High-Energy Collisions with ALICE at the LHC

4. Hard Scattering and Jets in A+A Collisions

Graduate Days

of the Graduate School of Fundamental Physics Heidelberg, 5. - 9. October 2009

PD Dr. Klaus Reygers Physikalisches Institut Universität Heidelberg

1 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

Content

1 Introduction

- 1.1 Heavy-Ion Physics and the Quark-Gluon Plasma
- 1.2 Kinematic Variables

2 The Alice Experiment

- 2.1 Overview: Experimental methods
- 2.2 Inner Tracking System (ITS)
- 2.3 Time Projection Chamber (TPC)
- 2.4 Transition Radiation Detector (TRD)
- 2.5 Calorimeters and more

3 Jets in e+e-, and p+p(bar p) Collisions

- 3.1 Jets in e⁺e⁻-Collisions
- 3.2 Hard Scattering and Particle Yields at High- p_T in p+p(bar p) Collisions
- 3.3 Jets in p+p(bar p) Collisions
- 3.4 Direct Photons

4 Jets in Nucleus-Nucleus Collisions

- 4.1 Parton Energy Loss
- 4.2 Point-like Scaling
- 4.3 Particle Yields at Direct Photons at High-pT
- 4.4 Further Tests of Parton Energy Loss
- 4.5 **Two-Particle Correlations**
- 2 High-Energy Collisions with Alle bets in Nucleus Autoeus Collisions

4.1 Parton Energy Loss

3 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

Jet Tomography in A+A Collisions

- Hard parton-parton scatterings take place in initial phase, prior to the formation of the QGP
- Scattered quarks und gluons sensitive to medium properties: "jet tomography"
- 4 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

Anology: Energy loss of Charged Particles in Normal Matter

- μ⁺ on Cu: Radiational energy loss ("bremsstrahlung") starts to dominate over collisional energy loss ("Bethe-Bloch formula") for p >> 100 GeV
- For energetic quarks and gluons in QCD matter, radiative energy loss (induced gluon emission) is/was expected to be the dominant process

5 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

The Idea of Jet Quenching due to Collisional Parton Energy Loss was Already Formulated in 1982

An interesting signature may be events in which the hard collision occurs near the edge of the overlap region, with one jet

escaping without absorption and the other fully absorbed.

6 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

- Collisional energy loss was later believed to have only a minor effect on jets
- Radiative energy loss was discussed in the literature from 1992 on by Gyulassy, Pluemer, Wang, Baier, Dokshitzer, Mueller, Pegne, Schiff, Levai, Vitev, Zhakarov, Wang, Salgado, Wiedemann, ...

Parton Energy Loss – Expected Properties

Parton Energy Loss: Why $\Delta E \propto L^2$?

Probability for radiating a gluon: $\propto L$

Coherent gluon wave function accumulates transverse momentum $k_{\rm T}$. Number of scatterings with momentum transfer $k_{\rm T}$ until it decoheres: $\propto L$

Total energy loss: $\Delta E \propto L^2$

8 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

Relation between Transport Coefficient and Energy Density of the Medium

Medium characterized by $\hat{q} = \mu^2 / \lambda$ (Momentum transfer per mean free path)

Parton Energy Loss in an Expanding Medium

Energy loss becomes linear in *L* for 1D Bjorken expansion

Medium-Modified Fragmentation Functions (I)

Parton energy loss can be conveniently included in a pQCD calculation via modified fragmentation functions

Consider fixed parton energy loss ϵ :

$$\frac{dn}{dx} = \frac{dn}{dz} \cdot \frac{dz}{dx} = D_{h/q}(z, Q^2) \cdot \frac{1}{1 - \varepsilon}$$

Average over energy loss probability:

$$D_{h/q}^{\text{med}}(x,Q^2) = \int_{0}^{1} d\varepsilon P(\varepsilon) D_{h/q}(\frac{x}{1-\varepsilon},Q^2) \frac{1}{1-\varepsilon}$$

Hadrons resulting from gluon bremsstrahlung neglected

High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

Medium-Modified Fragmentation Functions (II)

Fragmentation function $u \rightarrow \pi$ for a medium with L = 7 fm and various gluon densities

Quenching Weights (I)

Note that $P(\triangle E)$ is a generalized

probability to have no induced gluon radiation

p_0 as function of \hat{q} in the limit $E \to \infty$:

taken from PhD thesis of C. Loizides

Quenching Weights (II): Continuous Weight

These quenching weights hold for parton energies $E \rightarrow \infty$

14 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

Parton Energy Loss in the Limit $E \rightarrow \infty$

More realistic models need to take finite parton energies into account

Energy loss in the GLV Formalism for Pb+Pb at the LHC

I. Vitev, Phys.Lett.B639:38-45,2006

Central Pb+Pb at $\sqrt{s_{NN}}$ = 5500 GeV: $L \approx 6$ fm, dN^g/dy = 2000, 3000, 4000

$\Delta E_{gluon} / \Delta E_{quark} = 9/4$ only in the limit $E \rightarrow \infty$

Radiative vs. Collisional (i.e., Elastic) Energy Loss

- ΔE_{radiative} > ΔE_{collisonal} for
 u, d as well as c quarks
 with E > 10 GeV
- ΔE_{radiative} ≈ ΔE_{collisonal} for
 b quarks

Wicks, Horowitz, Djordjevic Gyulassy, Nucl. Phys. A784, 426-442

4.2 Point-like Scaling

Expectation for Particle Yields from Hard Scattering Processes in A+A collisions

- Calculate increase of the effective luminosity of nucleons (and partons, respectively) based on known nuclear geometry
- Result:

Particle yields scale with the average number $\langle N_{coll} \rangle$ of inelastic nucleonnucleon collisions in the absence of nuclear effects

Digression: Luminosity of a Collider

Rate of events for a given physics process:

Event rate [s⁻¹]
$$\longrightarrow N = L \cdot \sigma^{-1}$$

Luminosity [(s·cm²)⁻¹]

If two bunches of particles collide with frequency f then :

Effective Nucleon Luminosity: The Nuclear Overlap Function

"nucleon luminosity" in area
$$d^2s$$
 at \vec{s} : $dT_{AB}(\vec{s}) = T_A(\vec{s}) \cdot T_B(\vec{s} - \vec{b}) d^2s$

"Total nucleon luminosity" for collisions at impact parameter *b* (*nuclear overlap function*): unit: 1/area

$$T_{AB}(b) = \int T_A(\vec{s}) \cdot T_B(\vec{s} - \vec{b}) d^2s$$

Thus, number of interactions for a process with cross section $\sigma_{_{
m int}}$:

 $\langle N_{\rm int}(b) \rangle = T_{\rm AB}(b) \cdot \sigma_{\rm int}$ In particular: $\langle N_{\rm coll}(b) \rangle = T_{\rm AB}(b) \cdot \sigma_{\rm inel}^{\rm p+p}$

21 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

Impact Parameter Distribution of a A+A collisions

Glauber MC:

Analytic approximation:

$$p_{\text{inel}}^{A+B}(b) = 1 - \exp(-T_{AB}(b) \cdot \sigma_{\text{inel}}^{NN})$$

$$\sum_{\substack{n=1\\n \text{ probability for an inelastic}\\ A+B \text{ collision at impact}\\ parameter b$$

$$\frac{d\sigma}{db} = 2\pi b p_{\text{inel}}^{A+B}(b)$$

$$\sigma_{\text{inel}}^{A+B} = \int_{0}^{\infty} \frac{d\sigma}{db} db$$

Total cross section: $\sigma_{
m inel}^{
m Au+Au@200GeV} pprox 6.9 ~
m b$

Inelastic p+p Cross Section p+p

Naive expectation for the order of magnitude of the p+p cross section:

$$\sigma_{geo} = \pi \cdot b_{max}^2 = \pi \cdot (2r_{Proton})^2 = \pi \cdot (1, 6 \text{ fm}^2) = 80 \text{ mb}$$

1 b = 10⁻²⁸ m², 1 fm² = 10⁻³⁰ m² = 10 mb

23 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

Nuclear Modification Factor

$$R_{AB}(p_{\rm T}) = \frac{\mathrm{d}^2 N / \mathrm{d} p_{\rm T} \mathrm{d} y \Big|_{A+B}}{\left\langle N_{\rm coll} \right\rangle \times \mathrm{d}^2 N / \mathrm{d} p_{\rm T} \mathrm{d} y \Big|_{p+p}}$$

- (N_{coll}) from Glauber Monte-Carlo calculation
- In the absence of nuclear effects:
 *R*_{AB} = 1 at high *p*_T (*p*_T > 2 GeV/*c*)

Glauber Monte-Carlo Approach

- Nucleons of both nuclei randomly distributed in space according to Woods-Saxon distribution
- Impact parameter *b* drawn from distribution dσ/db = 2πb
- Collision between two nucleons take place if their distance *d* in the transverse plane satisfies

$$d \leq \sqrt{\sigma_{\text{inel}}^{\text{NN}} / \pi}$$

*N*_{part} and *N*_{coll} through simulation of many A+B collisions (typically ~ 10⁶)

Examples of Glauber-MC Events (I)

Au+Au bei $\sqrt{s_{NN}}$ = 200 GeV

Examples of Glauber-MC Events (II)

Au+Au at $\sqrt{s_{NN}}$ = 200 GeV

$N_{\rm part}$ und $N_{\rm coll}$ vs. Impact Parameter

Approximate relation between N_{\rm part} and N_{\rm coll}: ~~N_{\rm coll} \propto N_{\rm part}^{4/3}

4.3 Particle Yields and Direct Photons at High-*p*_T

29 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

How Can One Study Jet Production?

- Measurement of particle multiplicities at high p_{T}
- Measurement of two-particle angular correlations
- Jet reconstruction on single event basis
 - Possible in $p + \overline{p}$ collisions at the Tevatron
 - Very difficult in central nucleus-nucleus collisions at RHIC due to large particle multiplicity from underlying event
 - Situation improves significantly in central Pb+Pb at the LHC due to the increased cross section for jet production

Cronin Effect in p+A Collisions

Proton-Nucleus Collisions:

p+A Collisions: Nuclear modification factor $R_{pA} > 1$, at intermediate p_T , before $R_{pA} = 1$ is reached in the limit of very high p_T

Common explanation of the Cronin effect: Multiple soft scattering in p+A leads to additional transverse momentum $k_{\rm T}$

π^0 spectra in p+p- and Au+Au Collisionen

Strong suppression of the π^0 spectrum in central Au+Au collisions relative to N_{coll} -scaled p+p spectrum

 π^{0} Production in Au+Au Collisions at $\sqrt{s_{_{\rm NN}}}$ = 200 GeV Chnelles Quark hoher Energieverlust

Strong suppression in central collisions

Alternative Explanation: Effects of Cold Nuclear Matter ?

- Hadron suppression e.g. due to strong modification of parton distributions in heavy nuclei (initial state effects)?
- Example: Color Glass Condensate Model
 - Fewer gluons in wavefunction of incoming Au nuclei
 - Result: Fewer hard parton-parton scatterings and therefore fewer particles at high p_T
 - Hadron suppression in Au+Au can be described!

Kharzeev, Levin, McLerran, Phys.Lett. B 561, 93 (2003)

- Control Measurements
 - Hadron production in d+Au
 - High-p_T direct photons in Au+Au

Cold Nuclear Matter Effects studied at RHIC with d+Au

 $R_{dA} \approx 1$: Cold nuclear matter effects are small at $\sqrt{s_{NN}} = 200 \text{ GeV}$

35 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

Centrality Dependence of R_{AA} in d+Au and Au+Au

Upshot: Effects of cold nuclear matter cannot explain the suppression in central A+A
Direct Photons at high p_{T}

• Production of direct photons and hadrons at high $p_{\rm T}$ sensitive to the same parton luminosity

Example:

• Direct photons escape the medium unscathed

Photon Sources in A+A Collisions

- Direct photons from hard scattering dominate at high p_T
- Experimental challenge: Background from hadron decays, e.g. $\pi^0 \rightarrow \gamma + \gamma, \eta \rightarrow \gamma + \gamma$
- Method:

 $\gamma_{\text{direct}} = \gamma_{\text{total}} - \gamma_{\text{decay}}$

Direct Photons in Au+Au

Au+Au bei $\sqrt{s_{NN}}$ = 200 GeV

QCD + N_{coll} scaling describes direct photon spectra in Au +Au

Phys.Rev.Lett.94:232301,2005

A Further Important Result: Evidence for Thermal Photons in Au+Au

- Direct γ 's via internal conversion
- p+p:
 Direct γ's consistent with pQCD
- Au+Au:
 - Excess above scaled p+p for p_T < 3 GeV/c</p>
 - Shape: exp(-p_T/T) with
 T = (221 ± 23 ± 18) MeV
- A real breakthrough!

Nuclear Modification factor for direct Photons

Hadrons are suppressed whereas direct photons are not: Evidence for parton energy loss (as expected in the QGP)

Centrality Dependence of π^0 and Direct Photon Production in Au+Au at $\sqrt{s_{NN}} = 200$ GeV

Direct photons follow N_{coll} scaling expected for hard processes

More Recent Data with Higher Statistics

Possible Explanations for direct photon suppression at $p_{T} \approx 18 \text{ GeV}/c$:

- Proton/neutron difference
- Modification of parton distribution (EMC effect?)
- Quenching of fragmentation photons

43 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

Direct and Fragmentation Component

Jet Quenching: Quantifying the Stopping Power of the Medium

- Data imply
 - high initial gluon density $dN_{Gluonen}$ / $dy \approx 1000 \pm 200$
 - high energy density $\varepsilon > 10 \text{ GeV/fm}^3 \gg \varepsilon_c$
- Energy loss for a 10 GeV quark: $\Delta E = 1, 5 - 2 \text{ GeV}$

Particle Composition at Intermediate p_T : Unusually Large p/ π Ratio for 2 < p_T < 6 GeV/c

- For a parton that hadronizes in the vacuum after traversing the medium (A+A collision), particle ratios should be similar to those in d+Au or e⁺+e⁻
- This is indeed approximately true for p_T > 6 GeV/c
- 2 < p_T < 6 GeV/c: quark coalescence ?</p>

What's going on at Intermediate p_T (~2 < p_T < ~6 GeV/*c*)?

Coalescence of quarks from the QGP is a conceivable model for hadronization at intermediate p_{T} :

Different Physical Pictures at Different *p*_T Ranges in Heavy-ion Collisions

Berndt Mueller, Quark Matter 2008

48 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

4.4 Further Tests of Parton Energy Loss

Is Parton Energy Loss Really the Correct Explanation?

Dependence of the Suppression on the Size of the Nuclei: $\pi^0 R_{AA}$ in Au+Au and Cu+Cu at $\sqrt{s_{NN}}$ = 200 GeV

Approximately same R_{AA} in Au+Au and Cu+Cu for similar N_{part} values in accordance with jet quenching models

$\sqrt{s_{NN}}$ Dependence of Parton Energy Loss

QGP $\overrightarrow{\xi}$ Suppression of hadrons at high p_{T}

Onset of hadron suppression at a certain $\sqrt{s_{NN,min}}$?

How do properties of the created QGP depend on $\sqrt{s_{NN}}$?

Cu+Cu at $\sqrt{s_{NN}}$ = 22.4, 62.4 and 200 GeV

62.4 and 200 GeV Consistent with parton energy loss model for $p_T > 3$ GeV/c

22.4 GeV

- No suppression
- Enhancement consistent with a calculation that describes Cronin effect in p+A

Phenix, Physical Review Letters 101,162301 (2008)

In Cu+Cu parton energy loss starts to prevail over Cronin enhancement between $\sqrt{s_{NN}}$ = 22.4 GeV und 62.4 GeV

$√s_{NN}$ Dependence of R_{AA} : R_{AA} in Pb+Pb Collisions at the CERN SPS ($√s_{NN}$ = 17.3 GeV)

High p_T pion suppression even at SPS, but only in very central Pb+Pb collisions ($N_{part} > 300$)

54 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

Energy Dependence of R_{AA} in central Pb+Pb (Au+Au): $\sqrt{s_{NN}} = 17.3, 62.4$ and 200 GeV

Same observation as in lighter system (Cu+Cu): Suppression sets in between $\sqrt{s_{NN}} = \sim 20$ GeV und 62.4 GeV

Pathlength Dependence: Studying the Reaction Plane Dependence of R_{AA}

- Pathlength in the medium is longer in the out of plane direction
- *R*_{AA} expected to smaller ou of plane, indeed observed

$\pi^{0} R_{AA}$ as a Function of the Angle w.r.t. the Reaction Plane: Centrality Dependence

Heavy Quark Energy Loss

Dead Cone Effect:

- Gluon emission at small angles suppressed for heavy quarks
- Consequence: Energy loss for heavy quarks expected to be smaller

Dokshitzer & Kharzeev, PLB 519(2001)199 Klaus Reygers

Heavy Quark Energy Loss: Measurement of Charm Production via Electrons

Observable:

Excess electrons after subtraction of trivial sources (γ conversion, π^0 Dalitz decay [$\pi^0 \rightarrow e^+e^-$], ...)

• Electrons from decay of charm and bottom quarks dominant source of excess electrons

$$D^0(c\overline{u}) \to K^-(s\overline{u}) + e^+ + \nu_e$$

D meson reconstruction via Kπ channel requires good secondary vertex reconstruction:

D^{+/-}:
$$c\tau = 312 \ \mu m$$

D⁰: $c\tau = 123 \ \mu m$

$$L_{\rm lab} = v \cdot \gamma \cdot \tau = \beta \cdot \gamma \cdot c \,\tau = \frac{p}{mc} \cdot c \,\tau$$

Excess Electrons in p+p at \sqrt{s} = 200 GeV

Perturbative QCD calculation (FONLL = Fix-order-next-toleading-log) in agreement with measurement within systematic uncertainties

Excess Electrons in Au+Au at $\sqrt{s_{_{\rm NN}}}$ = 200 GeV:

As Strongly Suppressed as Pions

FONLL calculation scaled by T_{AB}

Electrons from heavy quarks as strongly suppressed in central Au+Au as pions

Centrality Dependence of the Electron Suppression

- Total charm yield (i.e. p_T > 0.3 GeV/c) scales with TAB as expected for charm production in hard processes
- High $p_{T} > 4 \text{ GeV}/c$ charm yields appear to be suppressed in central Au+Au collisions

Excess Electrons in Au+Au at $\sqrt{s_{NN}}$ = 200 GeV:

Not Really Understood with Current Energy Loss Models

- Radiative energy loss not sufficient to describe excess electron R_{AA}
- Inclusion of elastic scattering improves the situation only slightly

Is Parton Energy Loss Really the Correct Explanation?

4.5 Two-Particle Azimuthal Correlations

65 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

Two-Particle Correlations

Expectation in jet quenching scenario:

- Angular correlations around 0° as in p+p
- Suppression of angular correlations around 180 $^{\circ}$

Two-Particle Correlations in p+p

- Trigger particle: $p_{T} > 4 \text{ GeV}/c$
- Associated particle: $p_{T} > 2 \text{ GeV}/c$

Two-Particle Correlations in A+A

Two-Particle Correlations in Au+Au at $\sqrt{s_{NN}}$ = 200 GeV

- No jet correlation around 180 $^{\circ}$ in central Au+Au
- Consistent with jet quenching picture

69 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

Dependence of the Away-side Peak on Angle w.r.t. the Reaction Plane

Stronger suppression at $\Delta \phi = 180^{\circ}$ if jet axis is perpendicular to reaction plane, in line with jet quenching scenario.

Two-Particle Correlations: Towards higher p_{T}

- Trigger particle: $p_{T} > 8 \text{ GeV}/c$
- Associated particle: $p_{T} > 6 \text{ GeV}/c$

For higher jet energies the correlation at $\Delta \phi = 180^{\circ}$ in central Au+Au is not fully suppressed anymore

71 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

What happens to the jet energy ?

What's going on on the Away Side? (I)

73

What's going on on the Away Side? (II)

Possible explanations of the splitting of the away-side peak include

- Mach cones
- flow induced jet deflection
- and many more
- 74 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

4.6 Jets in Pb+Pb Collisions at the LHC

75 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

Why is Jet Reconstruction Difficult in Central Au+Au Collisions at RHIC ?

Central Au+Au collision at $\sqrt{s_{NN}} = 130$ GeV:

$$\left.\frac{dE_T}{d\eta}\right|_{\eta=0}\approx 500 \text{ GeV}$$

Consider jet cone with radius R:

$$R = \sqrt{\left(\Delta\eta\right)^2 + \left(\Delta\varphi\right)^2} = 0.7$$

Total transverse energy in this cone

$$E_T^{\text{cone}} = \frac{d^2 E_T}{d\eta d\varphi} \cdot \pi R^2$$

$$=\frac{1}{2\pi}\frac{dE_T}{d\eta}\cdot\pi R^2\approx 120 \text{ GeV}$$

- Background energy large compared to jet energy in A+A at RHIC.
- Nevertheless, attempts are made to reconstruct jets
- 76 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

Single Particle Cross Section at the LHC

Hard scattering cross sections increase significantly at the LHC

Klaus Reygers

Annual Jet Yield in ALICE Acceptance

Rate of jets with E_{T} > 100 GeV is greater than 1 Hz

Jets in Pb+Pb at the LHC

Jets with $E_T > \sim 50$ GeV in Pb+Pb at $\sqrt{s} = 5500$ GeV at the LHC can be identified above the background on an event-by-event basis

Influence of background from the underlying event minimized with cone size $R \approx 0.3 - 0.4$

How Can One Study Parton Energy Loss with Reconstructed Jets at the LHC?

- Measure Jet R_{AA} for different cone radii R
- Study medium induced modification of lateral jet profile Ψ(r)
- Study modification of fragmentation function

Jet R_{AA} for Different Cone Radii R

$$R_{AA}^{jet} = \frac{Pb + Pb \text{ Jet Yield}}{\langle N_{coll} \rangle p + p \text{ Jet Yield}}$$

- Large cone radius R: All energy lost will be recovered: R_{AA}^{jet} = 1
- Out of cone radiation will reduce *R*_{AA}
- Study energy loss by reconstructing jets with different *R*

Lateral Jet Profile

Broadening of the energy distribution expected in Pb+Pb

Modified Fragmentation Functions

Sapeta, Wiedemann, Eur.Phys.J.C55:293-302,2008.

- Reconstruction of the full jet energy allows to measure fragmentation function
- Parton energy loss will shift particles to low z (and thus higher ξ)
- Moreover, the medium is expected to change the particle composition of the jet, e.g., the K/π ratio
- Good low p_T partice ID makes this a promising measurement for Alice

Extra Slides

Jet Quenching and Angular Anisotropy (I)

Anisotropy in particle production related to collision geometry

Common wisdom: low p_{T}

anisotropy

high p_T Jet Propagation

Energy loss results anisotropy based on location of hard scattering in collision volume

v₂: 2^{nd} harmonic Fourier coefficient in dN/d φ with respect to the reaction plane

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi}\frac{d^{2}N}{p_{t}dp_{t}dy}\left(1 + \sum_{n=1}^{\infty} 2v_{n}\cos\left(n\left(\varphi - \Psi_{r}\right)\right)\right) \qquad v_{2} = \left\langle\cos 2\phi\right\rangle \qquad \phi = \operatorname{atan}\frac{p_{y}}{p_{x}}$$

v_2 at high p_T should result from jet quenching

85 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

Jet Quenching and Angular Anisotropy (II)

Charged hadron v₂:

- v₂ remains large at high p_T too large to be explained by geometry of jet quenching?
- Origin of v_2 at high p_T unclear

86 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

A Prediction for R_{AA} in Pb+Pb at the LHC

Parton Energy Loss

• Energy loss due to gluon radiation dominant:

 $dE_{rad} / dx \gg dE_{coll} / dx$

 Parton energy loss in a finite, *static medium* consisting of color charge carriers

$$\Delta E = -C \frac{\alpha_s}{4} \frac{\mu^2}{\lambda} L^2 \ln\left(\frac{2E}{\mu^2 L}\right) + \dots$$

- *L*: Path length of the parton in the medium
- μ^2 : Typical momentum transfer from medium to parton
- λ : Mean free path of the radiated gluons in the medium

• Energy loss for gluon jets larger than for quark jets:

$$C = \begin{cases} 3 & \text{for gluon jets} \\ 4/3 & \text{for quark jets} \end{cases}$$

• Total energy loss in the medium:

 $\Delta E \sim L^2$

- (effect of quantum mech. interference)
- Detailed numerical calculation shows:

 $\Delta E / E \approx \text{const.}$

for E < 20 GeV

Averaging $T_{AB}(b)$ over an Impact Parameter Distribution

Observable: Hard process per inelastic A+A collisions, i.e.

$$N_{\text{hard}}^{\text{A+B}}(b) = \frac{T_{AB}(b)}{p_{\text{inel}}^{\text{A+B}}(b)} \cdot \sigma_{\text{hard}}$$

Typical example: p_{T} dependent pion yield per inelastic event:

$$\frac{1}{N_{\text{inel}}^{A+B}}\frac{dN^{\pi}}{dp_{T}}(b) = \frac{T_{AB}(b)}{p_{\text{inel}}^{A+B}(b)} \cdot \frac{d\sigma^{p+p}}{dp_{T}}$$

Averaging over an impact parameter range f (say $b_1 \le b \le b_2$):

89

weighting factor:

$$p_{\text{inel}}^{\text{A+B}}(b) \longrightarrow \frac{1}{N_{\text{inel}}^{A+B}} \frac{dN^{\pi}}{dp_{T}} \Big|_{f} = \frac{\int_{b_{1}}^{b_{2}} 2\pi b T_{AB}(b) db}{\int_{b_{1}}^{b_{2}} 2\pi b p_{\text{inel}}^{A+B}(b) db} \cdot \frac{d\sigma}{dp_{T}} \equiv \langle T_{AB} \rangle_{f}$$

High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions Klaus Reygers

Nuclear Modification Factor (I)

Consider special case $b_1 = 0$, $b_2 = \infty$:

$$\frac{1}{N_{\text{inel}}^{A+B}} \frac{dN^{\pi}}{dp_{T}} \bigg|_{f} = \frac{\int_{0}^{0} 2\pi b T_{AB}(b) db}{\int_{0}^{\infty} 2\pi b p_{\text{inel}}^{A+B}(b) db} \cdot \frac{d\sigma}{dp_{T}} = \frac{AB}{\sigma_{\text{inel}}^{A+B}} \cdot \frac{d\sigma}{dp_{T}} \longrightarrow \frac{d\sigma^{A+B}}{dp_{T}} = AB \cdot \frac{d\sigma^{p+p}}{dp_{T}}$$
(holds for hard scatter)

Definition of nuclear modification factor:

1 dN^{π}

$$R_{AB}(p_{T}) = \frac{d\sigma^{A+B} / dp_{T}}{\left[\int_{f} d^{2}b T_{AB}(b)\right] \cdot d\sigma^{p+p} / dp_{T}} = \frac{\overline{N_{inel}^{A+B}} \overline{dp_{T}}|_{f}}{\left\langle T_{AB} \right\rangle_{f} \cdot d\sigma^{p+p} / dp_{T}}$$
$$= 1 \checkmark \qquad \text{(in the absence of nuclear effects)}$$

In practice:

$$\langle T_{AB} \rangle_f = \langle N_{coll} \rangle_f / \sigma_{NN}^{inel}$$
 where $\langle N_{coll} \rangle_f$ is determined with a Glauber
Monte Carlo code
High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions Klaus Reygers

90 High-Energy Collisions with Alice: Jets in Nucleus-Nucleus Collisions

Excess Electrons in Au+Au at $\sqrt{s_{NN}}$ = 200 GeV (II)

PHENIX, Phys.Rev.Lett.98:172301,2007

 Models based on radiative parton energy loss predict

 $\mathbb{W}E_{\text{gluon}} \mathbb{W}\mathbb{W}E_{\text{quark},m\mathbb{W}} \mathbb{W}\mathbb{W}E_{\text{quark},m\mathbb{W}}$

- Thus, electrons from charm and bottom quarks should be less suppressed than pions
- Experimental observation: Electrons from charm (and bottom) decays as strongly suppressed as pions
- Simultaneous measurement of electron flow further constrains energy loss models

Simple Estimate of the Relative Energy Loss

p_{T} independence of R_{AA} implies constant fractional energy loss:

 $π^0$ spectra at RHIC energy (√ s_{NN} = 200 GeV) described with *n* ≈ 8

Energy loss in the GLV Formalism for Cu+Cu, Au+Au, and Pb+Pb

I. Vitev, Phys.Lett.B639:38-45,2006

Calculated fractional energy loss and number of radiated gluons shown for three centralities in each figure:

Au+Au at $\sqrt{s_{NN}}$ = 200 GeV:

Centrality	0-10%	20-30%	60 - 80%
N _{part}	328	167	21
dN^g/dy	800 - 1175	410 - 600	50 - 75
L [fm]	6	4.8	2.4
A_{eff}	197	99	12

Cu+Cu at $\sqrt{s_{NN}}$ = 200 GeV:

Centrality	0 - 10%	20 - 30%	60 - 80%
$N_{\rm part}$	103	55	9
dN^g/dy	255 - 370	135 - 195	20 - 30
L [fm]	4.1	3.3	1.8
A_{eff}	64	34	6

Pb+Pb at $\sqrt{s_{NN}}$ = 5500 GeV:

d*N*^g/d*y* = 2000, 3000, 4000

p_{T} Distributions of Associated Particles

 p_{T} distribution on away side in central Au+Au similar to inclusive distribution: hint of thermalization of hadrons on away side

A so-far Unexplained Phenomenon: The Ridge

"ridge" = broad correlation in $\Delta\eta$ on the near side

Near Side Yields per Trigger Particle

After subtraction of the "ridge": jet-yield per trigger independent of centrality