High-Energy Collisions with ALICE at the LHC

2. The Alice Experiment

Graduate Days of the Graduate School of Fundamental Physics Heidelberg, 5. - 9. October 2009

PD Dr. Klaus Reygers Physikalisches Institut Universität Heidelberg

2.1 Overview: Experimental Methods

Momentum Measument in Magnetic Fields

1 m in a 1 Tesla field deflects a 1 GeV particle by 17°

Particle Identification via dE/dx (I)

Bethe-Bloch formula:

$$\left| \frac{dE}{dx} \right| = K \cdot z^{2} \cdot \frac{Z}{A} \cdot \frac{1}{\beta^{2}} \left(\frac{1}{2} \ln \left[\frac{2m_{e}c^{2}\beta^{2}\gamma^{2}T_{max}}{I^{2}} \right] - \beta^{2} - \frac{\delta}{2} \right) \right|$$

x in g/cm² $K = 4\pi N_{A}r_{e}^{2}m_{e}c^{2} = 0,307 \text{ MeVg}^{-1}\text{cm}^{2}$
 m_{e} : Masse des Elektrons
 r_{e} : klassischer Elektronenradius = 2,82 fm
 N_{A} : Avogadro-Zahl
 β : Geschwindigkeit des Teilchens ($\gamma = 1/\sqrt{1-\beta^{2}}$)
z: Ladung des einfallenden Teilchens

- Z: Ladungszahl des Mediums
- A: Massenzahl des Mediums

T_{max}: Maximale in einem Stoß auf ein Elektron übertragbare Energie

$$T_{\max} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma \frac{m_e}{m} + \left(\frac{m_e}{m}\right)^2} \qquad T_{\max} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma \frac{m_e}{m} + \left(\frac{m_e}{m}\right)^2}$$

m : Masse des einfallenden Teilchens

- *I*: Mittlere Anregungsenergie des Mediums
- δ : Dichte-Korrektur (transversale Ausdehnung des e.m. Feldes)
- 4 High Energy Collisions with Alice: The Alice Experiment

Particle Identification via dE/dx (II)

- x = thickness in g/cm²
 = distance z · density ρ,
 i.e. dE/dz = ρ · dE/dx
- Minimum at βγ = 3 4, i.e., at β ≈ 0,96 c "minimum ionizing particles" (Mips)
- d*E*/dx fall-off: ~ $1/\beta^2$
- Rise at relativistic energies
 - Due to increase of the transverse component of the *E* field with Lorentz γ
 - Rise for solids less strong than for gases
- Typical values for (dE/dx)_{min}
 - 1 2 MeV g⁻¹ cm²

Specific Energy Loss dE/dx

Time of Flight

Čerenkov Radiation

Durchquert ein geladenes Teilchen mit v > c/n (= Lichtgeschw. im Medium) ein Medium, dann bildet das Licht der angeregten Atome eine Wellenfront unter festem Winkel θ zur Teilchenbahn

$$\cos\theta = \frac{c/n \cdot t}{\beta \cdot c \cdot t} = \frac{1}{\beta \cdot n}$$

Anzahl abgestrahlter Photonen pro Wegstrecke und Wellenlängenintervall: Abgestrahlte Photonen überwiegend im blauen Frequenzbereich:

$$\frac{\mathrm{d}^2 N}{\mathrm{d}x \,\mathrm{d}\lambda} = \frac{2\pi z^2 \alpha}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2}\right), n = n(\lambda)$$

Bsp.: Teilchen (z = 1) mit β = 1 in Wasser (n = 1,33): dE / dx = 400 eV/cm \checkmark klein gegenüber gesamtem E-Verlust!

Calorimeters

2 Typen:

- Homogene Kalorimeter (z.B. Bleiglas)
- Sampling-Kalorimeter

Energieauflösung:

$$\frac{\sigma_E}{E} \approx \frac{\sqrt{N_{tot}}}{N_{tot}} = \frac{1}{\sqrt{N_{tot}}} \propto \frac{1}{\sqrt{E}}$$

Gute homogene Kalorimeter erreichen

$$\frac{\sigma_E}{E} \approx \frac{6\%}{\sqrt{E/\text{GeV}}}$$

Large Hadron Collider LHC at CERN

ALICE Collaboration

ALICE at LHC 1000 scientists, 30 nations

ITS

TRD

ITS: measures secondary vertex, open heavy-flavor, c and b TPC: tracks and identifies charged particles, (e, μ), π , K, p TRD: identifies electrons above 1 GeV, fast trigger (6 μ s)

TPC

1111111

p+p collision in ALICE (simulation)

ALICE Detectors: Pseudorapidity Coverage

Particle Identification in ALICE

• 'stable' hadrons (π , K, p): 100 MeV < p < 5 GeV (few 10 GeV)

- d*E*/dx in silicon (ITS) and gas (TPC) + time-of-flight (TOF) + Cherenkov (RICH)
- decay topologies (K_S⁰, K⁺, K⁻, Λ, φ, D)
 - K_s^0 and Λ decays below 10 GeV (secondary vertex reconstruction)
- leptons (e, μ), photons, η, π⁰
 - electrons TRD: p > 1 GeV, muons: p > 5 GeV, π^0 in PHOS: 1 GeV
- 16 High Energy Collisions with Alice: The Alice Experiment

Invariant Mass

Pointing Resolution

BRUNNHUBER SDI ALICE in 2004

2.2 Inner Tracking System (ITS)

Inner Tracking System (ITS)

- 6 layers silicon
 - 2 pixel detectors (SPD)
 - 2 drift detectors (SDD)
 - 2 strip detector (SSD)
- Reconstruction of primary vertex (σ < 100 μm)
- Secondary vertex, e.g., for heavy-quark measurements

3 x 2 Layers Silicon Technology

ITS - Sliding the SSD/SDD over the SPD

2.3 Time Projection Chamber (TPC)

ALICE TPC: The world's largest Time Projection Chamber

- Radius: 85 cm 247 cm
- Length: 2 × 2.5 m
- ~ 90 m³ gas: Ne/CO₂ (90/10)
- Drift field: E = 400 V/cm
- Drift length: 2 × 2.5 m
- Drift time: 88 µs (500 bins)
- MWPC readout
- #channels: 560,000
- Max. trigger rate: 200 Hz
- 180 space points/track: (σ_{x,y,z} < 500 μm)
- Can handle up 15000 tracks

Nominal *B* field: 0.5 T \rightarrow particle ID down to $p_T \sim 100 \text{ MeV}/c$ (cf. ATLAS: 2 T, CMS: 4 T)

Position Monitor

TPC Installation (January 2007)

< 100 m horizontal, < 100 m vertical in 2 days <v> = 4 m/hour

TPC commissioning

- TPC installed in ALICE, running continuously May-October 2008, and since Aug 2009
- 60 million events (cosmics, krypton, and laser) recorded

performance at design, TPC ready for collisions

TPC commissioning

- TPC installed in ALICE, running continuously May-October 2008, and since Aug 2009
- 60 million events (cosmics, krypton, and laser) recorded

performance at design, TPC ready for collisions

30 High Energy Collisions with Alice: The Alice Experiment

Electronic Noise and Drift Velocity

average noise = 700 electrons close to theoretical limit

required drift velocity uniformity: 0.3‰

measured: 1‰, consistent with $\Delta T = 0.3$ K vertical variation

drift time map with laser (before optimization of cooling)

Temperature homogeneity

Requirement: σ < 0.1 K</p>

 Achieved by actively stabilizing 50 cooling loops using information from 500 temperature sensors (36 inside gas volume).

Further improvements down to 80 mK in progress.

2.4 Transition Radiation Detector (TRD)

Transition Radiation Detector

1.2x10⁶

70 kW

- electron identification and trigger
- quarkonia → e⁺e[−]
- charm and beauty
- > 540 chambers /18 supermodules
- total area: 694 m²
 (3 tennis courts)
- gas volume: 25.8 m³ (Xe-CO₂)
- resolution (rφ): 400 μm
- read-out channels:
 (30 million pixels)
- power dissipation:
- chamber production finished
- 7 supermodules in 2009
- completion 2010

90% funded by Germany: GSI, Univ. DA, HD,FRA,MS, FH Cologne, Worms

Transition Radiation

- Charged particles emit transition radiation when cross boundaries of media with **different** ε
- Small probability
 - \Rightarrow many boundaries
- > Here: Lorentz factor $\gamma > 1000$
 - \Rightarrow only electrons emit TR
 - \Rightarrow identify electrons !

TRD – Signal Generation

Charged particles induce a signal in the detector Only electrons produce transition radiation Electron ID, misidentified pions 1 % or less

TRD – Signal Processing

- 2 custom designed ASICS
- pre-amplifier/shaper (PASA)
- ADC/tracklet-processor (TRAP):

contain 275k CPUs to process 65 MBytes of raw data

- tracking and trigger decision within 6.5 μs
- selection of high momentum electrons
- 70kW cooling power required

First supermodule assembly – Heidelberg

Installation of 2nd layer

6th layer finished

getting ready for transport to CERN, shipped in Sep 2006

First TRD supermodule in ALICE – Oct 2006

39 High Energy Collisions with Alice: The Alice Experiment

2.5 Calorimeters and more

Photon Spectrometer

- Status: 3/5 constructed
 - 1 module installed & commissioned
 - 2 more modules to be constructed
 - complete by 2010

Electromagnetic Jet Calorimeter

- construction start April 2008
- approved & funded Dec 2008
- US, Italy, France, Finland
- approx. 20% to be installed by May
- complete early 2010

44 m² Pb-Scint sampling calo, 20 X₀, 13 k FEE APD R/O $|\eta| < 0.7 \Delta \phi = 110^{\circ} r = 4.4 m$

Forward Detectors

- FMD (Forward Multiplicity Detector)
 - 3 planes Si-pad, -3.4 < η < -1.7, 1.7 < η < 5.0
- **T0**
 - 2-arrays 12 quartz Cherenkov counters
 - 30ps res.
 - Start for TOF detector
- V0
 - 2 scintillator arrays, 32 tiles
 - V0A: 1.7 < η < 5.0, V0C: -3.7 < η < -1.7
 - Minimum bias trigger in p+p and A+A
- ZDC (Zero Degree Calorimeter)
 - 2-neutron, 2-proton calorimeters, 116m from IP
- PMD (Photon Multiplicity Detector)
 - 2.3 < η < 3.5

V0A detector:

wave length shifting fibers

Trigger and Data Acquisition

- Trigger: three level architecture L0, L1, L2
- Continuous online operation from March to September 2008 (24/7):
 - up to 500 (1200) MB/s transfer
 - raw data rate of 2.5 PBytes / year

ALICE: First Physics Topics

Claus Jorgensen

Only a few ten thousand events are necessary for these analyses

Extra Slides

Particle Identification in ALICE

5 'stable' particle species: e, μ , π , K, p Instable particles through decay products

Central Barrel

- velocity & momentum \rightarrow mass of e, μ , π , K, p
- invariant mass
- \rightarrow quarkonia, e.g. J/ ψ , Υ
- decay topology $\rightarrow K^0, K^+, K^-, \Lambda, D$

Forward Rapidity muon: p > 5 GeV/c

e,μ, photons, π⁰

- e in TRD: p > 1 GeV/c
- π^0 in PHOS: 1 < p < 80 GeV/c

• excellent particle ID up to ~ 50 to 60 GeV/c

TRD commissioning

- 4 supermodules installed in ALICE, cosmic ray data taking in 2008
- 50 000 horizontal tracks acquired (TRD L1 trigger commissioned and used)
- Reconstruction and first iteration for calibration parameters (gain, drift velocity) completed

Circulating Protons in LHC

ITS tracks on 12.9.2008 7 reconstructed tracks, common vertex

Circulating beam 2: stray particle causing an interaction in the ITS