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Statistics books:

G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998
see also www.pp.rhul.ac.uk/~cowan/sda

R.J. Barlow, Statistics, A Guide to the Use of Statistical
in the Physical Sciences, Wiley, 1989
see also hepwww.ph.man.ac.uk/~roger/book.html

Slides taken from:

Glen Cowan,
Introduction to Statistical Methods for High Energy Physics,
2008 CERN Summer Student Lectures
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1. Error Propagation
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Expectation values
Consider continuous r.v. x with pdf f(x).
Define expectation (mean) value as  E[z] = / x f(x)dx
Notation (often): FE[xz] = u ~ “centre of gravity” of pdt.
For a function y(x) with pdf g(y),

Blyl = [yg()dy = [ y(@)f(2)dx  (equivaleny

Variance: V[zx] = E[xz] — ,u2 = E[(z — M)Q]

Notation: V[z] = o2 N

—> / \\ <+
Standard deviation: o = \/ o2 S
o ~ width of pdf, same units as x. L

G. Cowan 2008 CERN Summer Student Lectures on Statistics
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Covariance and correlation

Detine covariance cov|x,y] (also use matrix notation V) as

coviz,y] = Elry] — papy = El(x — pz)(y — py)]

Correlation coefficient (dimensionless) defined as

cov|x, y]
Pxy —

O'gjO'y

If x, y, independent, i.e., f(x,y) = fz(x)fy(y), then
Elry] = //:vy f(z,y) dedy = pgpy
— coVv|[z,y] =0  xand y, ‘uncorrelated’

N.B. converse not always true.

G. Cowan 2008 CERN Summer Student Lectures on Statistics
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Correlation (cont.)

p = 0.95

G. Cowan

10
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2008 CERN Summer Student Lectures on Statistics
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p= —0.75

p = 0.25
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Error propagation
Suppose we measure a set of values 7 = (xq1,...,xn)

and we have the covariances V;; = cov|z;, ;]

which quantify the measurement errors in the x..
Now consider a function y(Z) .
What is the variance of y(&) 7

The hard way: use joint pdf  f£(Z) to find the pdf g(y) ,

then from g(y) find V[y] = E[y*] — (E[y])".

Often not practical, f(z) may not even be fully known.

G. Cowan 2008 CERN Summer Student Lectures on Statistics
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Error propagation (2)

Suppose we had @ = FE|Z]

—

in practice only estimates given by the measured 7

Expand y (&) to 1st order in a Taylor series about i

o
D | - (z; — 1)

T=[

y(@) = y(@) +
1=1

To find V]y] we need E[y?] and E[y].

Ely(Z)] = y(f) since Elx; — p;] =0

G. Cowan 2008 CERN Summer Student Lectures on Statistics
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Error propagation (3)

Ely?(D)] =~ y? (1) + 2y(i@) Y
=1

b

=y (ji) +

+E

oy

_6567;_

9y
S Elx; — p]
_ (I;?/ f:ﬁ
n [ ay ]
(ﬂii—ui)) (Z . (z; —Mj))
=i j=1 L9l g=p |
Oy Oy |
| Vi
_833@833]_5:[1

Putting the ingredients together gives the variance of ¥y (Z)

_6h/¢9y_
1_8$@a$j_

—

X

i

Vi

G. Cowan
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Error propagation (4)

2

If the x; are uncorrelated, 1.e., V;; = o7 0;; , then this becomes

o -
2 0y 3
2—1 L i

Similar for a set of m functions (%) = (y1 (&), ..., ym(T))

T

Ui = coviyp, yil = >
ii=1

Oy, Oy;
_a.’L‘i 8as'j_ -

or in matrix notation {7 — AV AL ., where
Y,

_85133'_ fzﬂ

G. Cowan 2008 CERN Summer Student Lectures on Statistics
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Error propagation (5)
The ‘error propagation’ formulae tell us the M)
covariances of a set of functions \

y(Z) = (y1(X),...,ym (L)) interms of
the covariances of the original variables. o)

Limitations: exact only if ¢(Z) linear. y(x)

Approximation breaks down 1f function

nonlinear over a region comparable

in size to the o. o

N.B. We have said nothing about the exact pdf of the x,
e.g., 1t doesn’t have to be Gaussian.

G. Cowan 2008 CERN Summer Student Lectures on Statistics 26
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Error propagation — special cases

— 2 2 2
y=x1+x2 — o0 =01+ 05+ 2cov[ry,z]

2 2 2
O
Y = T1T5 R _g:‘g | U% I 2C0V[ﬂ?1,$2]

That 1s, 1f the x, are uncorrelated:

add errors quadratically for the sum (or difference),

add relative errors quadratically for product (or ratio).

A But correlations can change this completely...

G. Cowan 2008 CERN Summer Student Lectures on Statistics 27
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Error propagation — special cases (2)

Consider y = xq1 — x> with

Viy =1°+1°=2, > oy = 1.4

Now suppose p=1. Then
Viy =1°+12-2=0, — oy = 0

1.e. for 100% correlation, error in difference — 0.

G. Cowan 2008 CERN Summer Student Lectures on Statistics
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2. Parameter Estimation
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Parameter estimation

The parameters of a pdf are constants that characterize
its shape, e.g.
f(xz;0) = —e_x/ 0

/\

parameter

Suppose we have a sample of observed values: 7 = (z1,...,xn)

We want to find some function of the data to estimate the
parameter(s):

A(2) < estimator written with a hat

Sometimes we say ‘estimator’ for the function of x, ..., x ;
‘estimate’ for the value of the estimator with a particular data set.

G. Cowan 2008 CERN Summer Student Lectures on Statistics



Properties of estimators

If we were to repeat the entire measurement, the estimates
from each would follow a pdf:

best
t e

large '
g __ biased
variance

N\

q(0;0)

i » 0
0
We want small (or zero) bias (systematic error): b = E[f] — ¢

— average of repeated measurements should tend to true value.

And we want a small variance (statistical error):  V[]

— small bias & variance are in general conflicting criteria

18 G. Cowan 2008 CERN Summer Student Lectures on Statistics
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An estimator for the mean (expectation value)

Parameter: p = E[x]
j ‘ .
Estimator: j= >3 o=z  (‘sample mean’)
T .

G. Cowan 2008 CERN Summer Student Lectures on Statistics
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An estimator for the variance

Parameter: o2 = V[x]

Estimator: o2 = N (z;—7)? =%  (‘sample
variance’)

We find:

b = E[c;é] — 02 =0 (factor of n—1 makes this so)

—x 1 n—3
Vie?] = = (u4 — 1u2> ,  Where

pe = [ (@ = Wk f(2) da

G. Cowan 2008 CERN Summer Student Lectures on Statistics
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The likelihood function

Suppose the outcome of an experiment 1s: x,, ..., x,, which

1s modeled as a sample from a joint pdf with parameter(s) 6:

f(@1,...an;0)

Now evaluate this with the data sample obtained and regard it as a
function of the parameter(s). This 1s the likelihood function:

L(O) = f(z1,...,2n;0) (; constant)

If the x; are independent observations of x ~ f(x; 0), then,

L) = |] f(zi:0)
i=1

G. Cowan 2008 CERN Summer Student Lectures on Statistics



Maximum likelihood estimators

If the hypothesized O 1s close to the true value, then we expect
a high probability to get data like that which we actually found.

2 X
. — log L=41 2 (ML fit) (a) o — logL=139 (B)
- - log L=41 .0 (true parameters) -~ - logLl=1828
4 4
2 2
0 I o L I
02 0 0.2 0.4 06 02 0 0.2 0.4 06

So we define the maximum likelithood (ML) estimator(s) to be
the parameter value(s) for which the likelithood 1s maximum.

ML estimators not guaranteed to have any ‘optimal’
properties, (but 1n practice they’re very good).

G. Cowan 2008 CERN Summer Student Lectures on Statistics



ML example: parameter of exponential pdt

Consider exponential pdf,  f(¢;7) = le—t/ T
-

and suppose we have data, tq,...,t,
o L. |
The likelihood functionis L(r) = ] Ze—ti/T
i=1"

The value of 7 for which L(t) 1s maximum also gives the
maximum value of 1ts logarithm (the log-likelihood function):

INL(m) = > Inf(t;7) =) (In L ti)
i=1

i—1 T T

G. Cowan 2008 CERN Summer Student Lectures on Statistics
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ML example: parameter of exponential pdf (2)

Find 1ts maximum by setting Oln L(7) =0,

ot

1’)’L
=2

1=1

f

075

Monte Carlo test:

generate 50 values i |

using 7= 1:
025 F
We find the ML estimate:
o ALHRRCARERT L ]|
? — 1062 0 | £ 3 4 5

{

G. Cowan 2008 CERN Summer Student Lectures on Statistics



Variance of estimators: Monte Carlo method

Having estimated our parameter we now need to report its
‘statistical error’, 1.e., how widely distributed would estimates
be 1f we were to repeat the entire measurement many times.

One way to do this would be to simulate the entire experiment
many times with a Monte Carlo program (use ML estimate for MC).

For exponential example, from € i |
sample variance of estimates JM

we find: 100
5'5: — 0.151 “

50

Note distribution of estimates 1s roughly
Gaussian — (almost) always true for j L
ML 1n large sample limat. o o5 1 15 o

G. Cowan 2008 CERN Summer Student Lectures on Statistics 10
25
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Variance of estimators from information inequality

The information inequality (RCF) sets a lower bound on the
variance of any estimator (not only ML):

2 i 2 i
() o[ 58] e

Often the bias b 1s small, and equality either holds exactly or
1s a good approximation (e.g. large data sample limit). Then,

92InL
Vgl ~ -1 / E
n~-1 /|7 0k
Estimate this using the 2nd derivative of In L at its maximum:
~ 52InL\ "
V00 = —
0= (%) |
6=~6

G. Cowan 2008 CERN Summer Student Lectures on Statistics 11
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Example of variance by graphical method

ML example with exponential: & 2
T = 1.062 53
AT = 0.137
-835 P
ATy = 0.165
6 ~ AT_~ATL~015 ™

1.2 1.4

T

Not quite parabolic In L since finite sample size (n = 50).

G. Cowan

2008 CERN Summer Student Lectures on Statistics
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The method of least squares

y T —
Suppose we measure N values, y,, ..., Vv, 2 |

assumed to be mdependent Gaussian

: 1.5
r.v.s with

Ely;] = Ax4;0) . )

Assume known values of the control 05 |
variable x, ..., x,, and known variances

V[yz] — Ufi2 . X
We want to estimate 6, 1.e., fit the curve to the data points.

The likelihood function 1s

ol A (v — M= 0)%
L(O) = || fyi;0) = exp
7:1;[1 731;[1 V27 i 207;2 ]

G. Cowan 2008 CERN Summer Student Lectures on Statistics 14
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The method of least squares (2)

The log-likelithood function 1s therefore

N : 2
Az 0
In L(6) = —% > (i (;UZ ) |- terms not depending on 6
i=1 7

So maximizing the likelihood 1s equivalent to minimizing

N (o — N 0))2
XQ(H) — ; (yz )\(52279))

Minimum of this quantity defines the least squares estimator 0.

Often minimize y* numerically (e.g. program MINUIT).

G. Cowan 2008 CERN Summer Student Lectures on Statistics 15
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Example of least squares fit

p
Fit a polynomial of order p: A(z; 6g,...,0p) = > 6Opz”
n=0

G. Cowan

)

5

—— 0" order, x*=455
--- 1% order, x°=3.99 ;
4" order, x° = 0.0 i, 2

_ 5 * £ !
i 1 1 I =
1 2 3 4 5 6

2008 CERN Summer Student Lectures on Statistics
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Variance of LS estimators

In most cases of interest we obtain the variance 1in a manner
similar to ML. E.g. for data ~ Gaussian we have

v2(0) = —21In L(6)

and so 3"
a2 271 i
/AQA N 2 a X 46.5
o=g ~ 962 -
i 10=0

46 +

or for the graphical method we

take the values of @ where 45.5

XQ(Q) — szin +1 25 2.6 2.7 2.8 2.9

G. Cowan 2008 CERN Summer Student Lectures on Statistics 17
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Chi-square (¥?) distribution

The chi-square pdf for the continuous r.v. z (z > 0) 1s defined by

o 0.5 -7 T
1 21 —2/2 & | — =t
f(z;n) = /212 o _
2 n=2
2"/2[ (n/2) | "
%2 I} n=10
n=1,2,..= number of ‘degrees of At
freedom’ (dof)
0.1 r
FElzl =n, V][z]=2n. R e S,
° 0 5 10 15 20

Z

For independent Gaussian x, i = 1, ..., n, means £, variances o7,

n ()2
> S 02“ D” follows +2 pdf with n dof.
i=1 i
Example: goodness-of-fit test variable especially in conjunction

with method of least squares.
G. Cowan 2008 CERN Summer Student Lectures on Statistics 15




Goodness-of-fit with least squares

The value of the »? at 1its minimum 1s a measure of the level
of agreement between the data and fitted curve:
2 _ % (yi — M; 0))?

Xmin — >
i=1 9,

It can therefore be employed as a goodness-of-fit statistic to
test the hypothesized functional form A(x; 6).

We can show that 1f the hypothesis 1s correct, then the statistic
t = y*_ . follows the chi-square pdf,

1
. _ ng/2—1 _—t/2
HEna) = ot g2y

where the number of degrees of freedom 1s

n, =number of data points — number of fitted parameters

G. Cowan 2008 CERN Summer Student Lectures on Statistics

18



34

Goodness-of-fit with least squares (2)

The chi-square pdf has an expectation value equal to the number
of degrees of freedom, so if x* . = n, the fit1s ‘good’.

0

More generally, find the p-value: p = . f (t;ng) dt

Xmin
This 1s the probability of obtaining a y? . as high as the one
we got, or higher, 1f the hypothesis 1s correct.

E.g. for the previous example with 1st order polynomial (line),

X%ﬂin = 3.99, ng = 5-2 =3, p = 0.263

whereas for the Oth order polynomial (horizontal line),

X2 = 45.5, ng=5-1=4, p=3.1x10""7

G. Cowan 2008 CERN Summer Student Lectures on Statistics
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x? Cumulative Distribution for n Degrees of Freedom

x° distribution for

n degrees of freedom
A

p-value for test
o, for confidence intervals

1.000
0.5()0

0.2()0
0.100
0.050

0.020
0.010
0.005

0.002

0.001
1

34 6 8

IS5 \ 25\ 40

20\30 \ 50

X

20 30 40 50 70 100
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,Reduced’ x? (x%/n)

2.5
2.0
1.5
X?/n
1.0

0.5

0.0

_IIII‘IIII IIII‘IIII‘IIII‘IIII‘IIII‘IIII‘IIII‘IIII_
- _—,p—value
: /
- ]
- 329 :
% ————————— 509 ————== — —
_I IIIII‘IIII‘IIII‘IIII‘IIII‘IIII‘IIII‘IIII‘IIII—
0 10 20 30 40 50

Degrees of freedom n



Hands-On Exercise 1:

Correlation Coefficients

0.6
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| 1 1 1 | | 1
0.5 0 0.5

Starting point: hands-on/statistics/01_corr_coeff/corr _coeff v0.C

Calculate the correlation coefficient for the shown data sets.
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Hands-On Exercise 2:
Weighted Average (l)

In case of independent measurements x; of the same quantity with
uncertainties o; the weighted average is given by

z“xl./ai2 . 1
Y1/o’ F) Y1/o?

X =

a) Find the best combined result and error from the three measurements of c:
299 798 000 + 5000 m/s
299 789 000 + 4000 m/s
299 797 000 £ 8000 m/s

b) A long-lived source gives 389 counts in the first minute and 423 in the
second minute. What is the best combined result? (Note: it is not 405.3)

38 Powerweek Data Analysis Klaus Reygers



Hands-On Exercise 2:
Weighted Average (Il)

5.2.2. Unconstrained averaging: To average data, we use The PDG |ncreases the error Of the WEIghtEd

a standard weighted least-squares procedure and in some . 2

cases, discussed below, increase the errors with a “scale avera ge |f the X IS Ia rge,
factor.” We begin by assuming that measurements of a given

quantity are uncorrelated, and calculate a weighted average

and error as

T 40T = (D) (1)

where

wi = 1/(6m1)? ' Find the best combined result and error for
Here x; and dx; are the value and error reported by the the th ree measu rements Of the T[O mass

1th experiment, and the sums run over the N experiments.
We then calculate x> = " w;(T — 7;)? and compare it . .
with N — 1, which is the expectation value of 2 if the fO”OW'”g the PDG rec:|pe-
measurements are from a Gaussian distribution.

If x2/(N — 1) is less than or equal to 1, and there are no
known problems with the data, we accept the results.

If x2/(N — 1) is very large, we may choose not to use the | ( 135 + 1 . 5) M eV’

average at all. Alternatively, we may quote the calculated

average, but then make an educated guess of the error, a g ( )
conservative estimate designed to take into account known 139 -I__ 2 'O M ev’
1.0) MeV

problems with the data. {
Finally, if x2/(IN — 1) is greater than 1, but not greatly (134
so, we still average the data, but then also do the following;: g
(a) We increase our quoted error, 0% in Eq. (1), by a
scale factor S defined as

S=[x*/(N-1)] (2)

Our reasoning is as follows. The large value of the x? is
likely to be due to underestimation of errors in at least one
of the experiments. Not knowing which of the errors are
underestimated, we assume they are all underestimated by
the same factor S. If we scale up all the input errors by this
factor, the x? becomes N — 1, and of course the output error

0T scales up by the same factor. See Ref. 3. ReVieW Of Pa r-l_—icle Physics (20 10)

mﬁ}ita Analysis oo Klaus Reygers
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Hands-On Exercise 3:
Error Propagation

55_ Hint on plotting error bands:
4.5 - // draw errors of histo as bands
45_ T hErr->SetFillColor(kRed);
= hErr->Draw(“e3 same®);
3.5—
3l
250
af-
15|
ST T T D S B T T T R

Starting point: hands-on/statistics/03_error_propagation/error_prop vO0.C

The data-points are fitted with a linear function. Use the covariance matrix of the fit
to calculate the uncertainty of y. How big is 0, a at x = 1.5? Plot the uncertainty oy as
a band around y(x). Compare your result with the one obtained from the root
method used in the example SROOTSYS/tutorials/fit/Confidencelntervals.C.

40 Powerweek Data Analysis Klaus Reygers



Hands-On Exercise 4:
Error Ellipses

0.6

0.5

0.4

0.3
I l l I

L1 L1l L1 T T T | | o | | | | L1 |
02 04 06 0.8

1 12 14 16 18 2 22
do

Starting point: hands-on/statistics/04_error_ellipses/fitl v0.C

Look at fitl_vO0.C to learn how to draw error ellipses of fit parameters.
Fit the pr spectrum in fit2_v0.C with a Hagedorn function and plot error ellipses
for all 3 pair combination of the 3 parameters.

41 Powerweek Data Analysis Klaus Reygers



Hands-On Exercise 5*:
Minuit

Implement the fit of exercise 3 using Minuit directly. Follow the example in
SROOTSYS/tutorials/fit/Ifit.C.

Reference: http://root.cern.ch/root/htmI526/TMinuit.html
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