High-Energy Collisions with ALICE at the LHC

3. Jets in e⁺e⁻ and p+p(pbar) Collisions

Graduate Days

of the Graduate School of Fundamental Physics Heidelberg, 5. - 9. October 2009

PD Dr. Klaus Reygers Physikalisches Institut Universität Heidelberg

1 High-Energy Collisions with Alice: Jets in e⁺e⁻ in p+p

Contents

- **1** Introduction
- 1.1 Heavy-Ion Physics and the Quark-Gluon Plasma
- **1.2 Kinematic Variables**
- **2** The Alice Experiment
- 2.1 Overview: Experimental methods
- 2.2 Inner Tracking System (ITS)
- 2.3 Time Projection Chamber (TPC)
- 2.4 Transition Radiation Detector (TRD)
- 2.5 Calorimeters and more
- **3** Jets in e+e-, and p+p(bar p) Collisions
- 3.1 Jets in e⁺e⁻-Collisions
- 3.2 Hard Scattering and Particle Yields at High-*p*_T in p+p(bar p) Collisions
- 3.3 Jets in p+p(bar p) Collisions
- **3.4 Direct Photons**
- **4** Jets in Nucleus-Nucleus Collisions
- 4.1 Parton Energy Loss
- 4.2 Point-like Scaling
- 4.3 Particle Yields at Direct Photons at High- p_T
- 4.4 Further Tests of Parton Energy Loss
- 4.5 Two-Particle Correlations
- 4.6 Jets in Pb+Pb Collisions at the LHC

3.1 Jets in e⁺e⁻-Collisions

Experimental Evidence for Color Charge (I)

Total cross section for the production of a $u\overline{u}$ – pair:

$$Q_{f} = \frac{2}{3}, \ 3 \text{ colors} \Rightarrow \text{factor } 3$$

$$\sigma(e^{+}e^{-} \to u \,\overline{u}) = 3 \cdot \sigma(e^{+}e^{-} \to u_{\text{color}} \,\overline{u}_{\text{anti-color}}) = \frac{16\pi}{9} (\hbar c)^{2} \cdot \frac{\alpha^{2}}{s}$$

with certain color (q_{color})

Experimental Evidence for Color Charge (II)

$$R = \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$$
$$= \frac{\sigma(e^+e^- \rightarrow \text{all } q, \overline{q})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$$
$$= 3 \cdot \sum_{q} Q_q^2$$
Sum over all quark flavors whose production is energetically allowed

u, d, s:

u, d, s, c:

u, d, s, c, b:

 $R = 3\left[\left(\frac{2}{3}\right)^{2} + \left(\frac{1}{3}\right)^{2} + \left(\frac{1}{3}\right)^{2}\right] = 2$ $R = 2 + 3\left(\frac{2}{3}\right)^{2} = \frac{10}{3}$ $R = \frac{10}{3} + 3\left(\frac{1}{3}\right)^{2} = \frac{11}{3}$

Klaus Reygers

Two- and Three-Jet Events in e⁺e⁻

Feynman Diagrams: Higher Order Corrections

Digression: Models for Jet Hadronization

Nicos Varelas, CTEQ summer school

- Independent fragmentation
 - Each parton fragments independently
- String fragmentation
 - Separating partons connected by color string
 - Used in Pythia/Jetset
- Cluster fragmentation
 - Pairs of neighboring partons combine to color singlets
 - Then apply recipe for cluster decay, e.g., isotropic decay in rest frame into hadrons

Experimental Evidence for Gluons from Three-Jet Events

e⁺e⁻ - collision at PETRA storage ring at DESY (ca. 1980):

2-jet event

Jets at LEP (OPAL Experiment)

What a Jet is Depends on the Jet Reconstruction: Rate of *n*-jet Events

$$R_{3}(y_{\text{Cut}},\sqrt{s}) = \frac{\sigma_{3-\text{Jet}}}{\sum_{n} \sigma_{n-\text{Jet}}}$$
$$= C_{3,1}(y_{\text{Cut}}) \frac{\alpha_{s}(\sqrt{s})}{2\pi}$$

 \approx 0,1 for large y_{Cut}

 y_{Cut} : Threshold in jet reconstruction algorithm (Durham or k_T algorithm, will be discussed later)

Example of a Jet Variable: Thrust

Ideal jet event:

T=1

Jet Fragmentation (I)

- Jet fragmentation is independent of the creation process of the mother parton
- Hadron transverse momentum p_T with respect to parton direction independent of parton momentum ($p_T < 300 \text{ MeV}/c$)
- Distribution of longitudinal hadron momenta depends only on the fraction *z* of the parton momentum (scaling)

$$\frac{d\sigma}{dz}(e^- + e^- \to h + X) = \sum_q \sigma(e^- + e^- \to q + \overline{q}) \Big[D_q^h(z) + D_{\overline{q}}^h(z) \Big]$$

 $z = \frac{E_h}{E_q} = \frac{E_h}{E_{beam}} = \frac{2E_h}{\sqrt{s}}$

Fragmentation function:

 $D_q^h(z) dz$: number of hadrons of type h with momentum fraction between z...z + dz

Jet Fragmentation (II)

$$\frac{1}{\sigma_{tot}} \frac{d\sigma}{dz} (e^- + e^- \to h + X) = \sum_{q} Q_q^2 \left[D_q^h(z) + D_{\overline{q}}^h(z) \right] = \int_{q} Q_q^2 \left[D_q^h(z) + D_{\overline{q}}^h(z) \right]$$

The expected scaling behavior is indeed approximately observed experimentally

Fragmentation Functions (FF) from e+e- Data

 Usual ansatz for functional form of the fragmentation function:

$$D_{a}^{h}(x, M_{0}^{2}) = Nx^{\alpha}(1-x)^{\beta}$$

 Small differences between FF's can be seen ("scaling violation")

NLO fragmentation functions from Albino, Kniehl und Kramer (hep-ph/0502188v2)

15 High-Energy Collisions with Alice: Jets in e⁺e⁻ in p+p

Example: Gluon and u-Quark Fragmentation Functions

Albino, Kniehl, Kramer, Nucl. Phys. B 725 (2005), 181

 $z = rac{p_{ ext{Hadron}}}{p_{ ext{Parton}}}$

Fragmentation functions: Number density for the production of a hadron h with fractional energy z in the fragmentation of a parton (e.g. determined from $e^+e^- \rightarrow Z^0 \rightarrow q\bar{q}$)

3.2 Hard Scattering and Particle Yields at High p_T in p+p(bar p) Collisions

Theoretical Description of High- p_{T} Particle Production

- Scattering of pointlike partons described by QCD perturbation theory (pQCD)
- Soft processes described by universal, phenomenological functions
 - Parton distribution function from deep inelastic scattering
 - Fragmentation functions from e⁺e⁻ collisions

Hadron Production in Leading Order QCD

Klaus Reygers

Mandelstam Variables

Massless partons: $\hat{s} = (p_1 + p_2)^2$ $\hat{t} = (p_1 - p_3)^2 = -2p_1p_3 = -\hat{s}\frac{1 - \cos\vartheta^*}{2}$ $\hat{u} = (p_2 - p_3)^2 = -2p_2p_3 = -\hat{s}\frac{1 + \cos\vartheta^*}{2}$

Example: Jet cross section (i.e., no fragmentation function):

$$E_{jet} \frac{d^{3}\sigma}{d^{3}p_{jet}} = \frac{1}{16\pi s} \sum_{i,j,k,l=q,\bar{q},g} \int_{0}^{1} \frac{dx_{1}}{x_{1}} \frac{dx_{2}}{x_{2}} f_{i}(x_{1},\mu^{2}) f_{j}(x_{2},\mu^{2})$$
$$\times \sum \left| M(ij \to kl) \right|^{2} \frac{1}{1+\delta_{kl}} \delta(\hat{s}+\hat{t}+\hat{u})$$

Klaus Reygers

Point Cross Sections at Leading Order

Process	$\overline{\sum} \mathcal{M} ^2/g^4$	$\theta^* = \pi/2$	
$q \ q' \to q \ q'$	$\frac{4}{9} \; \frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2}$	2.22	By defining R in terms of Δ (a) her that say Δ (b) we obtain a property defining R in terms of Δ (a) her that say Δ (b) we obtain a property definition of the say Δ (b) her that say Δ (c)
$\left \begin{array}{c} q \ \overline{q'} \rightarrow q \ \overline{q'} \end{array} \right.$	$\frac{4}{9} \ \frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2}$	2.22	
$q \ q \to q \ q$	$\frac{4}{9} \left(\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} + \frac{\hat{s}^2 + \hat{t}^2}{\hat{u}^2}\right) - \frac{8}{27} \frac{\hat{s}^2}{\hat{u}\hat{t}}$	3.26	(b)
$\left \begin{array}{c} q \ \overline{q} \rightarrow q' \ \overline{q'} \end{array} \right $	$\frac{4}{9} \ \frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2}$	0.22	(c)
$q \ \overline{q} ightarrow q \ \overline{q}$	$\frac{4}{9} \left(\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} + \frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2}\right) - \frac{8}{27} \frac{\hat{u}^2}{\hat{s}\hat{t}}$	2.59	Leeve entres teres
$q \ \overline{q} \to g \ g$	$\frac{32}{27} \frac{\hat{t}^2 + \hat{u}^2}{\hat{t}\hat{u}} - \frac{8}{3} \frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2}$	1.04	(d)
$\left \begin{array}{c} g \ g \end{array} \rightarrow q \ \overline{q} \end{array} \right $	$\frac{1}{6} \ \frac{\hat{t}^2 + \hat{u}^2}{\hat{t}\hat{u}} - \frac{3}{8} \frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2}$	0.15	
$g \ q \rightarrow g \ q$	$-\frac{4}{9} \frac{\hat{s}^2 + \hat{u}^2}{\hat{s}\hat{u}} + \frac{\hat{u}^2 + \hat{s}^2}{\hat{t}^2}$	6.11	
$g \ g \to g \ g$	$rac{9}{2} \; (3 - rac{\hat{t}\hat{u}}{\hat{s}^2} - rac{\hat{s}\hat{u}}{\hat{t}^2} - rac{\hat{s}\hat{t}}{\hat{u}^2})$	30.4	

High-Energy Collisions with Alice: Jets in e⁺e⁻ in p+p

Determination of Parton Distribution Functions: Deep-Inelastic Lepton-Nucleon Scattering

e⁺+p Scattering: H1 event display

Determination of Parton Distribution Functions: Deep-Inelastic Lepton-Nucleon Scattering: Kinematic Variables

Hadronen k' = (E', k')P = (M, 0) $q = (\nu, q)$ k = (E, k)Proton

$$\nu = E - E'$$
 (in lab. frame)
 $Q^2 = -q^2$:

Structure functions to be determined in the experiment

$$\frac{d^2\sigma}{dQ^2d\nu} = \frac{4\pi\alpha^2}{(Q^2)^2} \cdot \frac{E}{E'} \left(\frac{W_2(Q^2,\nu)}{W_2(Q^2,\nu)} \cos^2\frac{\vartheta}{2} + 2\frac{W_1(Q^2,\nu)}{W_1(Q^2,\nu)} \sin^2\frac{\vartheta}{2} \right)$$

Discovery of Scaling at SLAC

Bjorken-x:
$$x := \frac{Q^2}{2M\nu}$$

In the limit $Q^2, \nu \to \infty$ the structure functions only depend on *x*. This is called *scaling*:

$$W_1(Q^2,\nu) \longrightarrow F_1(x),$$

 $\frac{\nu}{M} \cdot W_2(Q^2,\nu) \longrightarrow F_2(x)$

Interpretation: Inelastic lepton-nucleon scattering can be regarded as incoherent elastic scattering of the lepton off pointlike constituents of the nucleon, called partons.

Quark-Parton Model

Quark-Parton Model:

- View nucleon in infinite momentum frame so that transverse momenta of the partons can be neglected
- The Bjorken-x can the be interpreted as the momentum fraction x ($0 \le x \le 1$) of the nucleon that is carried by the parton that participated in the scattering
- Identify partons with quarks and gluons

The structure function $F_2(x)$ is then given by

$$F_2(x) = x \sum_f z_f^2(q_f(x) + \overline{q}_f(x)))$$

where

$$q_f(x) dx \Big[\overline{q}_f(x) dx \Big]$$
:number of quarks [antiquarks] of flavor f with
fractional momenta between x...x+dx z_f :quark charge (e.g. 2/3 for u-quark)

Parton Distributions (I)

Proton =

- **1.1** valence quark
- **2.** 3 valence quarks
- 3.3 valence quarks + gluons
- 4.3 valence quarks + gluons
 - + sea quarks

Interpretation of $x_{Bjorken}$ in the parton model:

In a reference frame in which the parton transverse momentum can be neglected (infinite momentum frame) $x_{Bjorken}$ represents the fraction of the 4-momentum of the nucleon carried by the parton

Parton Distributions (II)

q(x) dx: parton distribution = number of partons in [x, x+dx]

Resolution of the Virtual Photon

Valence quarks

Valence quarks + sea quarks

4-momentum transfer:

$$q = (k - k'), \quad Q^2 \coloneqq -q^2$$

wave length of the virtual photon:

$$\lambda = \frac{\hbar}{\sqrt{Q^2}}$$

Klaus Reygers

Scaling Violations

Scaling violation

Small x (< 0.1):
 F₂(x,Q²) increases with Q²

Large x (> 0.3):
 F₂(x,Q²) decreases with Q²

Parton Distributions: High Precession Data from HERA

30 High-Energy Collisions with Alice: Jets in e⁺e⁻ in p+p

Modification of the Structure Functions in Nuclei

x < 0.1: "shadowing region"
0.1 < x < 0.3: "anti-shadowing"
0.3 < x < 0.7: "EMC effect"
0.7 < x < 1.0: Fermi-motion of nucleons in nuclei

An Example: Nuclear PDF's in Pb (EPS09NLO)

Large uncertainties for gluon PDF's at small x

Eskola et al., arXiv:0902.4154v2 [hep-ph]

Klaus Reygers

pQCD works in p+p at $\sqrt{s} = 200 \text{ GeV}$

- π⁰ production in p+p well
 described by perturbative QCD
- Data sensitive to differences in gluon fragmentation function (KKP vs. Kretzer)
- Reference for Au+Au
- Description of hard processes under control at RHIC energy

PRL 91, 241802 (2003)

More Recent Data with Higher Statistics: Same Conclusion: pQCD Works at RHIC Energies

Agreement with pQCD in p+p is a prerequisite for parton energy loss calculations

Different Contributions to the Pion Spectrum in p+p at \sqrt{s} = 200 GeV

 $p_T < 9 \text{ GeV}/c$: gluon fragmentation dominates $p_T > 9 \text{ GeV}/c$: quark fragmentation dominates

Particle Production at High $p_T(I)$

36

High p_T part of the spectrum flattens with increasing \sqrt{s}

Low *p*_T (< 2 GeV/*c*):

$$\frac{1}{p_{\rm T}} \frac{{\rm d}N_x}{{\rm d}p_{\rm T}} = A(\sqrt{s}) \cdot e^{-6\,p_{\rm T}}$$

High p_{T} :

$$\frac{1}{p_{\rm T}} \frac{{\rm d}N_x}{{\rm d}p_{\rm T}} = A(\sqrt{s}) \cdot \frac{1}{p_{\rm T}^n}$$

Average transverse momentum:
$\langle p_{T} \rangle$ vs. $\forall s$ in p+p(bar p)

Increase of $\langle p_T \rangle$ reflects increase in hard scattering

Particle Production at High p_{T} (II)

Hard vs. soft particle production

A Model for Particle Production at Low p_T in Nucleon-Nucleon Collisions: String Fragmentation

String fragmentation models explains:

- \sqrt{s} independence of the p_T of produced particles ($p_T \sim 350 \text{ MeV}/c$) ("string breaking is a local process")
- Shape of the rapidity distribution of produced particles, in particular the plateau at mid-rapidity

Where is the Transition from Soft to Hard Particle Production?

Scaling expected for parton-parton scattering with high momentum transfer (hard scattering):

$$E\frac{d^{3}\sigma}{dp^{3}}=\frac{1}{\sqrt{s}^{n(x_{T},\sqrt{s})}}G(x_{T})$$

$$x_T = \frac{2p_T}{\sqrt{s}}$$

 x_T at which scaling behavior is observed decreases with increasing \sqrt{s} .

Upshot: Particle production dominated by hard processes for

$$p_T > \sim 2 \text{ GeV}/c$$

3.3 Jets in Nucleon-Nucleon Collisions

Klaus Reygers

Jets and Hard Scattering in p+p

- Jets in p+p were discovered in the late seventies, early eighties
- Confirmation of QCD
- Note: jet cross section small (a typical "minimum bias" event looks different)

UA2 two-jet event, ca 1982

Jet Event in a p+p Collision at \sqrt{s} = 63 GeV

Lego plot shows energy vs. pseudorapidity η and azimuthal angle φ

Jet Event at the Tevatron

Evolution of a Jet Event

Jet-Finding Algorithms

- **Objective:** reconstruct energy and direction of initial parton
- Must be unambiguously applicable at level of experimental data (tracks/towers) and in perturbative QCD calculation (parton level)
- Starting point: list of calorimeter towers and/or charged hadron tracks
- **Two classes of algorithms:**
 - Cone algorithm: traditional choice in hadron-hadron collisions
 - k_T algorithm: traditional choice in e+e- collisions

Cone algorithm:

Sum content in cone with radius

$$\boldsymbol{R} = \sqrt{\left(\Delta\eta\right)^2 + \left(\Delta\phi\right)^2}$$

Typical choice: R = 0.7

 $k_{\rm T}$ algorithm:

Successively merge "particles" in order of relative transverse momentum.

Termination of merging controlled by a parameter D

Cone Algorithm

- (Normally) start with seed (e.g. calorimeter module with high energy)
- Consider all particles in cone around seed and calculate

$$\eta^{C} = \frac{\sum_{i \in C} E_{T}^{i} \eta^{i}}{E_{T}^{C}}, \quad \phi^{C} = \frac{\sum_{i \in C} E_{T}^{i} \phi^{i}}{E_{T}^{C}} \qquad \left(E_{T} = E \sin \vartheta \right)$$

- Repeat this procedure with new cone center (η^c, φ^c)
- Terminate when "flow" of cone center stops
- Calculate jet energy as

$$E_T^C = \sum_{i \in C} E_T^i$$

- A particle may belong to two cones: split energy among jets
- Subtract background energy from underlying event

k_T Algorithm (I)

- Alorithms starts with a list of preclusters (calorimeter cells, particles, or partons)
- Calculate *p*_T and rapidity *y* for each precluster
- For each precluster define $d_i = p_{T,i}^2$
- For each pair (*i*,*j*) of preclusters define

$$d_{ij} = \min \left(p_{T,i}^2, p_{T,j}^2 \right) \frac{\Delta \mathcal{R}_{ij}^2}{D^2}$$

= $\min \left(p_{T,i}^2, p_{T,j}^2 \right) \frac{(y_i - y_j)^2 + (\phi_i - \phi_j)^2}{D^2}$

- For D = 1 and ΔR_{ij}² << 1, d_{ij} is the minimal transverse momentum k_T (squared) of one vector with respect to the other
- Find minimum *d*_{min} of all *d_i* and *d_{ij}*
- Merge preclusters *i* and *j* if *d*_{min} is a *d_{ij}*
- Else: Remove precluster *i* with *d*_{min} = *d_i* from list of preclusters and add it to the list of jets
- Repeat until list of preclusters is empty

Klaus Reygers

*k***_T** Algorithm (II): A Simple Example

Why the k_T Algorithm is Typically only used in e⁺e⁻ Collisions?

$k_{\rm T}$ jet has no fixed shape/area

 \rightarrow Difficult to subtract background from underlying event

Jet Finding Algorithms: Typical Requirements (I)

Two types of divergences:

The reconstructed jets should not change in case of

- collinear splitting, i.e., if one parton is replaced by two partons at the same place
- soft emission, i.e., if a low energy parton is added

Jet Finding Algorithms: Typical Requirements (II)

• Infrared safety

Fermilab Run II jet physics: hep-ex/0005012

Example of infrared sensitivity: Soft radiation (right plot) causes merging of jets which would have been separated otherwise

• Collinear safety

Example of collinear sensitivity: Seed and therefore jet not found in left picture

Example of collinear sensitivity: Reconstructed jet depends on seed

Jet Ambiguities: Different Algorithms Find Different Jets

53 High-Energy Collisions with Alice: Jets in e⁺e⁻ in p+p

Klaus Reygers

Jet Cross Sections at the Tevatron

Pretty good agreement between data and NLO pQCD predictions

Choice of the Optimal Cone Radius

Large jet radius

Small cone radius: Small background from the underlying event at the expense of some loss of jet particles Large cone radius: Large background from the underlying event but nearly all jet particles included

Due to higher backgrounds the cone radius in heavy-ion collisions typically smaller than in p+p

55 High-Energy Collisions with Alice: Jets in e⁺e⁻ in p+p

Klaus Reygers

Underlying Event (UE)

Rick Field: <u>https://agenda.infn.it/conferenceDisplay.py?confId=599</u>

- The hard scattering component (the "signal"):
 - 2 \rightarrow 2 (sometimes 2 \rightarrow 3) parton-parton scattering
 - plus initial and final state radiation (however, sometimes also attributed to the UE)
- The "underlying event" consists of the "beam-beam remnants" and from particles arising from soft or semi-soft multiple parton interactions (MPI).

What are Multiple Partonic Interactions?

Multiple parton interaction:

- Two or more pairs of partons interacting in the same inelastic p+p collision
- Momentum transfer larger than some lower cut-off p_T^{min} which establishes the hard scale
- *p*_T^{min} should correspond to a transverse size much smaller than the overlap area
- Thus, the two interaction region are well separated in space and should contribute incoherently to the cross section

Multiple Partonic Interactions are Inevitable

$$\sigma_{\rm int}(p_{\perp\rm min}) = \int_{p_{\perp\rm min}}^{\sqrt{s}/2} \frac{\mathrm{d}\sigma}{\mathrm{d}p_{\perp}} \,\mathrm{d}p_{\perp} \propto \frac{1}{p_{\perp\rm min}^2}$$

Even for scales $p_{\perp \min} \gg \Lambda_{QCD}$ one has $\sigma_{int}(p_{\perp \min}) > \sigma_{tot}$

The number of hard interactions per p+p collisions is thus given by

$$\langle n_{\rm hard} \rangle (p_{\perp \min}) = \frac{\sigma_{\rm int}(p_{\perp \min})}{\sigma_{\rm tot}}$$

Motivation for Studying Multiple Parton Interactions (I)

- Important for understanding of minimum bias p+p collisions at the Tevatron and the LHC
 - Tevatron: ~ 2 6 hard interactions per collision
 - LHC: ~ 4 10 hard interactions per collision

- Understanding of the "underlying event" important in specialized analyses, e.g., Higgs searches, jet production
 - Pedestal effect:
 Events with high-p_T jets have more underlying activity than minimum-bias events
- Study distribution of the partons and parton correlations in the plane transverse to the beam axis

Motivation for Studying Multiple Parton Interactions (II) Transverse Profile of the Proton:

Where are the sea quarks and gluons inside the proton in the plane transverse to the beam axis?

\rightarrow Study multiple parton interactions

3.4 Direct Photons

Klaus Reygers

Direct Photons

- Direct photons:
 Photons emerging from parton-parton scattering

 (as opposed to hadron decay photons)
- No complication due to parton-to-hadron fragmentation at the expense of smaller cross section
- Direct Photons allow to test QCD
- Sensitive to gluon distribution in the proton at leading order (though this turns out to be difficult largely due to theoretical uncertainties and some possible inconsistencies in the data)

Direct Photon Production in p+p: Hard Scattering

- **Processes in perturbative QCD**

 - Compton: $q+g → \gamma + q$ Annihilation: $q+\overline{q} → \gamma + g$ NLO
 - Bremsstrahlung
- Typically 20-30% uncertainty in pQCD calculations related to choice of unphysical scales

Direct Photons at RHIC: p+p at √s = 200 GeV

 Direct photons measured on statistical basis

- Good agreement with NLO pQCD prediction
- Reference for Au+Au

Direct Photons at the Tevatron (I): Isolated Photons

Tevatron experiments measure isolated direct photons (photons without associated charged track and small associated hadronic energy)

This rejects direct photons from fragmentation and bremsstrahlung

Rejection of background from $\pi^0 \rightarrow \gamma \gamma$ with measurement of shower profile

Direct Photons at the Tevatron (II): Rejection of $\pi^0 \rightarrow \gamma \gamma$ background

Experimental techniques

- DØ measures longitudinal shower development at start of shower
- CDF measures transverse profile at start of shower (preshower detector) and at shower maximum

Direct Photons at the Tevatron (III)

Good agreement with NLO QCD

Extra Slides

Klaus Reygers

Mean z of the Fragmentation Products and the "Leading-Particle Effect" (I)

 $D(z) = B e^{-bz}$ **Consider exponential fragmentation function:**

Mean multiplicity of the fragments:

$$\langle m \rangle = \int_{0}^{1} D(z) dz = B \int_{0}^{1} e^{-bz} dz = \frac{B}{b} (1 - e^{-b})$$

B and **b** are not independent since FF must satisfy:

In particular:

$$1 \equiv \int_{0}^{1} zD(z) dz = \frac{B}{b^{2}} \left(1 - e^{-b} \left(1 + b \right) \right)$$
$$B \approx b^{2} \Rightarrow \left\langle m \right\rangle \approx b$$
$$\left\langle z \right\rangle = \int_{0}^{1} zD(z) dz = \int_{0}^{1} D(z) dz = \frac{1}{b^{2}}$$

$$\langle z \rangle = \int_{0}^{1} z D(z) dz / \int_{0}^{1} D(z) dz = \frac{1}{\langle m \rangle}$$

$$\langle m \rangle \approx b \approx 8 - 10 \Rightarrow \langle z \rangle \approx 0.1 - 0.125$$

Mean z of the fragments:

RHIC: mean number of charged particles in a jet

Mean z of the Fragmentation Products and the "Leading-Particle Effect" (II)

Mean *z* for a fixed value of p_{T} :

$$\frac{1}{p_T} \frac{d^2 n_\pi}{dp_T dz} = f(\frac{p_T}{z}) \cdot D_{q/\pi}(z) \cdot z^{-2} \longrightarrow \left\langle z(p_T) \right\rangle = \frac{\int_{x_T}^1 dz \ z \ f(\frac{p_T}{z}) \cdot D_{q/\pi}(z) \cdot z^{-2}}{\int_{x_T}^1 dz \ f(\frac{p_T}{z}) \cdot D_{q/\pi}(z) \cdot z^{-2}}$$
$$= \dots \approx \frac{n-1}{b}$$

 $\langle z(p_T) \rangle$ is *n* – 1 times larger than the unconditional $\langle z \rangle$

This is called the leading-particle or "trigger bias" effect.

RHIC:
$$\langle z \rangle \approx 0.1 - 0.125 \Rightarrow \langle z(p_T) \rangle = 0.7 - 0.8$$

A Simplified Analytic Model for the Calculation of the Inclusive Hadron p_T Spectrum (I)

How can we calculate the inclusive pion p_T distribution given the parton p_T distribution and the parton-to-pion fragmentation function?

Parton
$$p_{\rm T}$$
 distribution: $\frac{1}{\hat{p}_T} \frac{dn}{d\hat{p}_T} = A \cdot \frac{1}{\hat{p}_T^n} = f(\hat{p}_T)$ ($n \approx 8$ for p+p at $\sqrt{s_{\rm NN}} = 200$ GeV)

Start with pion p_T spectrum as function of the parton \hat{p}_T and $z = p_T / \hat{p}_T$:

 $\frac{1}{\hat{p}_T} \frac{d^2 n_{\pi}}{d\hat{p}_T dz} = f(\hat{p}_T) \cdot D_{q/\pi}(z)$

$$z = p_T / \hat{p}_T:$$

pion transverse momentum

Change of variables:

A Simplified Analytic Model for the Calculation of the Inclusive Hadron p_T Spectrum (II)

Pion yield dN/dp_T at fixed p_T : Integration over z

$$\frac{1}{p_T} \frac{dn_{\pi}}{dp_T} = \int_{x_T}^1 dz f(\frac{p_T}{z}) \cdot D_{q/\pi}(z) \cdot z^{-2}$$

$$\bigwedge$$
Maximum parton energy:

$$\frac{s}{2} \Rightarrow z_{\min} = \frac{p_T}{\sqrt{s}/2} \equiv x_T$$

Using the power law form of the parton spectrum:

$$\frac{1}{p_T} \frac{dn_{\pi}}{dp_T} = A \cdot \frac{1}{p_T^n} \int_{x_T}^1 dz \, D_{q/\pi}(z) \cdot z^{n-2} \qquad \text{Integral depends only} \\ \text{weakly on } p_T \text{ since } x_T \approx 0$$

The pion p_T spectrum is also a power-law with the same power n. This is called the Bjorken parent-child relationship.
Interpretation of Scaling Violation (II)

Low energy proton

Fluctuations shorter than the resolution of the probe cannot be observed

High-energy proton

Gelis, Lappi, Venugopalan: arXiv:0708.0047

Time dilation allows more fluctuations to be resolved by the probe

High energy proton appears to contain more gluons than low energy proton

$$e^++e^- \rightarrow \mu^++\mu^-$$

Differential cross section:

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s} (\hbar c)^2 (1 + \cos^2 \theta)$$

 \sqrt{s} :center-of-mass energy

Total cross section:

$$\sigma = \frac{4\pi\alpha^2}{3s}(\hbar c)^2$$

Parton Kinematics (I)

Laboratory reference frame

Center-of-mass system (CMS)

Parton 4-vectors conveniently represented as:

$$p^{\mu} = (E, p_x, p_y, p_z)$$

= $(m_T \cosh y, p_T \cos \varphi, p_T \sin \varphi, m_T \sinh y)$

with transverse mass $m_T = \sqrt{p_T^2 + m^2}$ and rapidity $y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z}$

We will consider partons as massless so that $m_T = p_T$

Parton Kinematics (II)

four-vector of incoming proton 1

$$p_{1} = x_{1}P_{1} = x_{1} \left(\sqrt{s} / 2, 0, 0, \sqrt{s} / 2 \right)$$

$$p_{2} = x_{2}P_{2} = x_{2} \left(\sqrt{s} / 2, 0, 0, -\sqrt{s} / 2 \right)$$

$$p_{3} = \left(p_{T,3} \cosh y_{3}, p_{T,3} \cos \varphi, p_{T,3} \sin \varphi, p_{T,3} \sinh y_{3} \right)$$

$$p_{4} = \left(p_{T,4} \cosh y_{4}, p_{T,4} \cos \varphi, p_{T,4} \sin \varphi, p_{T,4} \sinh y_{4} \right)$$

Energy conservation:

$$(x_{1} + x_{2})\frac{\sqrt{s}}{2} = p_{T}(\cosh y_{3} + \cosh y_{4})$$
$$(x_{1} - x_{2})\frac{\sqrt{s}}{2} = p_{T}(\sinh y_{3} + \sinh y_{4})$$

Conservation of *p*_z**:**

$$x_1 = \frac{x_T}{2}(e^{y_3} + e^{y_4})$$
 $x_2 = \frac{x_T}{2}(e^{-y_3} + e^{-y_4})$ with $x_T = \frac{2p_T}{\sqrt{s}}$

76 High-Energy Collisions with Alice: Jets in e⁺e⁻ in p+p

Parton Kinematics (III)

 \sqrt{s} of the parton system: $\hat{s} = (x_1P_1 + x_2P_2)^2 \approx x_1x_2s$ CMSJet transv. momentum: $p_T = p_T^* = \frac{\sqrt{\hat{s}}}{2} \sin \vartheta^*$ $\sum_{i=1}^{n} \frac{\sqrt{\hat{s}}}{2} \sin \vartheta^*$ Energy-momentum vector
of the two-jet system: $x_1P_1 + x_2P_2 = \frac{\sqrt{s}}{2}(x_1 + x_2, 0, 0, x_1 - x_2)$ Rapidity of center-of-mass of the two-jet system: $y^{cm} = \frac{1}{2}\ln \frac{E + p_z}{E - p_z} = \frac{1}{2}\ln \frac{x_1}{x_2}$

Rapidity y^* in the center-of-mass of the two-jet system:

 $\begin{array}{c} y_{3} = y^{cm} + y^{*} \\ y_{4} = y^{cm} - y^{*} \end{array} \right\} \qquad y^{cm} = \frac{y_{3} + y_{4}}{2}, \ y^{*} = \frac{y_{3} - y_{4}}{2} \end{array}$

Scattering angle:

 $\cos \vartheta^* = \frac{p_z^*}{E^*} = \frac{\sinh y^*}{\cosh y^*} = \tanh \frac{y_3 - y_4}{2}$

Upshot: Fractional momenta x₁, x₂, and scattering angle in the CMS measurable

⁷⁷ High-Energy Collisions with Alice: Jets in e⁺e⁻ in p+p

Calculation of Jet Cross Sections: Factorization

Jet Fragmentation (II)

Energy conservation:

$$\sum_{h} \int_{0}^{1} z D_{q}^{h}(z) dz = 1$$

Average number of hadrons arising from quark q:

$$\int_{z_{\min}}^{1} D_q^h(z) \, dz = \left\langle n_q^h \right\rangle$$

$$z_{\min} = \frac{m_h}{E_q} = \frac{2m_h}{\sqrt{s}}$$

Threshold energy for producing hadron with mass *m*_h

Fragmentation function often parameterized as:

$$D_q^h(z) = N \frac{\left(1-z\right)^n}{z}$$

$$\left\langle n_{q}^{h}\right\rangle \approx \int_{z_{\min}}^{1} N \frac{1}{z} dz = -N \ln z_{\min} = N \ln \frac{E_{q}}{m_{h}}$$

Particle multiplicity grows logarithmically with parton energy

Jet Fragmentation (III)

Differential cross section:

$$\frac{d\sigma}{dz}(e^- + e^- \to h + X) = \sum_q \sigma(e^- + e^- \to q + \overline{q}) \Big[D_q^h(z) + D_{\overline{q}}^h(z) \Big]$$

Note that

$$\int \frac{d\sigma}{dz} dz = \left\langle n_h \right\rangle \cdot \sigma_{tot}$$

Using

$$\sigma(e^+e^- \to q\,\bar{q}) = \frac{4\pi}{3}(\hbar c)^2 \cdot \frac{Q_q^2 \alpha^2}{s} \quad \sigma_{tot} \coloneqq \sigma(e^+e^- \to h + X) = \sum_q \sigma(e^+e^- \to q\,\bar{q})$$

leads to

$$\frac{1}{\sigma_{tot}} \frac{d\sigma}{dz} (e^- + e^- \to h + X) = \frac{\sum_{q} Q_q^2 \left[D_q^h(z) + D_{\overline{q}}^h(z) \right]}{\sum_{q} Q_q^2} \equiv f(z)$$
this cross section is expected to be a

universal function, independent of \sqrt{s}

80 High-Energy Collisions with Alice: Jets in e⁺e⁻ in p+p

Quark vs. Gluon jet fragmentation (I)

Quark vs. gluon jet fragmentation (II): Charged Particle Multiplicity

Rapidity w.r.t. thrust axis \hat{r} :

$$y = \frac{1}{2} \ln \left(\frac{E + \vec{p} \cdot \hat{r}}{E - \vec{p} \cdot \hat{r}} \right)$$

Naively expect:

$$q - q q q^2 \sim C_F = 4/3$$

$$g - g = \frac{g}{g} = \frac{g}{2} \sim C_A = 3$$

 $r \equiv \frac{< n_g >}{< n_q >} \equiv \frac{< gluon \ jet \ multiplicity >}{< quark \ jet \ multiplicity >} \sim \frac{C_A}{C_F} = \frac{9}{4}$

Indeed approximately observed at small rapidity

Scaling violations (II)

Interpretation of Scaling Violation (I)

Resolution of the virtual photon: $\lambda [\lambda / Q^2]$

- Momentum continuously redistributed among partons
- Increasing resolution of the virtual photon with rising Q² explains scaling violations
- This is quantitatively explained in QCD

Quark and Gluon distribution in the Proton as Function of *x* and *Q*²

