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Purpose of  SNO

 Resolve Solar Neutrino Problem 
(SNP): measured flux of ν  from 
Sun is ~1/3 the predicted flux of 
Standard Solar Model.
 Is Standard Solar Model 

wrong?
 Do neutrinos oscillate from 
νe to νµ and/or ντ?

 Something else happening 
(e.g. νe  to sterile ν)?

 Observe ν from 8B β-decay in 
Sun. 8B → 8Be + e+ + νe 
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Purpose of  SNO

 If Solar Neutrino Problem due to νe 
oscillation to νµ and/or ντ , SNO should 
provide direct evidence .

 SNO measures flux of νe and flux of (νe+νµ
+ντ).

 Previous expt’s sensitive to only νe or     
mainly νe.
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 If Solar Neutrino Problem due to νe 
oscillation to νµ and/or ντ , SNO should 
provide direct evidence .

 SNO measures flux of νe and flux of (νe+νµ
+ντ).

 Previous expt’s sensitive to only νe or     
mainly νe.

Water Čerenkov expt’s:
Kamiokande, Super-K

Radiochemical expt’s:
37Cl at Homestake and 
71Ga at Gran Sasso/Baksan

flavour mixing
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The SNO Detector

 1,000 tonnes of D2O.
 6 m radius transparent     

acrylic vessel.
 9,456 inward looking PMTs 

(with reflectors around PMTs 
have 54% geometrical 
acceptance).

 PMTs mounted on 9 m radius 
steel support structure.

 7,000 tonnes of H2O to support 
and shield D2O.

 All materials carefully selected 
and tested to ensure minimal 
radioactive backgrounds (e.g. 
U, Th).
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Location of  SNO
 Located 2 km 

underground in active 
nickel mine near 
Sudbury, Canada

 Shielding from 2 km of 
rock reduces flux of 
cosmic ray muons to 
70/day (>109/day on 
surface).

 Reduced cosmic ray 
background improves 
sensitivity to solar 
neutrinos.
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SNO timeline

1998 1999 2000 2001 2002 2003 2004 2005 2006

Commissioning
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SNO timeline

1998 1999 2000 2001 2002 2003 2004 2005 2006

Commissioning

• Phase 1:   D2O 

    D2O      

• Phase 2:   D2O + Salt (NaCl) 

      D2O + Salt    D
2O

• Phase 1a: D2O 

D2O + 3He counters 

• Phase 3:   D2O + 3He counters 

3He counters: Install &
 Commission 
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Neutrino reactions in SNO
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Neutrino reactions in SNO

γ
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Neutrino reactions in SNO
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Neutrino detection in SNO

 PMTs detect 
Čerenkov photons 
from relativistic e-:

 e- from CC or ES 
reaction

 γ from n-capture (NC 
reaction) usually 
Compton-scatters e- 

(pair production less 
likely).

e -
43o

Čerenkov cone
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Neutrino detection in SNO

 Hit pattern from 
Čerenkov cone 
indicates physics 
event.

 PMT hit times and 
locations used to 
reconstruct e- direction 
and location

  
 Number of PMT hits 

used to estimate 
electron energy.



August 4, 2004 D. Waller, SLAC Summer Institue 2004 12

Differentiating CC, ES and NC reactions
 Statistical separation 

based on several variables 
(e.g. during D2O phase):

 Electron kinetic 
energy, T 

 (# of PMT hits)

 Radial position of 
reconstructed 
vertex, (R/600)^3

 (volume-weighted)

 Direction of 
electron w.r.t. Sun, 
cos θsun

CC NC ES



August 4, 2004 D. Waller, SLAC Summer Institue 2004 13
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CC measurement with D2O

 Measured CC reaction 
rate: φCC ≡ φ(νe) 

 Can compare SNO’s φ(νe) 
to Super-K’s φ(νe)  
(assuming all ES 
interactions at Super-K 
due to νe ) 

 3.3 σ difference between 
φ(νe)’s .
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NC measurement with D2O

 Measured NC reaction      
rate: φNC ≡ φ(νe+νµ+ντ) 

 5.3 σ signal for solar 
neutrino flavour mixing.

 φNC consistent with SSM 
with neutrino flavour mixing.
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More results from first phase (pure D2O)

 Measured Night-Day rate 
asymmetry (Ae

N-D) and electron 
energy spectra for Night and 
Day.

 At Night, ν pass through Earth; 
CC and ES rates may increase 
due to matter enhanced mixing 
of νµ/ντ to νe.
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D2O + Salt: why add salt?

 2 tonnes of NaCl added.
 Change response to neutrons 

from NC reaction.
 Cl has larger σ  than 2H so           

n-capture efficiency improves.
 More energy released from 35Cl

+n. 
 Higher E event means more 

NC events above kinetic E 
threshold of analysis (5.5 MeV)

 
 Multiple γ’s → Č. photons from 

NC reaction more isotropic in 
detector (ES and CC produce 
single electron).

6.3 MeV
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Advantages of  salt: n-detection efficiency

With salt, higher E release 
from n-capture and higher 
σ for n-capture mean much 
higher NC detection 
efficiency. 
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Advantages of  salt: event isotropy 

Isotropy variable, β14 , function 
of angles between each pair 
of hit PMTs (θij) in event. 
(similar to thrust in collider physics)

β14 powerful discriminating
variable between NC and 
CC/ES events. .

isotropy   β14

θij

Event 
vertex

is
ot

ro
pi

c

no
t i

so
tro

pi
c
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Calibration of  detector 

16N triggered γ -ray source
calibrates energy response. 

252Cf (neutron) and 16N (6 MeV γ)
sources provide check of MC for β14

Red – Data
Blue – MC
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D2O + Salt analysis: data set and 
data reduction

 Data recorded from July 
2001 to October 2002 (2/3 
of D2O + salt data). 

 254.2 live days (detector 
maintenance and 
calibration during remaining 
time).

 Blind analysis performed
 Analysis and cuts tuned 

with MC and “spoiled” 
subset of data.

435,721,068 triggers
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 Ex situ measurements show 
U and Th levels lower than 
goals (1 background 
neutron/day).

 Ex situ measurements 
consistent with in situ 
measurements

 In situ measurements more 
precise so used for solar 
neutrino analysis. 

Radioactive backgrounds
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Backgrounds

U and Th

Recall:
3055
candidate
events
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Measurement of  CC, NC, ES events
 MC PDFs compared to data; extended unbinned ML 

fit used to estimate free parameters in fit.

 3 (or 4) variables used to calculate likelihood PDFs:  
 Radial position of reconstructed vertex
 Direction of electron w.r.t. Sun, cos θsun

 Event isotropy, β14 (PMT hit pattern)
 Electron kinetic energy (PMT hits) (optional)

 Free parameters in fit: 
 number of NC, CC, ES signal events
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 MC PDFs compared to data; extended unbinned ML 

fit used to estimate free parameters in fit.

 3 (or 4) variables used to calculate likelihood PDFs:  
 Radial position of reconstructed vertex
 Direction of electron w.r.t. Sun, cos θsun

 Event isotropy, β14 (PMT hit pattern)
 Electron kinetic energy (PMT hits) (optional)

 Free parameters in fit: 
 number of NC, CC, ES signal events

Matter enhanced oscillations
change ES and CC spectra
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PDFs for signals and backgrounds

β14
(Rfit/6 m)3

Isotropy Radius of fitted vertex
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PDFs for signals and backgrounds

Electron kinetic energy

Teff (MeV)

Sun-electron direction

cos θsun

To Sun Away from Sun
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Flux results from fit

Energy spectrum
of 8B ν’s constrained
to Ortiz, et al. spectrum

Units for φ  are 106 cm-2 s-1
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Flux results from fit

Energy spectrum
of 8B ν’s constrained
to Ortiz, et al. spectrum

Energy spectrum
of 8B ν’s unconstrained
(Energy not used in fit)  

Standard Solar Model
(Bahcall, Pinsonneault 2004)   φBP04   =   5.82  ± 1.34

Units for φ  are 106 cm-2 s-1
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Systematic uncertainties
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Comparison to previous results and 
SSM (BP2000)

More precise 
salt results confirm
D2O results. 
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Interpretation of  salt flux results: 
neutrino oscillation parameters

SNO data only

• P(νe → νe) = 1- sin2(2θ)sin2(1.27Δm2L/E)

• Ratio of CC/NC fluxes 
   gives P(νe → νe) 
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Interpretation of  salt flux results: 
neutrino oscillation parameters

 1-D projections of oscillation 
parameters give marginal 
uncertainties on tan2θ and 
Δm2.

Δm2 = (7.1+1.0
-0.3) x 10-5 eV2 

θ = 32.5+1.7
-1.6  degrees

Maximal mixing (θ = 45 degrees)
excluded at 5.4 σ.
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Road map to talk…

 Introduction to SNO

 Previous solar neutrino results with D2O

 Most recent solar neutrino result with D2O + salt

 Non-solar neutrino results

 SNO’s future 

 Summary
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Recent non-solar ν SNO results
Nucleon Decay

 “Invisible” decay of n and p        
(e.g. N → 3 ν) from 16O produces   
γ-ray of 6→7 MeV.

 In SNO, γ-ray of 6→7 MeV looks 
like n-capture.

 Compare n-capture rates in SNO 
Phases 1 and 2 (different               
n-efficiences) to set limit on τinv of    
p and n.

νe search

 Solar νe might convert to νe via Spin 

Flavour Precession or νe decay.

 Look for 2- or 3-fold coincidences 
from

  νe + d → n + n + e+

 2 candidate coincidences (one 2-
fold, one 3-fold) in Phase 1.

 1.68+0.93
-0.45 background expected 

(mainly νatm).
  

.

τinv
p > 2.1 × 1029 years, 90% CL

τinv
n > 1.9 × 1029 years, 90% CL

Prob(νe → νe) < 0.81%, 90% CL 
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Future of  SNO: 3He counters

 Detect neutrons from NC 
interactions via

 n + 3He → p + 3H

 3He-filled proportional tubes detect 
recoiling p and 3H.

 40 3He-filled proportional tubes in 
1m grid (398 m total length).

 σ(n + 3He ) = 107 σ(n + 2H)

 Event-by-event identification of NC 
interactions (no correlation with CC 
rate like in earlier phases). 
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Advantage of  3He counters

  
Correlation CoefficientCorrelation CoefficientCorrelation Coefficient

  
D2O Salt 3He

CC,NC -0.950 -0.521 ~0
NC,ES -0.297 -0.064 ~0
CC,ES -0.208 -0.156 ~ -0.2

 Reduction in anti-correlation between NC and CC will 
help to reduce uncertainty in CC/NC ratio.

 Smaller uncertainty in CC/NC ratio means smaller 
uncertainty in tan2θ. 
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Installation of  3He counters complete! 
Commissioning in progress.
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Summary

 SNO has completed data-taking for first two phases (D2O and D2O
+Salt).

 Results from first two phases give convincing evidence of solar 
neutrino flavour change (first direct evidence of νe flavour change!).
 νe  has non-zero mass.

 Solar Neutrino Problem resolved after 30+ years (SSM correct!).

 Searches for “invisible” nucleon decay and electron anti-neutrinos 
have set interesting new limits.

 Last phase with 3He proportional counters has begun.
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Extra slides…



August 4, 2004 D. Waller, SLAC Summer Institue 2004 43

3He proportional counters

Cu anode wire (50 microns)

3He-CF4 gas

Nickel body

10 m

5 cm
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3He proportional counters



August 4, 2004 D. Waller, SLAC Summer Institue 2004 45

Advantage of  adding salt to D2O
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PMT timing and Teff vs. NHIT
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                       Ex-situ
 Ion exchange (224Ra, 226Ra)
 Membrane Degassing (222Rn)
     count daughter product decays
                        
      

 

                       In-situ
 Low energy data analysis
 Separate 208Tl & 214Bi
          Using Event isotropy

        
                        
      

 


