 Let f(x, y) be the joint pdf 

•	 If the variables are independent, then x and y are uncorrelated: 
		  The joint pdf factorizes: f(x, y) = g(x) h(y)  

•	 For correlated variables, define the covariance between two variables x, y: 
		  cov(x, y) = V(x, y) 
 
 
 
 

•	 Properties: 	 - cov(x, x) = V(x) 
				    - cov(x, y) is translation invariant (shift origin) and has units 
				    - V(x + y) = V(x) + V(y) + 2 cov(x, y)

Covariance/correlations
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The covariance can be represented by a matrix 
 
 
 
 
 
 
 
 
 
 

•	 V(x, y) is often called the error matrix; 
		  the diagonal elements are just the variances 

Covariance/correlations
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Define correlation coefficient ρ

•	 ρ ranges between -1 and +1

•	 If the variables are uncorrelated, ρ=0

•	 The opposite is not true 

An estimate for ρ is rxy, taken from the sample 
variance sxy:

Correlation coefficient
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Correlation coefficient: Questions
An estimate for ρ is rxy, taken from the sample 
variance sxy: 
 
 
 
 
 
 
 
 
 
 
What is the correlation coefficient for (x, y) on  
a horizontal line? A vertical line? 
 
What is the correlation coefficient for (x, y) on  
a circle?
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•	 Correlation coefficient reflects the direction of a linear relationship

•	 It does not reflect the slope

•	 It does not reflect many properties of nonlinear relationships 
ρ = 0 does not imply no correlation

Overview
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•	 For uncorrelated variables: 
 
 
 
 
 
 

•	 If they are correlated, take this into account:

Error propagation
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