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Guide 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1. Error Propaga7on
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2. Parameter Es7ma7on
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14 33. Statistics
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Figure 33.1: One minus the χ2 cumulative distribution, 1−F (χ2; n), for n degrees
of freedom. This gives the p-value for the χ2 goodness-of-fit test as well as one
minus the coverage probability for confidence regions (see Sec. 33.3.2.4).

determine the p-value. The p-values obtained for different values of χ2/nd are shown in
Fig. 33.2.

33.2.3. Bayesian model selection :
In Bayesian statistics, all of one’s knowledge about a model is contained in its posterior

probability, which one obtains using Bayes’ theorem (33.24). Thus one could reject a
hypothesis H if its posterior probability P (H|x) is sufficiently small. The difficulty here
is that P (H|x) is proportional to the prior probability P (H), and there will not be a
consensus about the prior probabilities for the existence of new phenomena. Nevertheless
one can construct a quantity called the Bayes factor (described below), which can be
used to quantify the degree to which the data prefer one hypothesis over another, and is
independent of their prior probabilities.

Consider two models (hypotheses), Hi and Hj , described by vectors of parameters θi
and θj , respectively. Some of the components will be common to both models and others
may be distinct. The full prior probability for each model can be written in the form

π(Hi, θi) = P (Hi)π(θi|Hi) , (33.36)

Here P (Hi) is the overall prior probability for Hi, and π(θi|Hi) is the normalized p.d.f. of
its parameters. For each model, the posterior probability is found using Bayes’ theorem,

P (Hi|x) =
∫

L(x|θi, Hi)P (Hi)π(θi|Hi) dθi

P (x)
, (33.37)
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Figure 33.2: The ‘reduced’ χ2, equal to χ2/n, for n degrees of freedom. The
curves show as a function of n the χ2/n that corresponds to a given p-value.

where the integration is carried out over the internal parameters θi of the model. The
ratio of posterior probabilities for the models is therefore

P (Hi|x)
P (Hj |x)

=
∫

L(x|θi, Hi)π(θi|Hi) dθi∫
L(x|θj , Hj)π(θj |Hj) dθj

P (Hi)
P (Hj)

. (33.38)

The Bayes factor is defined as

Bij =
∫

L(x|θi, Hi)π(θi|Hi) dθi∫
L(x|θj , Hj)π(θj |Hj) dθj

. (33.39)

This gives what the ratio of posterior probabilities for models i and j would be if the
overall prior probabilities for the two models were equal. If the models have no nuisance
parameters i.e., no internal parameters described by priors, then the Bayes factor is
simply the likelihood ratio. The Bayes factor therefore shows by how much the probability
ratio of model i to model j changes in the light of the data, and thus can be viewed as a
numerical measure of evidence supplied by the data in favour of one hypothesis over the
other.

Although the Bayes factor is by construction independent of the overall prior
probabilities P (Hi) and P (Hj), it does require priors for all internal parameters of a
model, i.e., one needs the functions π(θi|Hi) and π(θj |Hj). In a Bayesian analysis
where one is only interested in the posterior p.d.f. of a parameter, it may be acceptable
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Hands‐On Exercise 1:
CorrelaCon Coefficients

37

Calculate the correla7on coefficient for the shown data sets.

Star7ng point: hands‐on/sta7s7cs/01_corr_coeff/corr_coeff_v0.C
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Hands‐On Exercise 2:
Weighted Average (I)

x =
xi∑ / σ i

2

1∑ / σ i
2

V (x ) = 1
1∑ / σ i

2

In case of independent measurements xi of the same quan7ty with 
uncertain7es σi the weighted average is given by

b) A long‐lived source gives 389 counts in the first minute and 423 in the 
second minute. What is the best combined result? (Note: it is not 405.3)

a) Find the best combined result and error from the three measurements of c:
299 798 000 ± 5000 m/s
299 789 000 ± 4000 m/s
299 797 000 ± 8000 m/s
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Hands‐On Exercise 2:
Weighted Average (II)
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14 Introduction

reported states that, in our opinion, have sufficient statistical
merit and that have not been disproved by more reliable
data. However, we promote to the Summary Tables only
those states that we feel are well established. This judgment
is, of course, somewhat subjective and no precise criteria can
be given. For more detailed discussions, see the minireviews
in the Particle Listings.

5.2. Averages and fits : We divide this discussion
on obtaining averages and errors into three sections:
(1) treatment of errors; (2) unconstrained averaging;
(3) constrained fits.

5.2.1. Treatment of errors: In what follows, the “error”
δx means that the range x ± δx is intended to be a 68.3%
confidence interval about the central value x. We treat
this error as if it were Gaussian. Thus when the error is
Gaussian, δx is the usual one standard deviation (1σ). Many
experimenters now give statistical and systematic errors
separately, in which case we usually quote both errors, with
the statistical error first. For averages and fits, we then add
the the two errors in quadrature and use this combined error
for δx.

When experimenters quote asymmetric errors (δx)+

and (δx)− for a measurement x, the error that we use
for that measurement in making an average or a fit with
other measurements is a continuous function of these three
quantities. When the resultant average or fit x is less than
x−(δx)−, we use (δx)−; when it is greater than x+(δx)+, we
use (δx)+. In between, the error we use is a linear function
of x. Since the errors we use are functions of the result, we
iterate to get the final result. Asymmetric output errors are
determined from the input errors assuming a linear relation
between the input and output quantities.

In fitting or averaging, we usually do not include
correlations between different measurements, but we try
to select data in such a way as to reduce correlations.
Correlated errors are, however, treated explicitly when there
are a number of results of the form Ai ± σi ± ∆ that have
identical systematic errors ∆. In this case, one can first
average the Ai±σi and then combine the resulting statistical
error with ∆. One obtains, however, the same result by
averaging Ai ± (σ2

i + ∆2
i )

1/2, where ∆i = σi∆[
∑

(1/σ2
j )]

1/2.
This procedure has the advantage that, with the modified
systematic errors ∆i, each measurement may be treated
as independent and averaged in the usual way with other
data. Therefore, when appropriate, we adopt this procedure.
We tabulate ∆ and invoke an automated procedure that
computes ∆i before averaging and we include a note saying
that there are common systematic errors.

Another common case of correlated errors occurs when
experimenters measure two quantities and then quote the
two and their difference, e.g., m1, m2, and ∆ = m2 − m1.
We cannot enter all of m1, m2 and ∆ into a constrained fit
because they are not independent. In some cases, it is a good
approximation to ignore the quantity with the largest error
and put the other two into the fit. However, in some cases
correlations are such that the errors on m1, m2 and ∆ are
comparable and none of the three values can be ignored. In
this case, we put all three values into the fit and invoke an
automated procedure to increase the errors prior to fitting
such that the three quantities can be treated as independent
measurements in the constrained fit. We include a note
saying that this has been done.

5.2.2. Unconstrained averaging: To average data, we use
a standard weighted least-squares procedure and in some
cases, discussed below, increase the errors with a “scale
factor.” We begin by assuming that measurements of a given
quantity are uncorrelated, and calculate a weighted average
and error as

x ± δx =

∑
iwi xi∑
i wi

± (
∑

iwi )−1/2 , (1)

where
wi = 1/(δxi)

2 .

Here xi and δxi are the value and error reported by the
ith experiment, and the sums run over the N experiments.
We then calculate χ2 =

∑
wi(x − xi)2 and compare it

with N − 1, which is the expectation value of χ2 if the
measurements are from a Gaussian distribution.

If χ2/(N − 1) is less than or equal to 1, and there are no
known problems with the data, we accept the results.

If χ2/(N − 1) is very large, we may choose not to use the
average at all. Alternatively, we may quote the calculated
average, but then make an educated guess of the error, a
conservative estimate designed to take into account known
problems with the data.

Finally, if χ2/(N − 1) is greater than 1, but not greatly
so, we still average the data, but then also do the following:

(a) We increase our quoted error, δx in Eq. (1), by a
scale factor S defined as

S =
[
χ2/(N − 1)

]1/2
. (2)

Our reasoning is as follows. The large value of the χ2 is
likely to be due to underestimation of errors in at least one
of the experiments. Not knowing which of the errors are
underestimated, we assume they are all underestimated by
the same factor S. If we scale up all the input errors by this
factor, the χ2 becomes N − 1, and of course the output error
δx scales up by the same factor. See Ref. 3.

When combining data with widely varying errors, we
modify this procedure slightly. We evaluate S using only the
experiments with smaller errors. Our cutoff or ceiling on δxi
is arbitrarily chosen to be

δ0 = 3N1/2 δx ,

where δx is the unscaled error of the mean of all the
experiments. Our reasoning is that although the low-
precision experiments have little influence on the values x
and δx, they can make significant contributions to the χ2,
and the contribution of the high-precision experiments thus
tends to be obscured. Note that if each experiment has the
same error δxi, then δx is δxi/N1/2, so each δxi is well
below the cutoff. (More often, however, we simply exclude
measurements with relatively large errors from averages and
fits: new, precise data chase out old, imprecise data.)

Our scaling procedure has the property that if there
are two values with comparable errors separated by much
more than their stated errors (with or without a number of
other values of lower accuracy), the scaled-up error δ x is
approximately half the interval between the two discrepant
values.

We emphasize that our scaling procedure for errors in
no way affects central values. And if you wish to recover the
unscaled error δx, simply divide the quoted error by S.

The PDG increases the error of the weighted
average if the Χ2 is large.

Review of Par7cle Physics (2010)

Find the best combined result and error for 
the three measurements of the π0 mass 
following the PDG recipe:

(135 ± 1.5) MeV,
(139 ± 2.0) MeV,
(134 ± 1.0) MeV
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Hands‐On Exercise 3:
Error PropagaCon

40

y = a0 + a1x

The data‐points are fimed with a linear func7on. Use the covariance matrix of the fit
to calculate the uncertainty of y. How big is σy a at x = 1.5? Plot the uncertainty σy as 
a band around y(x). Compare your result with the one obtained from the root 
method used in the example $ROOTSYS/tutorials/fit/ConfidenceIntervals.C.

Star7ng point: hands‐on/sta7s7cs/03_error_propaga7on/error_prop_v0.C

Hint on ploqng error bands:
// draw errors of histo as bands
hErr‐>SetFillColor(kRed);
hErr‐>Draw(“e3 same“);
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Hands‐On Exercise 4:
Error Ellipses

41
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Star7ng point: hands‐on/sta7s7cs/04_error_ellipses/fit1_v0.C

Look at fit1_v0.C to learn how to draw error ellipses of fit parameters.
Fit the pT spectrum in fit2_v0.C with a Hagedorn func7on and plot error ellipses
for all 3 pair combina7on of the 3 parameters. 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Hands‐On Exercise 5*:
Minuit

42

Implement the fit of exercise 3 using Minuit directly. Follow the example in 
$ROOTSYS/tutorials/fit/Ifit.C.

Reference: http://root.cern.ch/root/html526/TMinuit.html

http://root.cern.ch/root/html526/TMinuit.html
http://root.cern.ch/root/html526/TMinuit.html

