High-Energy Collisions with ALICE at the LHC

1. Introduction

Graduate Days

of the Graduate School of Fundamental Physics Heidelberg, 5. - 9. October 2009

PD Dr. Klaus Reygers Physikalisches Institut Universität Heidelberg

1 High-Energy Collisions with Alice: Introduction

Contents

- 1 Introduction (KR)
- 2 The Alice Experiment (KS+KR, presented by KR)
- **3** Jets in e⁺e⁻, and p+p(bar p) Collisions (KR)
- 4 Jets in Nucleus-Nucleus Collisions (KR)
- **5** Hadron Abundances and the Statistical Model (KS)
- 6 Collective Flow (KS)
- 7 Heavy Quarks (KS)

Contents: The first Four Chapters

1 Introduction

- 1.1 Heavy-Ion Physics and the Quark-Gluon Plasma
- **1.2 Kinematic Variables**

2 The Alice Experiment

- 2.1 Overview: Experimental methods
- 2.2 Inner Tracking System (ITS)
- 2.3 Time Projection Chamber (TPC)
- 2.4 Transition Radiation Detector (TRD)
- 2.5 Calorimeters and more

3 Jets in e+e-, and p+p(bar p) Collisions

- 3.1 Jets in e⁺e⁻-Collisions
- 3.2 Hard Scattering and Particle Yields at High- p_T in p+p(bar p) Collisions
- 3.3 Jets in p+p(bar p) Collisions
- 3.4 Direct Photons

4 Jets in Nucleus-Nucleus Collisions

- 4.1 Parton Energy Loss
- 4.2 Point-like Scaling
- 4.3 Particle Yields at Direct Photons at High-*p*_T
- 4.4 Further Tests of Parton Energy Loss
- 4.5 **Two-Particle Correlations**
- 4.6 Jets in Pb+Pb Collisions at the LHC
- 3 High-Energy Collisions with Alice: Introduction

Slides will be posted at http://www.physi.uni-heidelberg.de/~reygers/lectures/hd-graduate-days-2009/

Thomas Ulrich: Hard Probes - Jets and Photons/Leptons: http://qm09.phys.utk.edu/indico/conferenceOtherViews.py?confld=1

Lectures on Heavy-Ion Physics (from experimentalist's viewpoint): http://www.uni-muenster.de/Physik.KP/Lehre/QGP-SS06 User: qgp, password: ss06

Many useful talks/lectures on Hard Scattering and Jets: http://cteq.org (→ summer schools)

4 High-Energy Collisions with Alice: Introduction

Books (I)

Heavy-lons

Introduction to High-Energy Heavy-Ion Collisions Cheuk-Yin Wong World Scientific

K. Yagi, T. Hatsuda, and Y. Miake, Quark-Gluon Plasma (Cambridge Monographs, ed. T. Ericson, P.V. Landshoff) ISBN 0-521-56108-6

R. Vogt Ultrarelativistic Heavy-Ion Collisions (Elsevier) ISBN 978-0-444-52196-5

Quark Gluon Plasma 3 (World Scientific Publishing, ed. R.C. Hwa and X.-N. Wang) ISBN 981-238-077-9

The Large Hadron Collider, Nature 448 (2007) 269

Books (II)

High-energy Physics

Ellis, Stirling, Webber QCD and Collider Physics Cambridge monographs on particle physics, nuclear physics and cosmology

Halzen, Martin Quarks & Leptons John Wiley & Sons

A. Bettini Introduction to Elementary Particle Physics (Cambridge University Press) ISBN 978-0-521-88021-3

A. Garcia and E.M. Henley, Subatomic Physics World Scientific Publishing, ISBN-13 978-981-270-056-8

6 High-Energy Collisions with Alice: Introduction

Papers on Hard Scattering and Jets

U. Wiedemann, Jet Quenching in Heavy-Ion Collisions arXiv 0908.2306

M. Tannenbaum, Review of hard scattering and jet analysis nucl-ex/0611008

A. Accardi et al., Hard Probes in Heavy Ion Collisions at the LHC: Jet Physics hep-ph/0310274

1.1 Heavy-Ion Physics and the Quark-Gluon Plasma

8 High-Energy Collisions with Alice: Introduction

Strong Interaction

 Confinement: Isolated quarks and gluons cannot be observed, only color-neutral hadrons

Nobel prize in physics (2004)

David J. Gross

H. David Politzer

Frank Wilczek

- Asymptotic freedom: Coupling α_s between color charges gets weaker for high momentum transfers, i.e., for small distances (r < 1/10 fm)
- Limit of low particle densities and weak coupling experimentally well tested (\rightarrow QCD perturbation theory)
- Nucleus-Nucleus collisions: QCD at high temperatures and density ("QCD thermodynamics")

Asymptotic Freedom

QCD perturbation theory (pQCD):

$$\alpha_s(Q^2) = \frac{12\pi}{(33 - 2n_f) \ln\left(\frac{Q^2}{\Lambda^2}\right)}$$

 n_f :number of quark flavors Λ :QCD scale parameter $(\Lambda \approx 250 \text{ MeV}/c)$

pQCD works for $\alpha_s \ll 1$. This is the case for $Q^2 \gg \Lambda^2 \approx 0,06 (GeV/c)^2$

Asymptotic freedom: $\alpha_s(Q^2) \rightarrow 0$ für $Q^2 \rightarrow \infty$ In the limit $Q^2 \rightarrow \infty$ quarks behave as free particles

Confinement

11 High-Energy Collisions with Alice: Introduction

Quark-Gluon-Plasma

Nucleus-Nucleus Collisions: "Mini Big Bang in the Laboratory"

- Transition from the Quark-Gluon Plasma to a gas of hadrons at ~ 10¹² °C
- 100 000 hotter than the core of the sun
- Early universe:
 QGP → hadron gas
 a few microseconds
 after the Big Bang

Predictions from First principles: Lattice QCD

14 **High-Energy Collisions with Alice: Introduction**

QCD Phase Diagram

15 High-Energy Collisions with Alice: Introduction

Ultra-Relativistische Schwerionenkollision

Pb+Pb 160 GeV/A

t=-00.22 fm/c

UrQMD Frankfurt/M

Au+Au Collision at the Relativistic Heavy Ion Collider (RHIC) in the USA

Au + Au Collisions at RHIC

Peripheral Event

Au + Au Collisions at RHIC

Mid-Central Event

Au + Au Collisions at RHIC

Central Event

Collision Geometry

Number of participants: number of nucleons in the overlap region Number of binary collisions: number of inelastic nucleon-nucleon collisions Charged particle multiplicity \Leftrightarrow collision centrality

Reaction plane: x-z plane

Ultra-Relativistic Nucleus-Nucleus Collisions

Early hardThermalizedTransitionparton-partonmedium (QGP!?)QGP \rightarrow hadron gasscatterings $(T_0 > T_c, ,$ $(Q^2 >> \Lambda^2_{QCD})$ $T_c \approx 160-190$ MeV)

- Time scales (RHIC, $\sqrt{s_{NN}} = 200 \text{ GeV}$):
 - Thermalization: $\tau_0 < \sim 1 \text{ fm/}c$
 - QGP lifetime (center of a central Au+Au coll.): ~ 5 fm/c

Freeze-out

Hard scatterings products as a probe for the Quark-Gluon Plasma

23 High-Energy Collisions with Alice: Introduction

A Jet in a p+p Collision

Brief History of QCD and Jets

Jet-Quenching in Nucleus-Nucleus Collisions

LHC: Cross-sections and Rates

Cross-sections of interesting probes expected to increase relative to RHIC by factors ~ 10 $(c\overline{c})$ to ~ 10² (*bb*) to > 10^{6} (very high p_{T} jets) \Rightarrow Hard probes become

abundantly available at LHC

Questions – What Can We Hope to Learn?

1. QCD thermodynamics:

What are the properties of quark-gluon matter at high temperatures and densities?

2. Jet-medium interaction:

What are the mechanisms of parton energy loss?

Start	Accelerator	Projectile	Energy (√s) per NN pair
~1985	AGS (BNL)	Si	~5 GeV
~1985	SPS (CERN)	0, S	~20 GeV
1994	SPS (CERN)	Pb	17 GeV
2000	RHIC (BNL)	Au	200 GeV
2008	LHC (CERN)	Pb	5500 GeV

CERN SPS (1985 - 2004)

NA35/44 NA38/50/50 NA49 NA45(CERES) NA57

WA80/98, WA97→NA57

RHIC: Relativistic Heavy Ion Collider

- Circumference 3,83 km
- 2 independent rings
 - 120 "bunches"
 - ~10⁹ Au-lons per bunch
 - "Bunch Crossings" every 106 ns
- Collisions of different particle species possible
- Maximum energy:
 - 200 GeV for Au+Au: $\sqrt{s_{NN}} \approx \frac{Z}{A} (500 \,\text{GeV})$
 - 500 GeV for p+p
- Design luminosity
 - Au-Au: 2 x 10²⁶ cm⁻² s⁻¹
 - ▶ p-p: 1,4 x 10³¹ cm⁻² s⁻¹
- Studied so far
 - p+p, d+Au, Cu+Cu, Au+Au

Important Results of the RHIC Heavy-Ion Program

- Hadron suppression at high p_T
 - Medium is to large extent opaque for jets ("jet quenching")
- Elliptic Flow at low p_{T}
 - Ideal hydro close to data
 ⇒ Small viscosity: "perfect liquid"
 - Evidence for early thermalization (τ < ~ 1 fm/c)
- All hadron species in chemical equillibrium (T ≈ 180 MeV, μ_B ≈ 30 MeV)

Elliptic flow:

Anisotropy in position space

Nucleus-Nucleus Collisions:

Freeze-out Parameters

Freeze-out parameters *T* and μ_B approximately at expected phase boundary

33 High-Energy Collisions with Alice: Introduction

CERN: Large Hadron Collider (LHC)

circumference: 27 km *B*-Field: 8 T 100 m beneath the surface first collisions: 2008

34 High-Energy Collisions with Alice: Introduction

p+p collisions: $\sqrt{s} = 14 \text{ TeV}$ collision rate: 800 MHz

Pb+Pb collisions: $\sqrt{s} = 5,5$ TeV collision rate: 10 kHz

FAIR at GSI

35 High-Energy Collisions with Alice: Introduction

Das ALICE-Experiment

Focus of the german groups (including Heidelberg): Time Projection Chamber (TPC) and Transition Radiation Detector (TRD) 36 High-Energy Collisions with Alice: Introduction BMBF Forschungsschwerpunkt ALICE Experiment 201 ALICE ALICE

- 18 detector systems
- ~ 10 000 t
- > 1000 collaborators
- p+p up to
 14 000 GeV
- Pb+Pb up to 5500 GeV
- First p+pcollisions:
 ~ Nov. 2009

1.2 Kinematic Variables

Center-of-mass Energy Vs

Mandelstam variable *s* is defined as: $s = (P_A + P_B)^2 = (\underbrace{E_A^* + E_B^*}_{\text{Total energy}})^2$

Fixed-Target-Experiment:

$$\sqrt{s} = \sqrt{m_1^2 + m_2^2 + 2E_1^{lab}m_2}$$
$$\approx \sqrt{2E_1^{lab}m_2}$$

Collider:

$$m_{1}, E_{1}^{lab} \qquad m_{2}, E_{2}^{lab} \qquad \sqrt{s} = \sqrt{m_{1}^{2} + m_{2}^{2} + 2E_{1}^{lab}E_{2}^{lab} + 2p_{1}^{lab}p_{2}^{lab}}$$

$$\stackrel{p_{1}=-\bar{p}_{2}, m_{1}=m_{2}}{=} 2E_{1}^{lab}$$

The energy of heavy-ion collisions is typically given per nucleon-nucleon pair ($V_{S_{NN}}$)

38 High-Energy Collisions with Alice: Introduction

Rapidity

Summary: Kinematic Variables

Example of a Pseudorapidity Distribution

Beam rapidity:

$$y_{\text{beam}} = \ln \frac{E+p}{m} = 5,4$$

Average number of charged particles:

$$\left\langle N_{ch}\right\rangle = \int \frac{dN_{ch}}{d\eta} d\eta \approx 20$$

Invariant Cross Section

42 **High-Energy Collisions with Alice: Introduction**

Invariant Mass

Consider the decay of a particle with mass *M* into two daughter particles

Mass:

$$M^{2} = \left[\left(\frac{E_{1}}{p_{1}} \right) + \left(\frac{E_{2}}{p_{2}} \right) \right]^{2} = (E_{1} + E_{2})^{2} - (\overrightarrow{p_{1}} + \overrightarrow{p_{2}})^{2}$$

$$= m_{1}^{2} + m_{2}^{2} + 2E_{1}E_{2} - 2\overrightarrow{p_{1}} \cdot \overrightarrow{p_{2}}$$

$$= m_{1}^{2} + m_{2}^{2} + 2E_{1}E_{2} - 2p_{1}p_{2}\cos\vartheta$$

Example: π^0 - **Decay** $\pi^0 \rightarrow \gamma + \gamma$ (BR: 98.8%): $m_1 = m_2 = 0, E_i = p_i$

Signal: Number of entries over combinatorial background (Peak width determined by energy resolution of the detector)

Background of γ -pairs, which don't originate from the same π^0 decay

Extra Slides

Lorentz Invariant Phase Space Element

Lorentz transformation of phase space element $d^{3}\vec{p} = dp_{x} \times dp_{y} \times dp_{z}$ not Lorentz Invariant! $p'_{x} = \gamma (p_{x} - \beta E)$ $\frac{\partial(p_x, p_y, p_z)}{\partial(p'_x, p'_y, p'_z)} = \begin{vmatrix} \frac{\partial p_x}{\partial p'_x} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \frac{\partial p_y}{\partial p'_y} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \frac{\partial p_z}{\partial p'_z} \end{vmatrix} = \frac{E}{E'}$ $E' = \gamma (E - \beta p_r)$ $p'_v = p_v$ $p'_{z} = p_{z}$ $dp_{x}dp_{y}dp_{z} = \frac{\partial(p_{x}, p_{y}, p_{z})}{\partial(p', p', p')} \times dp'_{x}dp'_{y}dp'_{z}$ $\frac{d^{3}\vec{p}}{E}$ Invariant phase space element: $\frac{d\sigma}{d^{3}\vec{p}/E} = E \frac{d\sigma}{d^{3}\vec{p}}$ Invariant cross section:

45 High-Energy Collisions with Alice: Introduction