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Overview

You are going to perform a data analysis:
Compare measured distributions to
theoretical predictions

Tools for data analysis:
Probability density functions,
Histograms,

Fits,
Errors

This is not a statistics course; no proofs, not too many
details

(Attend C. Grab’s or my/Oleg Brandt's course for more...)
Thanks to C. Grab for most of the material
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Probability vs. Statistics

Probability: From theory to data
Start with a well-defined problem,
calculate all possible experimental outcomes

Statistics: From data to theory
Inverse problem: Start with (messy) data,
deduce rules, laws: Data Analysis
Parameter estimation: Determine parameter & error
in an efficient and unbiased way
Hypothesis testing: agreement, confidence...
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Probability Density Functions
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Probability and density function

Define:
Probability = #success / #trials
(classical, frequentist sense - think of throwing dice)

Experiment measures observable x many times -
results will be distributed according to some
Probability distribution:

- Individual measurements fluctuate because of
uncontrolled random parameters
e.g. noise in a voltage measurements

- The underlying physics can be probabilistic

e.g. particle lifetimes, scattering

Probabilty distributions can be discrete or continuous (dice/lifetime)
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Probability density function (pdf)

- Repeat experiment measuring a single continuous variable x

- The probability to measure x in the interval (x, x+dx) is given by the probability density
function (pdf) f(x):

7(x)=1lim P(x<result<x+dx)
dx=0 dx

. P is a measure of how often a value of x occurs in a given interval

P(x1<x<x2)=f f(x)dx

+ The pdf is positive definite and normalised to 1:

ff dxl_
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Cumulative distribution function

Cumulative distribution function F(x), also known as probability distribution function
+ F(x) is the probability that in am measurement, we find a value less than x
+ F(x)is a contmuously non-decreasing function
o) =0, F(o) =1
. F(x) is dimensionless

- related to the pdf f(x) by:

. and for well-behaved distributions:
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Relation: pdf f(x) and cdf F(x)

f{x)

_dF(x)
x)=2EL
Flx)=[ f(x)dx’
:]%f(x’)dx'ZF(xz) F(x1)

Niklaus Berger — PSI course 2014 - Slide 8



Properties of distributions

. Expectation value = mean value

Elx]= [ xf(x)de=(x)=u

+ Variance o? = square of the standard deviation = measure of the variations of x around
the mean value E[x]

X

max

Vx]=E[(x—uf]= [ (x—u) f (x)dx=0"=((x—u)") =(x")—u’

X

min

- Note: 0 measures how spread-out the distribution is, not how accurate the mean is
determined
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Properties of distributions

. True mean and variance: both unknown...

E[x)= [ x f(x)dv=(x)=u o= [ (x=u)’ f(x)dx

. For discrete measurements: X is an unbiased estimator for the mean
F=— > x, Elx]=u
N 5
. and the sample variance s? is an unbiased estimator for ¢
—\2
X, —X) E[s’]=0"
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Fxamples of
Probability Density Functions
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Uniform distribution

- Example: Polar angle distribution of
muons in e'e” > Uy

3000 -— Www I 1
o0 |- f(x; af)=1 -«
: 0

a<x</pf

otherwise

2000 -

1500 1

.l E[x]:z(o:Jr,B)

500 —i _ :
| o | Vixl==(5- )
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Exponential distribution

. Example: Lifetime of the pion, muon..

fit,7)

[

1 &
A r)==er

E[f] ==
V[t] = 12
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Binomial distribution

. N independent, fixed trials; probability for success = p

. Distribution of n successful outcomes in N trials

. Example: Throwing a coin/dice, chance of obtaining n heads, sixes in N throws)

— 04

sY E
= 03 F
c .
=0z F

o1 F

N!

f(n., Nﬂp): F’I!(?’I—

E[n]=

N) pn (1 _ p)N—H

Np

/'[n]= Np(1-p)
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Poisson distribution

+ Limit of the binomial distribution for many trials, rare events

+ N> o0, p > 0 with Np = finite

10

1z

14
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Poisson distribution

. Example for the Poisson distribution is:

P(n;v) = Probability of observing a number of n independent events in time interval t,
when the average counting rate is yi; (expected number of events v = p t):

P(n,v)= v) e’
n!

+ Note: The variance of the Poisson distribution is equal to the expectation value v:

This is the origin of the formula (N + 4/N) used for statistical errors when counting events
during fixed intervals
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Gaussian distribution

. Also known as normal distribution

+ Most important pdf...

1 )’

- < : . 2N _ 2
]_ .20.2—” f(xwuno- )_ 2€ o
- 10— 2o
S — o

E[x]=p| Fl-o]

- Can convert any Gaussian to standard
distribution G(u =0, 0 = 1) by variable
transformation:

x'=(x-plo
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Central limit theorem

- Sum of n independent random variables x
is Gaussian distributed for n - o

ndividual distributions do not matter!
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Properties of the Gaussian distribution

+ Symmetric around x = - Integrate area: see below;
. . In1D: +10:68% (2in 3)
+ 0 charact the width
o characterises the wi .96 0L
. Height of the curve at x = uto is 1h/e + 3099 5%

of the height atx = p

+ o is roughly half the width at half the
height

0.4

0.3

B 34.1% 34.1%

0.2

0.1

0.0
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X2 distribution

f.x]..:xn are Indgpendeﬁt, Gaussian Z_Z (x—u)lo)
distributed variables with mean p and - i— Y
variance o, then "

is distributed according to the x

~ distribution
c G
N h
t’.E E'r l n2-1 —=/2
0.4;' ——— n=1 f(z" n): 2?‘.:!’21—'(” }(2)2 € s H:Lza---
E —_ — n= 2
[.ah N
| -
0.3
E == n= 10
0.25 |- V[Z] =2n
0.z f—
0.15 f—
o1 b . Mean is = n =
005 [ number of degrees of freedom
! |:T 0 1J2 [.--I-ﬁ_li-r -T_h'{lé: - 1laJ_
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Relations between distributions

N—o>w Np=A

Binomial

. Pcnsson

N — w

(LTI




Histograms
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Data presentation
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Many different ways to display quantitative

data

|deographs,

. Pie charts,
- Tables,
+ Frequency polygons

Histograms

Think about what you do...

Literature: Tufte
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of Quantitative Information

EDWARD R. TUFTE



Histograms

Heights of Black Cherry Trees

o —

i Discrete outcomes of an experiment x,..x

0 — + Fill into bins of a histogram
? o + Shape of the histogram will approximate
3] underlying distribution:
3 < Can compare to (smooth) expectation/
= theory curve

(N —

+ Use care in choosing bin sizes, number of

o - bins...
| | | | | | |

60 65 70 75 80 85 90
Height (feet)
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Histograms

Fercent
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+ For many entries N, histogram should

approximate the probability density
function
Interpret histogram as an approximation

to an underlying pdf

+ What does "approximate” mean here?

. Have to look at:

- Errors of a histogram entry
- Normalized histograms
- Mean values - useful or not?
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Histogram: Interpretation and Errors

.| The # of entries n; in bin 5 distributed according
to a distribution.

N=1000 I Usually: Take ng .., = E[n] = v
—Ang = sqrt(v) = sqrt(ng _.)
sob | / For large total number N of events:
E . . I
na - approximated by Gaussian!
60;—
505—
= - .05\
305— 0.04
20:—
E 0.03—
10
[ 0.02
o ! | ! | . | ! ! | ] | 5 | 1 | 1 | I
0 0.1 02 03 04 05 06 0.7 08 0.9 1
Q.01+
1COSH)|
a |

Niklaus Berger — PSI course 2014 - Slide 26



Use errors on histogram bin values!

90
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Small numbers of events

Be aware that for small event numbers, Gaussian errors are wrong...

14

12

10

N=100

|

|]r||

\

K
LA B

aﬁ

T

B

LlE3

Gaussian

Poisson

Prob(to see 0) <> 0 for Gaussian

Prob(to see 0) == 0O for Poisson !!
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Histograms: Things to watch out for

. Choice of bin width

. Choice of bin range
(underflow, overflow - important for normalisation)

- Steeply falling and quickly varying distributions

Niklaus Berger — PSI course 2014 - Slide 29



Choice of bin width

Make sure that bins contain a reasonable number of entries

IIII|IIII Ty [FI[_'I]TI]IIIII[[F[IFHT]]

10

N=100I
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Choice of bin width

. Take into account the experimental resolution for the variable
» Overall “statistics” (number of entries) available per bin

- Bin migration: Number of events migrating into and out of bin
(due to resolution) should balance
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Choice of bin width

Example: Steeply falling (momentum) distribution

g—-a- B | 1 | | 1 1 | | I 1 | | I | I | 1 | I _
- : e ALEPHdgta -
“‘5 10 —— JETSET 7.4 —
72 --- HERWIG5.8 3
I I ARIADNE 4.08 7
¥ B
- 1 = -
. - .
A i -+ .
_'l i ]
O 3 E
- Q __ % 00 .
i & 3
_2 i ]

‘ID [ l I l L1 1 | L1 I | [ 1

—

O Q.2 0.4 0.6 0.8

logarithmic scale!

xp — p/pbeum

Niklaus Berger — PSI course 2014 - Slide 32



Comparing histograms and smooth distributions

. Watch out for very steep or quickly changing functions
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Parameter estimation and fitting
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Parameter estimation and fitting

- Set of measurements x
(e.g. litetimes of individual pions)

. Assumed to be distributed according to a pdf with free parameter(s)
(e.g. an exponential distribution for a lifetime T)

. Determine an estimate of the free parameter from the data
(fit for the lifetime T)

+ Most commonly used methods:
- Least squares
- Maximum likelihood
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Method of least squares

- Set of measurements (y, + o)

+ Calculate the y*(a) function with parameters a, using the fit function f(x,a):

X ( ) Z[yg f(x;:a)]

CT :

1

+ Best estimate for a is obtained by minimizing y*(a)

+ For histograms: Bin content of bin i can be interpreted as y
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In practice

+ Fitting of functions to histograms is built into data analysis packages
(e.g. root, see tomorrow)

+ The actual minimizing is done by a time honoured software package called MINUIT
(gradient descent method)

Parameter b

Parameter a
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Least squares...

Look at goodness of fit!

. By eye! Fit function and histogram should be similar

. The ¥ is a measurement of the goodness of fit
(for a fixed number of degrees of freedom)

. |f the data are Gaussian distributed, variances are known, the model is linear in the fit
parameters, and it is the right model then:
- x* sum is distributed according to the y* distribution
- Expectation value =
number of degrees of freedom =
number of bins - number of parameters
- Prob(y?, ndf) is flat
- if ¥* >> ndf: Bad fit: error estimates to small, model wrong, minimization failed
- if y* << ndf: Error estimates to large

Niklaus Berger — PSI course 2014 - Slide 38



Reminder: y* distribution

- If x,.x_are independent, Gaussian

distributed variables with mean p and = Z ((x,~u)/o)

variance o, then

is distributed according to the x

distribution
f(z_, n): = l ZH!”Z—IE—ZIZ ; n= Lz’___

o= 2" 1'(n/2)

—— p=2?

----- Ceta=r

—— n= 10

Viz]|=2n
Meanis = n =
number of degrees of freedom
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Least squares: Pro and con

Advantages Disadvantages
. Easy to use (implement) + Information lost due to binning
+ Fast (also for huge data samples) . Have to be very careful with bins with few
. Goodness of fit estimate available entries. ,
- Need some > 10 entries
. Useful general method to compare two _No zeroes
distributions Flse: Errors non-Gaussian, do not expect

y* distribution

. Be careful if there are large bin-to-bin
correlations
(need to invert covariance matrix)
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Maximum Likelihood

. Set of measurements X

. Calculate the Likelihood function with parameters a, using the fit function f(x,a):

Lzllf! f(xl., a)
+ Then go to the negative logarithm of the Likelihood function
—logL:—Zn: log f(x,,a)
i=0
+ Minimize this function to obtain an estimate of the parameter(s) a
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Maximum likelihood: Pro and con

Advantages Disadvantages
+ No loss of information due to binning . A bit more tedious to implement
+ Good for very uneven pdfs . Can be slow for large data sets
+ No requirements on linearity of model . No absolute goodness of fit
+ No issues with correlations if events are . Model needs to be normalised
independent

+ For n - oo: [s the best possible estimator
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Fxample: Signal and Backgrouno

W hat if the data contain contributions from different sources?
. Add different pdfs..

- Example: Search for a new resonance, after selection, data still contain some background

l number of different contributions

m —
F(x; @)= D O.1.(X ) toiner poramerers
i=1

02

LI ||J|III|||lI-*‘l":I IJli[[‘l‘IIIIIIIHIIIII L L

0 0.5 L 1.5 _ j
X relative fractions :

a priori known (from analytical calc. or Monte Carlo), or to be fitted!
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Can have many components
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Example: Taking into account resolution

Performing a lifetime measurement with a finite time resolution

. Lifetimes distributed exponentially, with lifetime T: f(T;t)

.- Measurements smeared with a resolution o (assume Gaussian) around their true value

R(tt)

. Measured distribution will be a convolution of the two:

M(z:0)= [R(t.1") f (r:1)-d’

Niklaus Berger — PSI course 2014 - Slide 45



Measurement with resolution

t=1
1rc
1-
: measured distribution,
e low resolution
0 L
081 true distribution I
1] L
0.4 F
F 0.5 —
.| c = 0.9
0.2 ¢
I 0.4
2 4 1) 8 in
1.-
0
0.8
1]
0] c = 005' ||I |
0 i
0.41 2 4 & 3 10
0| measured,
D_ﬂ" " "
- high resolution

2 4 & = 10 .
SO: can measure negative values!
Take this into account when fitting for
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Uncertainties (errors)
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Counting errors

The accuracy of the measurement will be limited by the number of
data events

- For N large, the statistical error goes as /N

» For N towards infinity, the relative error goes to 0
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Fit Errors

« MINUIT returns parameters and errors
+ Error given by change of objective function by 1 () or 0.5 (log LH)
« MINUIT normally estimates error from gradient at minimum

+ Calling HESSE after MINUIT also gives you correlations (the error matrix)

. MINOS will actually scan the parameters and return asymmetric errors

.+ Fit errors DO NOT tell you about the
goodness of fit
(only about the size of your data sample)

Parameter b

Parameter a
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Statistical errors

The accuracy of the measurement will be limited by the number of
data events

- For N large, the statistical error goes as /N

» For N towards infinity, the relative error goes to 0

But is the large N measurement really arbitrarily precise?
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Systematic errors

No, the measurement can still be systematically off
+ Clock running slow
. Calorimeter not perfectly calibrated
. Cable delays not properly accounted for
- Fitting an inadequate model

- elc

These errors lead to systematic uncertainties

+ Description of how well we understand the measurement
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Systematic errors

“[T]here are known knowns; there are things we know
that we know.

There are known unknowns; that 1s to say there are
things that, we now know we don't know.

But there are also unknown unknowns — there are
things we do not know, we don't know.

—United States Secretary of Defense,
Donald Rumsfeld
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Systematic errors

Determining statistical errors is a science

Estimating systematic errors is an art
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Systematic errors

Estimating systematic errors is a very important part of the analysis
. What assumptions went into the measurement?
. How well do you understand these assumptions?

. Can you make auxiliary measurements to test assumptions/obtain calibrations?

e.g. use a beam of particles of known energy to calibrate a calorimeter

+ You can never be totally sure that you have taken into account every single possible
effect

+ Think about systematics before starting the analysis
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Correlations
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More than one variable

. Let f(x, y) be the joint pdf to
observe
X in [, X + dx]

yinly,y +dy]

. Useful tool here: 2D-histograms,
often drawn as scatterplots

+ f(x,y) = density of points =
#entries

v‘lﬂ T T T ¥ 10 T T T
A SO o - o
B—” i s | - o) |
6 | - 6 |- .
4 . 4 -
2 | - 2 | .
0 | | | | 0 | | | |
1] 2 4 G 3 10 §) 2 4 6 3 10
X X
10 I I I T Y 10 | | 1
d
8 . 8 S
6 - . 6 | .
4 . 4 -
2 - . 2 .
0 | | | | 0 | | ! |
] 2 4 5] a3 10 §) 2 4 6 8 10
X X

> X
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Covariance/correlations

. Let f(x, y) be the joint pdf

+ If the variables are independent, then x and y are uncorrelated!:

The joint pdf factorizes: f(x, y) = g(x) h(y)

+ For correlated variables, define the covariance between two variables x, y:

cov(x, y) = V(x, )
cov(x, ) =<(x—<x>)-(y—<y>)>

—< XY >—<x>< P>

+ Properties: - cov(x, x) = V(x)
- cov(x, y) is translation invariant (shift origin) and has units

-V(x+y) =V(x) + V(y) + 2 cov(x, y)
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Covariance/correlations

The covariance can be represented by a matrix

w7 )

Vixyl=E((x—pu )y —u,))= E[xy]|— 1,

Elvl= [ [0 f(x'p")-dx'dy

VIin xmin

we used here true values p, and p, instead of <x>, <y>

+ V(x,y) is often called the error matrix;
the diagonal elements are just the variances
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Correlation coefhicient

Define correlation coefhicient p

. pranges between -1 and +1

cov(x,y) V(x V)
V() oo,

- The opposite is not true

1 [e=050
An estimate for pisr, taken from the sample ¥ |

variance s
Xy

p =099
. ._wﬁ?"
R ':!:r- L .-:-." . .-5:;;':-
o n—1 z (i< x2) =<y >) s ] &
—>

= JV(x) | X
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Correlation coefhicient: Questions

An estimate for pis r, taken from the sample
variance s_:
Xy

cov(x,y)  V(x,y)

Py = =
TV V(y) o0,

I
> (= <x>)(y,—<y>)

n—1%
o. =4/ V(X)

What is the correlation coefficient for (x, y) on
a horizontal line? A vertical line?

xy o

What is the correlation coefficient for (x, y) on
a circle?
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Overview

. Correlation coefhcient reflects the direction of a linear relationship

t does not reflect the slope

t does not reflect many properties of nonlinear relationships
o = 0 does not imply no correlation

p 1.0 0.4 0.0 -0.4 -1.0
1.0 1.0 1.0 0.0 -1.0 -1.0
I,-’ ’ - _ ~ . ) .,
# . ."ll/ , - il o — - i LT - Yom . ‘-*\‘
; g .-"f : ~ N "
0.0 0.0 0.0
é’iﬂfﬁ w
e ~
D
T e,
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Error propagation

. For uncorrelated variables:

=

4 \
: rY
=1 \ax;' Y,

. If they are correlated, take this into account:

=
=

2 n n /
Y| LY

i=1 j#i \&’Cf Ox j

N

/

-Cov(X,, X;)
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