
Results from the Sudbury Neutrino Observatory

David Waller for the SNO Collaboration Carleton University, Ottawa, Canada SLAC Summer Institute 2004

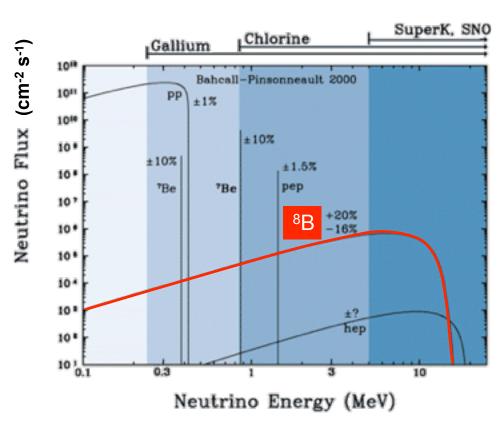
Results from the Sudbury Neutrino Observatory

David Waller for the SNO Collaboration Carleton University, Ottawa, Canada SLAC Summer Institute 2004

Outline

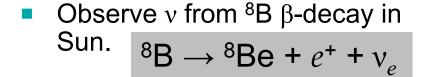
- Introduction to SNO
- Previous solar neutrino results with D₂O
- Most recent solar neutrino result with D₂O + salt
- Non-solar neutrino results
- SNO's future
- Summary

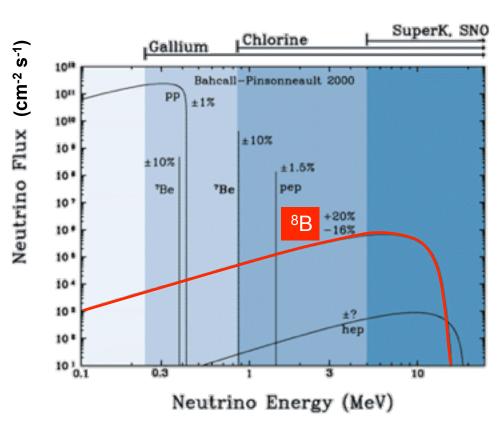
Road map to talk...



Introduction to SNO

- Previous solar neutrino results with D₂O
- Most recent solar neutrino result with D₂O + salt
- Non-solar neutrino results
- SNO's future
- Summary




- Resolve Solar Neutrino Problem (SNP): measured flux of v from Sun is ~1/3 the predicted flux of Standard Solar Model.
 - Is Standard Solar Model wrong?
 - Do neutrinos oscillate from v_e to v_μ and/or v_τ ?
 - Something else happening (e.g. v_e to sterile v)?
- Observe v from ⁸B β -decay in Sun. ⁸B \rightarrow ⁸Be + e^+ + v_e

- Resolve Solar Neutrino Problem (SNP): measured flux of v from Sun is ~1/3 the predicted flux of Standard Solar Model.
 - Is Standard Solar Model wrong?
 change flavour!
 - Do neutrinos oscillate from v_e to v_μ and/or v_τ ?
 - □ Something else happening (e.g. v_e to sterile v)?

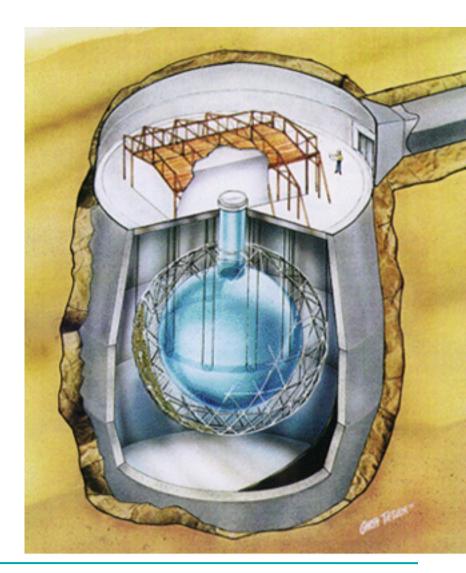
- If Solar Neutrino Problem due to v_e oscillation to v_{μ} and/or v_{τ} , SNO should provide direct evidence.
- SNO measures flux of v_e and flux of $(v_e + v_\mu + v_\tau)$.
- Previous expt's sensitive to only v_e or mainly v_e .

- If Solar Neutrino Problem due to v_e flavour mixing to v_μ and/or v_τ , SNO should provide direct evidence.
- SNO measures flux of v_e and flux of $(v_e + v_\mu + v_\tau)$.
- Previous expt's sensitive to only v_e or mainly v_e .

- If Solar Neutrino Problem due to v_e flavour mixing to v_μ and/or v_τ , SNO should provide direct evidence .
- SNO measures flux of v_e and flux of $(v_e + v_\mu + v_\tau)$.
- Previous expt's sensitive to only v_e or mainly v_e .

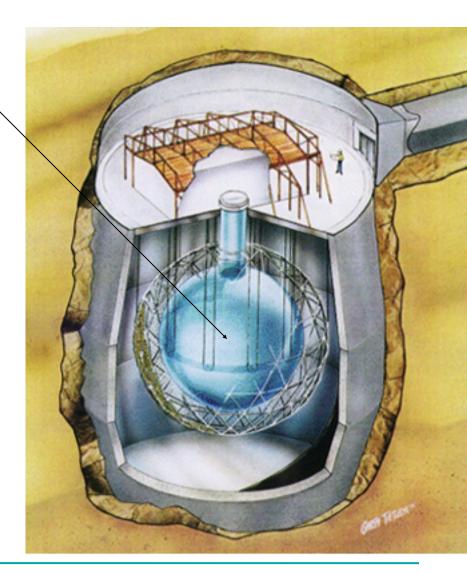
Radiochemical expt's: ³⁷Cl at Homestake and ⁷¹Ga at Gran Sasso/Baksan

- If Solar Neutrino Problem due to v_e flavour mixing to v_μ and/or v_τ , SNO should provide direct evidence.
- SNO measures flux of v_e and flux of $(v_e + v_\mu + v_\tau)$.
- Previous expt's sensitive to only v_e or

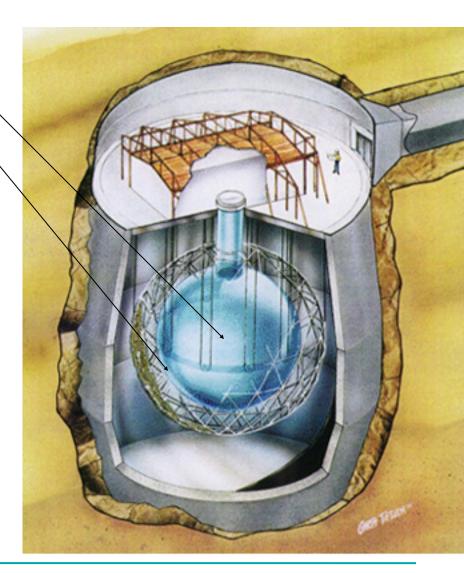

mainly v_e .

Water Čerenkov expt's: Kamiokande, Super-K

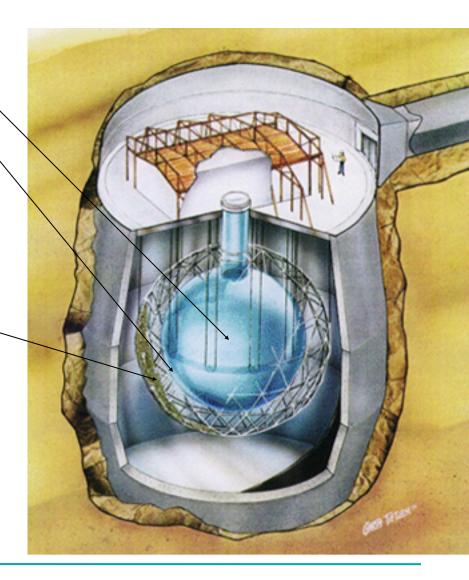
Radiochemical expt's: ³⁷Cl at Homestake and ⁷¹Ga at Gran Sasso/Baksan



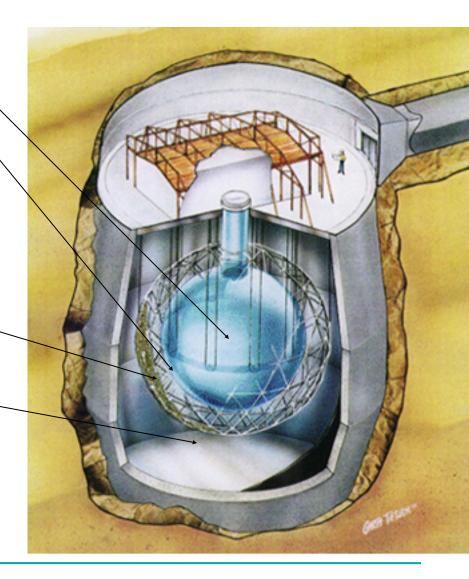
- 1,000 tonnes of D_2O .
- 6 m radius transparent acrylic vessel.
- 9,456 inward looking PMTs (with reflectors around PMTs have 54% geometrical acceptance).
- PMTs mounted on 9 m radius steel support structure.
- 7,000 tonnes of H₂O to support and shield D₂O.
- All materials carefully selected and tested to ensure minimal radioactive backgrounds (e.g. U, Th).



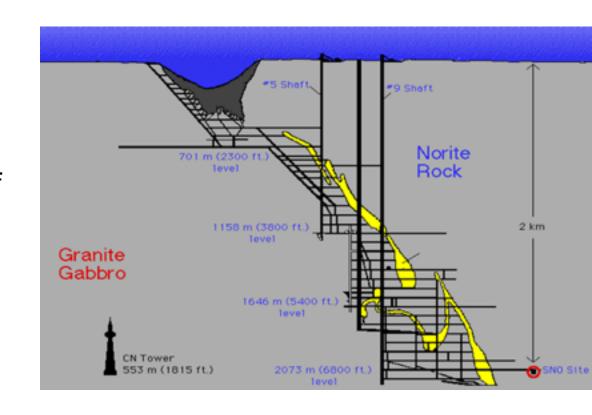
- 1,000 tonnes of D_2O .
- 6 m radius transparent acrylic vessel.
- 9,456 inward looking PMTs (with reflectors around PMTs have 54% geometrical acceptance).
- PMTs mounted on 9 m radius steel support structure.
- 7,000 tonnes of H₂O to support and shield D₂O.
- All materials carefully selected and tested to ensure minimal radioactive backgrounds (e.g. U, Th).

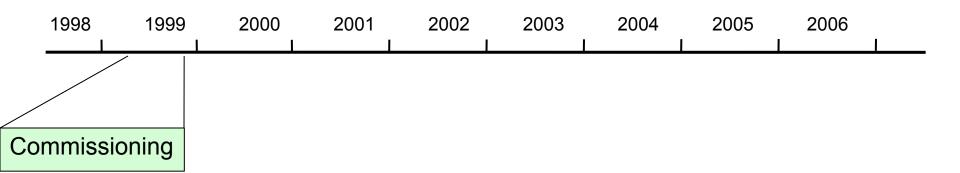


- \bullet 1,000 tonnes of D₂O.
- 6 m radius transparent acrylic vessel.
- 9,456 inward looking PMTs (with reflectors around PMTs have 54% geometrical acceptance).
- PMTs mounted on 9 m radius steel support structure.
- 7,000 tonnes of H₂O to support and shield D₂O.
- All materials carefully selected and tested to ensure minimal radioactive backgrounds (e.g. U, Th).

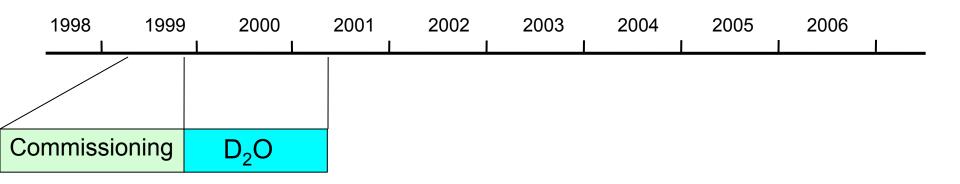


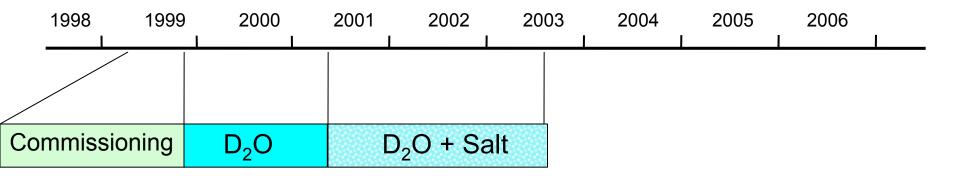
- \bullet 1,000 tonnes of D₂O.
- 6 m radius transparent acrylic vessel.
- 9,456 inward looking PMTs (with reflectors around PMTs have 54% geometrical acceptance).
- PMTs mounted on 9 m radius steel support structure.
- 7,000 tonnes of H₂O to support and shield D₂O.
- All materials carefully selected and tested to ensure minimal radioactive backgrounds (e.g. U, Th).


- \bullet 1,000 tonnes of D₂O.
- 6 m radius transparent acrylic vessel.
- 9,456 inward looking PMTs (with reflectors around PMTs have 54% geometrical acceptance).
- PMTs mounted on 9 m radius steel support structure.
- 7,000 tonnes of H₂O to support and shield D₂O.
- All materials carefully selected and tested to ensure minimal radioactive backgrounds (e.g. U, Th).

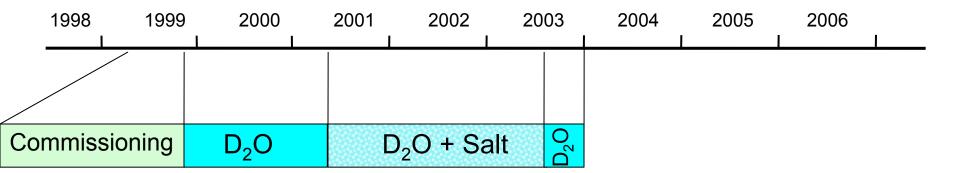

Location of SNO

- Located 2 km underground in active nickel mine near Sudbury, Canada
- Shielding from 2 km of rock reduces flux of cosmic ray muons to 70/day (>10⁹/day on surface).
- Reduced cosmic ray background improves sensitivity to solar neutrinos.

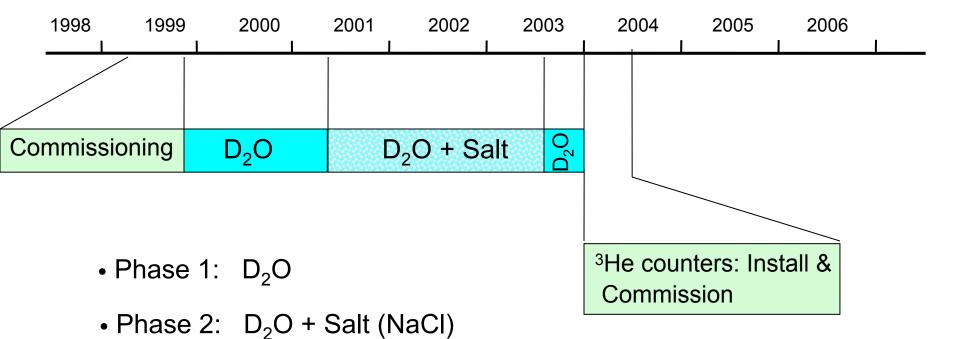


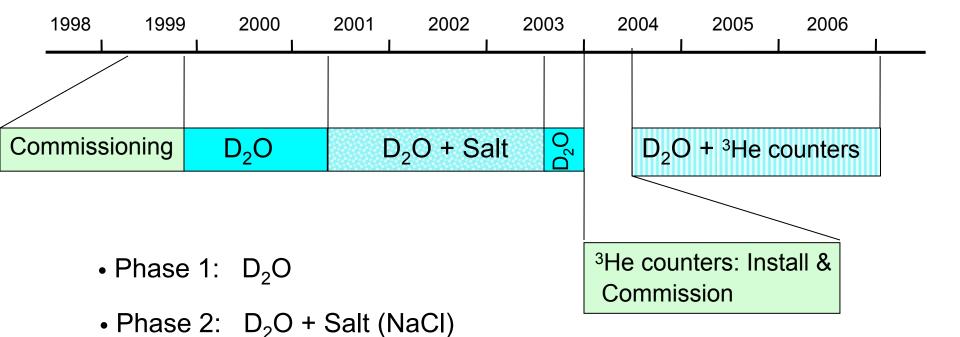


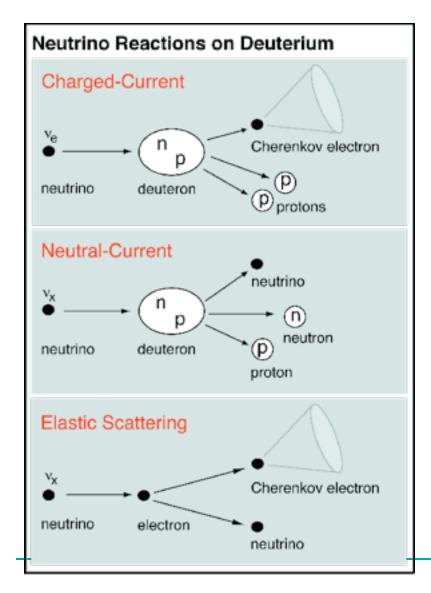
• Phase 1: D₂O



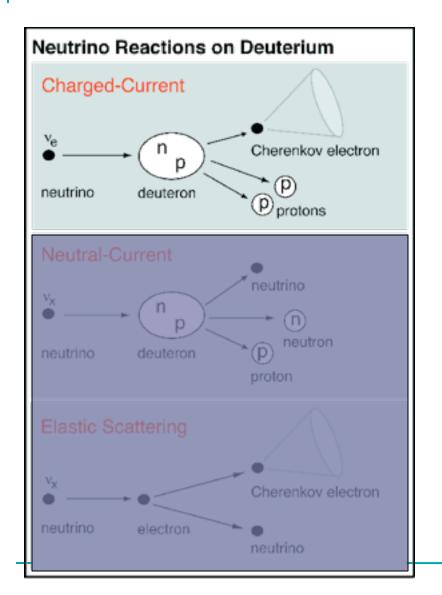
- Phase 1: D₂O
- Phase 2: D₂O + Salt (NaCl)

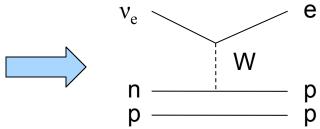



- Phase 1: D₂O
- Phase 2: D₂O + Salt (NaCl)
- Phase 1a: D₂O

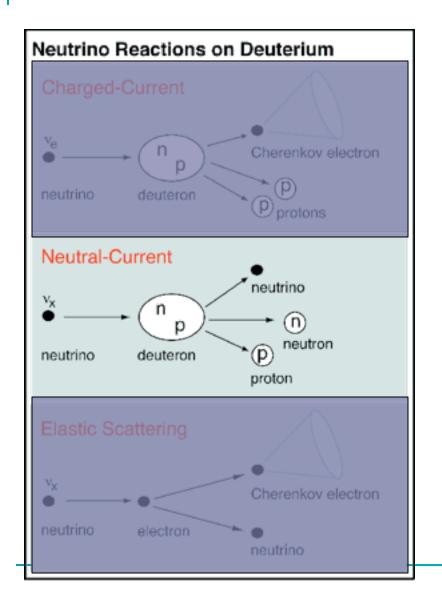


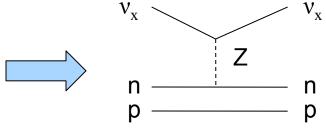
• Phase 1a: D₂O

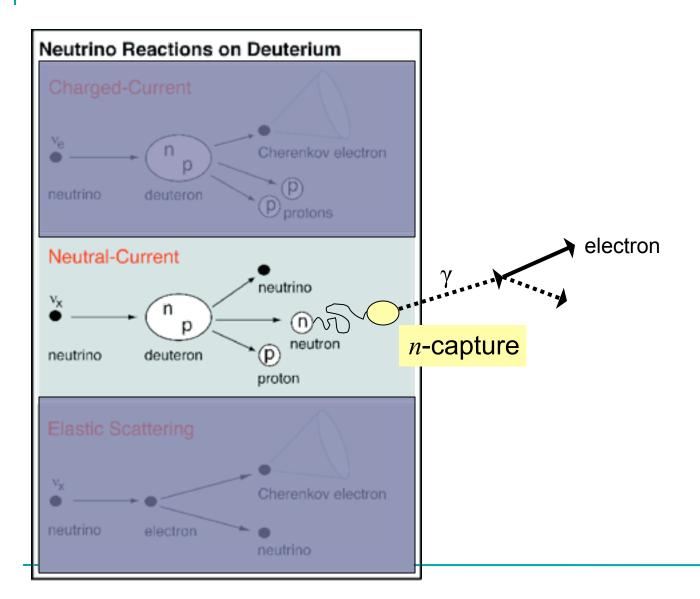


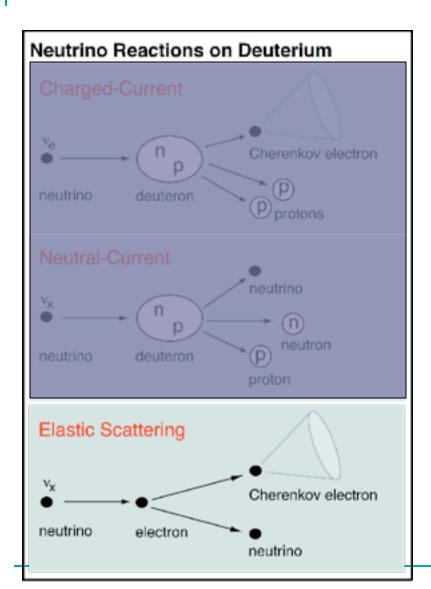


- Phase 1a: D₂O
- Phase 3: $D_2O + {}^3He$ counters





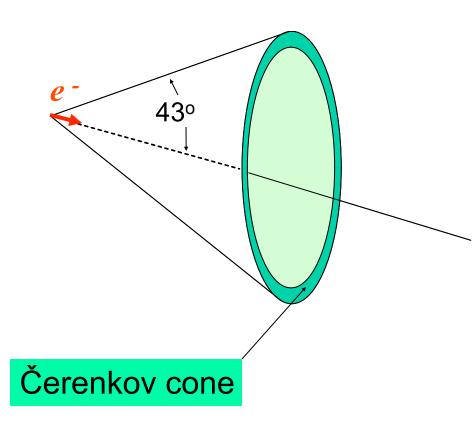






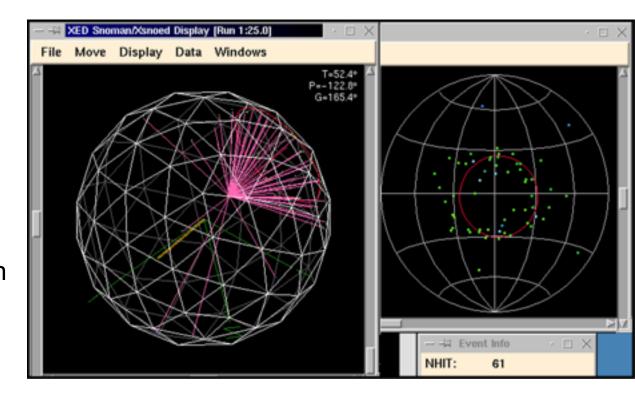
$$\sigma_{ES}(v_e) = 6 \sigma_{ES}(v_{\mu/\tau})$$

е



 $\nu_{\rm e}$

Neutrino detection in SNO


- PMTs detect Čerenkov photons from relativistic e⁻:
 - e⁻ from CC or ES reaction
 - γ from n-capture (NC reaction) usually
 Compton-scatters e⁻ (pair production less likely).

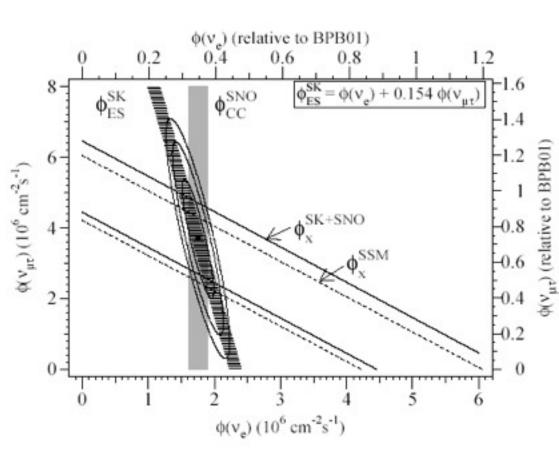
Neutrino detection in SNO

- Hit pattern from Čerenkov cone indicates physics event.
- PMT hit times and locations used to reconstruct e⁻ direction and location
- Number of PMT hits used to estimate electron energy.

Differentiating CC, ES and NC reactions

- Statistical separation based on several variables (e.g. during D₂O phase):
 - Electron kinetic energy, T(# of PMT hits)
 - Radial position of reconstructed vertex, (R/600)^3 (volume-weighted)

Direction of electron w.r.t. Sun, cos θ_{sun}

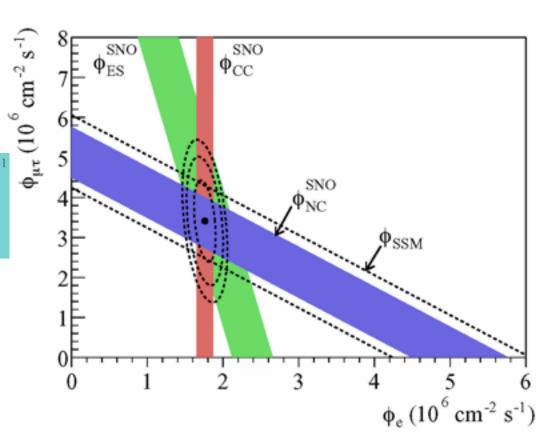

Road map to talk...

- Introduction to SNO
- Previous solar neutrino results with D₂O
- Most recent solar neutrino result with D₂O + salt
- Non-solar neutrino results
- SNO's future
- Summary

CC measurement with D₂O

- Measured CC reaction rate: $\phi_{CC} \equiv \phi(v_e)$
 - Can compare SNO's $\phi(v_e)$ to Super-K's $\phi(v_e)$ (assuming all ES interactions at Super-K due to v_e)
 - 3.3 σ difference between $\phi(v_e)$'s .

NC measurement with D_2O

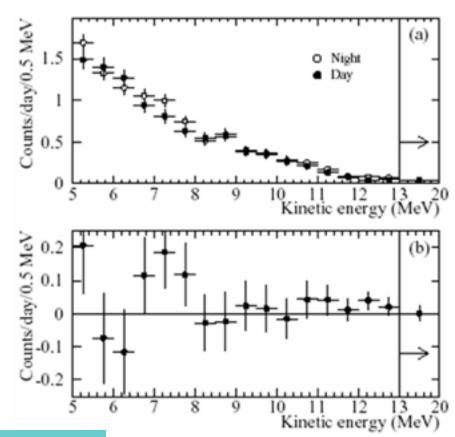


Measured NC reaction rate: $\phi_{NC} \equiv \phi(v_e + v_u + v_\tau)$

$$\phi_{\rm CC} = (1.76^{+0.06}_{-0.05}(\text{stat}) \pm 0.09(\text{syst})) \times 10^6 \,\text{cm}^{-2}\text{s}^{-1}$$

$$\phi_{NC} = (5.09^{+0.44}_{-0.43}(stat)^{+0.46}_{-0.43}(syst)) \times 10^6 \text{ cm}^{-2} \text{s}^{-1}$$

 \Box 5.3 σ signal for solar neutrino flavour mixing.


 ϕ_{NC} consistent with SSM

$\overline{()}$

More results from first phase (pure D₂O)

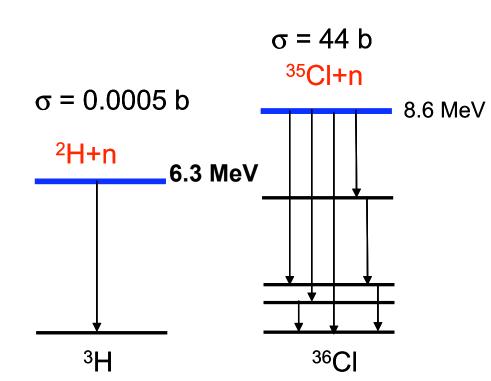
- Measured Night-Day rate asymmetry (A^e_{N-D}) and electron energy spectra for Night and Day.
- At Night, ν pass through Earth;
 CC and ES rates may increase due to matter enhanced mixing of ν_μ/ν_τ to ν_e.

$$A_{N-D}^{e} \equiv \frac{(\phi_N - \phi_D)}{(\phi_N + \phi_D)/2} = 0.140 \pm 0.063_{-0.014}^{+0.015}$$

$$A_{N-D}^{e} \equiv \frac{(\phi_N - \phi_D)}{(\phi_N + \phi_D)/2} = 0.070 \pm 0.049_{-0.012}^{+0.013}, A_{NC} = 0$$

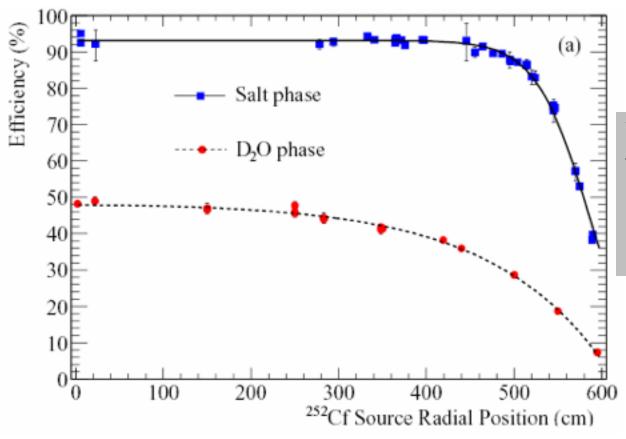
Road map to talk...

- Introduction to SNO
- Previous solar neutrino results with D₂O
- Most recent solar neutrino result with D₂O + salt

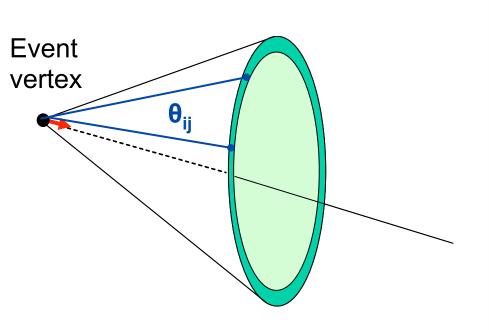


- Non-solar neutrino results
- SNO's future
- Summary

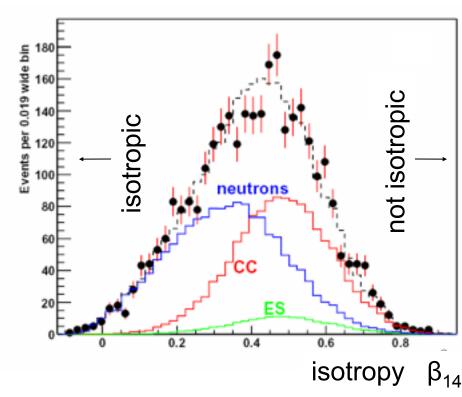
$D_2O + Salt:$ why add salt?



- 2 tonnes of NaCl added.
- Change response to neutrons from NC reaction.
- CI has larger σ than ²H so
 n-capture efficiency improves.
- More energy released from ³⁵Cl +n.
 - Higher E event means more NC events above kinetic E threshold of analysis (5.5 MeV)
 - Multiple γ's → Č. photons from NC reaction more isotropic in detector (ES and CC produce single electron).

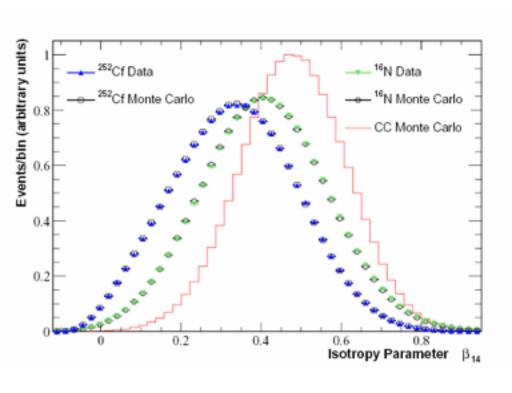


Advantages of salt: *n*-detection efficiency



With salt, higher E release from n-capture and higher σ for n-capture mean much higher NC detection efficiency.

Advantages of salt: event isotropy


Isotropy variable, β_{14} , function of angles between each pair of hit PMTs (θ_{ij}) in event. (similar to *thrust* in collider physics)

 β_{14} powerful discriminating variable between NC and CC/ES events.

Calibration of detector

Correct Nhit Mean Red - Data 34.4 Blue - MC 34.2 **New Data** 34.0 33.8 No E 33.6 33.4 33.2 200 400 600 800 Day Since Start of Salt

 ^{252}Cf (neutron) and ^{16}N (6 MeV $\gamma)$ sources provide check of MC for β_{14}

¹⁶N triggered γ -ray source calibrates energy response.

D₂O + Salt analysis: data set and

data reduction

435,721,068 triggers

- Data recorded from July 2001 to October 2002 (2/3 of D₂O + salt data).
- 254.2 live days (detector maintenance and calibration during remaining time).
- Blind analysis performed
 - Analysis and cuts tuned with MC and "spoiled" subset of data.

D₂O + Salt analysis: data set and

data reduction

435,721,068 triggers

 Data recorded from July 2001 to October 2002 (2/3 of D₂O + salt data).

Instrumental background cuts

- 254.2 live days (detector maintenance and calibration during remaining time).
- Blind analysis performed
 - Analysis and cuts tuned with MC and "spoiled" subset of data.

data reduction

- Data recorded from July 2001 to October 2002 (2/3 of D₂O + salt data).
- 254.2 live days (detector maintenance and calibration during remaining time).
- Blind analysis performed
 - Analysis and cuts tuned with MC and "spoiled" subset of data.

Instrumental background cuts

Cosmic ray muons + spallation products

data reduction

- Data recorded from July 2001 to October 2002 (2/3 of D₂O + salt data).
- 254.2 live days (detector maintenance and calibration during remaining time).
- Blind analysis performed
 - Analysis and cuts tuned with MC and "spoiled" subset of data.

435,721,068 triggers

Instrumental background cuts

Cosmic ray muons + spallation products

Vtx reconstruction, PMT time and position disributions

D₂O + Salt analysis: data set and

data reduction

- Data recorded from July 2001 to October 2002 (2/3 of D₂O + salt data).
- 254.2 live days (detector maintenance and calibration during remaining time).
- Blind analysis performed
 - Analysis and cuts tuned with MC and "spoiled" subset of data.

435,721,068 triggers

Instrumental background cuts

Cosmic ray muons + spallation products

Vtx reconstruction, PMT time and position disributions

Radius ≤ 550 cm, T ≥ 5.5 MeV

D₂O + Salt analysis: data set and

data reduction

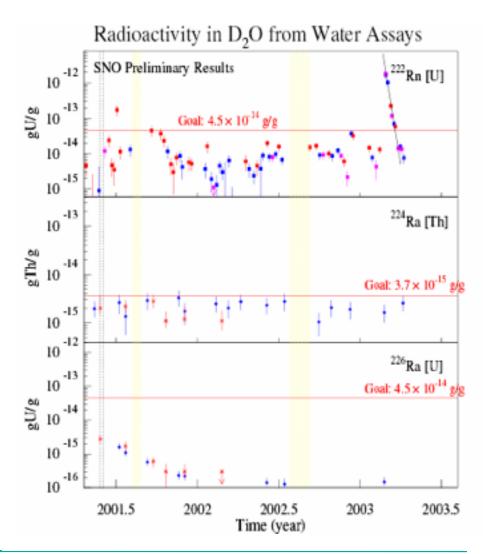
- Data recorded from July 2001 to October 2002 (2/3 of D₂O + salt data).
- 254.2 live days (detector maintenance and calibration during remaining time).
- Blind analysis performed
 - Analysis and cuts tuned with MC and "spoiled" subset of data.

435,721,068 triggers

Instrumental background cuts

Cosmic ray muons + spallation products

Vtx reconstruction, PMT time and position disributions



Radius ≤ 550 cm, T ≥ 5.5 MeV

Radioactive backgrounds

- Ex situ measurements show
 U and Th levels lower than
 goals (1 background
 neutron/day).
- Ex situ measurements consistent with in situ measurements
- In situ measurements more precise so used for solar neutrino analysis.

Source	Events	
D ₂ O photodisintegration	73.1+24.0	
2 H (α,α) pn	2.8 ± 0.7	U and Th
$^{17,18}O(\alpha,n)$	1.4 ± 0.9	
Fission, atmospheric v (NC +		
sub-Cherenkov threshold CC)	23.0 ± 7.2	
Terrestrial and reactor $\bar{\nu}$'s	2.3 ± 0.8	
Neutrons from rock	≤ 1	
²⁴ Na activation	8.4 ± 2.3	
n from CNO v's	0.3 ± 0.3	
Total internal neutron background	$111.3^{+25.3}_{-24.9}$	
Internal γ (fission, atmospheric ν)	5.2 ± 1.3	
¹⁶ N decays	< 2.5 (68% CL)	
External-source neutrons (from fit)	84.5+34.5	Recall
Cherenkov events from $\beta - \gamma$ decays	< 14.7 (68% CL)	3055
"AV events"	< 5.4 (68% CL)	candid

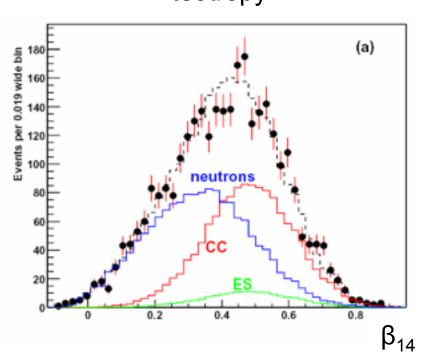
Recall: 3055 candidate events

Measurement of CC, NC, ES events

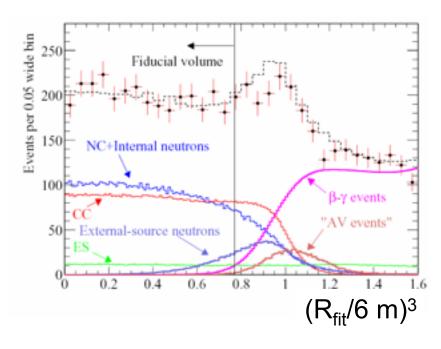
- MC PDFs compared to data; extended unbinned ML fit used to estimate free parameters in fit.
- 3 (or 4) variables used to calculate likelihood PDFs:
 - Radial position of reconstructed vertex
 - figspace Direction of electron w.r.t. Sun, cos eta_{sun}
 - Event isotropy, β₁₄ (PMT hit pattern)
 - Electron kinetic energy (PMT hits) (optional)
- Free parameters in fit:
 - number of NC, CC, ES signal events

Measurement of CC, NC, ES events

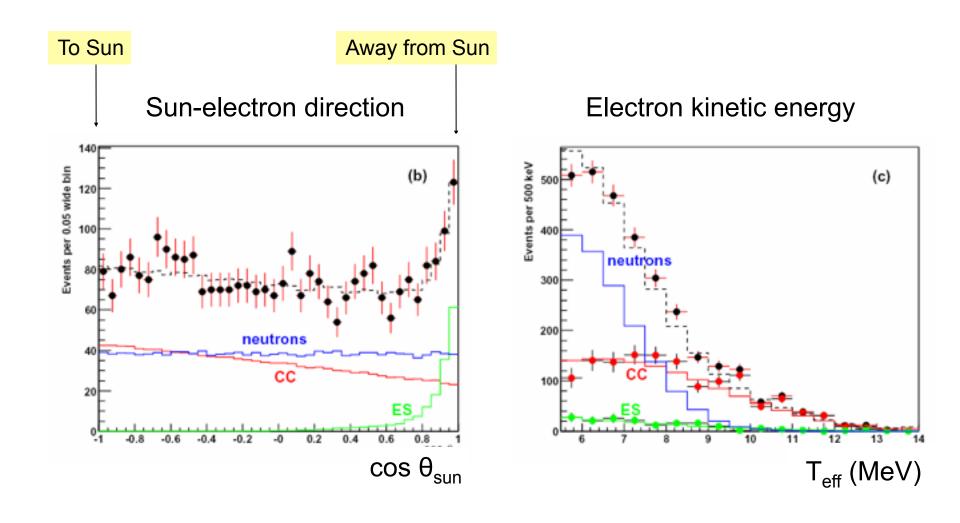
- MC PDFs compared to data; extended unbinned ML fit used to estimate free parameters in fit.
- 3 (or 4) variables used to calculate likelihood PDFs:
 - Radial position of reconstructed vertex
 - ullet Direction of electron w.r.t. Sun, cos eta_{sun}
 - Event isotropy, β₁₄ (PMT hit pattern)
 - Electron kinetic energy (PMT hits) (opțional)


Matter enhanced oscillations change ES and CC spectra

- Free parameters in fit:
 - number of NC, CC, ES signal events



PDFs for signals and backgrounds



Radius of fitted vertex

PDFs for signals and backgrounds

Units for ϕ are 10^6 cm⁻² s⁻¹

Energy spectrum of ⁸B v's constrained to Ortiz, *et al.* spectrum

$$\phi_{\text{CC}}^{\text{SNO}} = 1.70 \pm 0.07(\text{stat.})_{-0.10}^{+0.09}(\text{syst.})$$
 $\phi_{\text{ES}}^{\text{SNO}} = 2.13_{-0.28}^{+0.29}(\text{stat.})_{-0.08}^{+0.15}(\text{syst.})$
 $\phi_{\text{NC}}^{\text{SNO}} = 4.90 \pm 0.24 (\text{stat.})_{-0.27}^{+0.29}(\text{syst.})$

Units for ϕ are 10^6 cm⁻² s⁻¹

Energy spectrum of ⁸B v's constrained to Ortiz, *et al.* spectrum

$$\phi_{\text{CC}}^{\text{SNO}} = 1.70 \pm 0.07(\text{stat.})^{+0.09}_{-0.10}(\text{syst.})$$

$$\phi_{\text{ES}}^{\text{SNO}} = 2.13^{+0.29}_{-0.28}(\text{stat.})^{+0.15}_{-0.08}(\text{syst.})$$

$$\phi_{\text{NC}}^{\text{SNO}} = 4.90 \pm 0.24 \text{ (stat.})^{+0.29}_{-0.27}(\text{syst.})$$

Energy spectrum of ⁸B v's unconstrained (Energy not used in fit)

$$\begin{split} \phi_{\text{CC}}^{\text{SNO}} &= 1.59^{+0.08}_{-0.07}(\text{stat})^{+0.06}_{-0.08}(\text{syst}) \\ \phi_{\text{ES}}^{\text{SNO}} &= 2.21^{+0.31}_{-0.26}(\text{stat}) \pm 0.10 \text{ (syst)} \\ \phi_{\text{NC}}^{\text{SNO}} &= 5.21 \pm 0.27 \text{ (stat)} \pm 0.38 \text{ (syst)} \end{split}$$

Flux results from fit

Units for ϕ are 10^6 cm⁻² s⁻¹

Energy spectrum of ⁸B v's constrained to Ortiz, *et al.* spectrum

$$\phi_{\text{CC}}^{\text{SNO}} = 1.70 \pm 0.07(\text{stat.})_{-0.10}^{+0.09}(\text{syst.})$$

$$\phi_{\text{ES}}^{\text{SNO}} = 2.13_{-0.28}^{+0.29}(\text{stat.})_{-0.08}^{+0.15}(\text{syst.})$$

$$\phi_{\text{NC}}^{\text{SNO}} = 4.90 \pm 0.24 \text{ (stat.})_{-0.27}^{+0.29}(\text{syst.})$$

Energy spectrum of ⁸B v's unconstrained (Energy not used in fit)

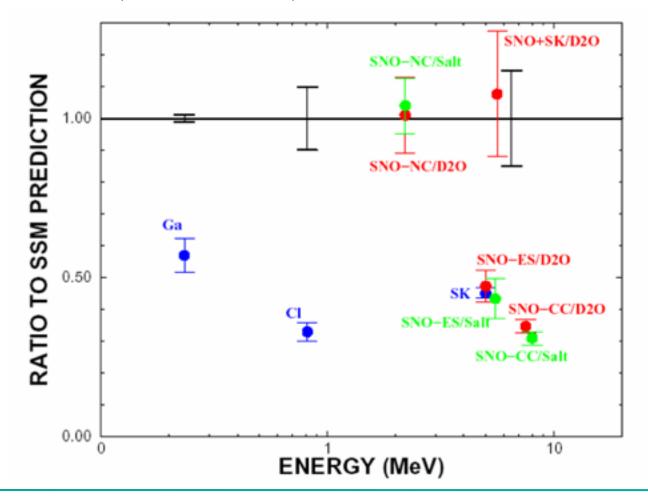
$$\begin{split} \phi_{\text{CC}}^{\text{SNO}} &= 1.59^{+0.08}_{-0.07}(\text{stat})^{+0.06}_{-0.08}(\text{syst}) \\ \phi_{\text{ES}}^{\text{SNO}} &= 2.21^{+0.31}_{-0.26}(\text{stat}) \pm 0.10 \text{ (syst)} \\ \phi_{\text{NC}}^{\text{SNO}} &= 5.21 \pm 0.27 \text{ (stat)} \pm 0.38 \text{ (syst)} \end{split}$$

Standard Solar Model (Bahcall, Pinsonneault 2004)

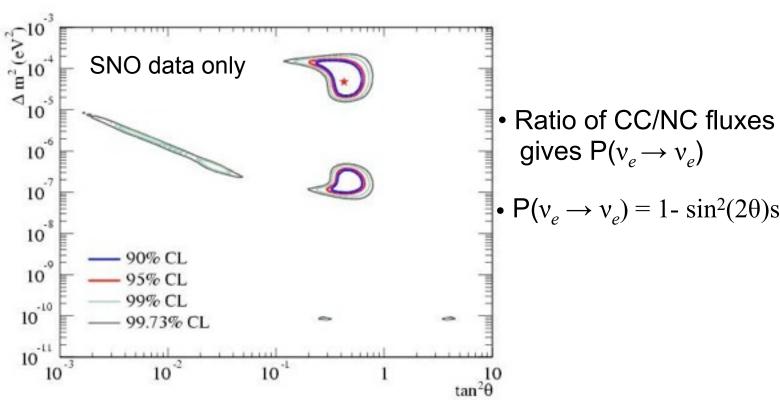
$$\phi_{BP04} = 5.82 \pm 1.34$$

Source	NC uncert.	CC uncert.	ES uncert. (%)
Energy scale	-3.7,+3.6	-1.0,+1.1	±1.8
Energy resolution	±1.2	± 0.1	± 0.3
Energy non-linearity	± 0.0	-0.0, +0.1	± 0.0
Radial accuracy	-3.0, +3.5	-2.6, +2.5	-2.6, +2.9
Vertex resolution	±0.2	±0.0	±0.2
Angular resolution	±0.2	±0.2	±2.4
Isotropy mean †	-3.4, +3.1	-3.4, +2.6	-0.9, +1.1
Isotropy resolution	±0.6	±0.4	±0.2
Radial energy bias	-2.4, +1.9	±0.7	-1.3, +1.2
Vertex Z accuracy †	-0.2, +0.3	±0.1	±0.1
Internal background neutrons	-1.9, +1.8	± 0.0	± 0.0
Internal background y's	±0.1	±0.1	± 0.0
Neutron capture	-2.5, +2.7	± 0.0	± 0.0
Cherenkov backgrounds	-1.1, +0.0	-1.1, +0.0	±0.0
"AV events"	-0.4, +0.0	-0.4, +0.0	±0.0
Total experimental uncertainty	-7.3,+7.2	-4.6,+3.8	-4.3,+4.5
Cross section [13]	±1.1	±1.2	±0.5

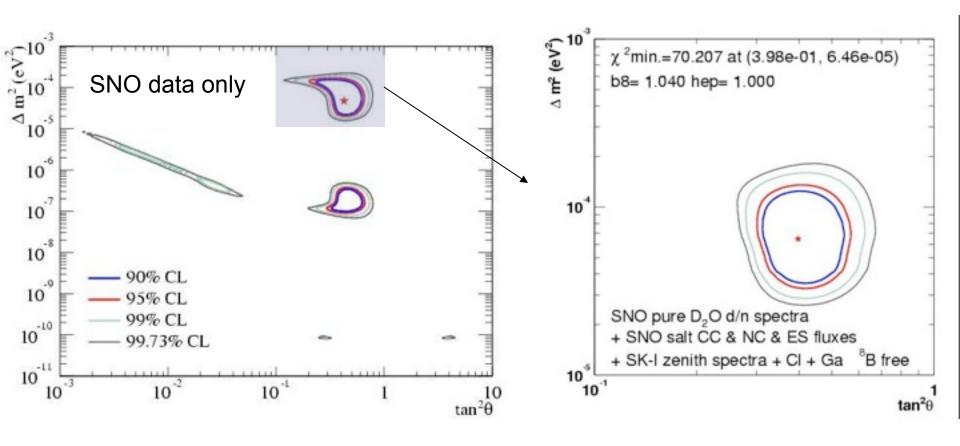
Source	NC uncert.	CC uncert.	ES uncert. (%)
Energy scale	-3.7,+3.6	-1.0,+1.1	±1.8
Energy resolution	±1.2	± 0.1	± 0.3
Energy non-linearity	± 0.0	-0.0, +0.1	± 0.0
Radial accuracy	-3.0, +3.5	-2.6, +2.5	-2.6, +2.9
Vertex resolution	±0.2	±0.0	±0.2
Angular resolution	±0.2	±0.2	±2.4
Isotropy mean †	-3.4,+3.1	-3.4, +2.6	-0.9, +1.1
Isotropy resolution	±0.6	±0.4	±0.2
Radial energy bias	-2.4, +1.9	± 0.7	-1.3, +1.2
Vertex Z accuracy †	-0.2, +0.3	± 0.1	±0.1
Internal background neutrons	-1.9, +1.8	± 0.0	±0.0
Internal background y's	±0.1	±0.1	± 0.0
Neutron capture	-2.5, +2.7	± 0.0	± 0.0
Cherenkov backgrounds	-1.1, +0.0	-1.1, +0.0	± 0.0
"AV events"	-0.4, +0.0	-0.4, +0.0	± 0.0
Total experimental uncertainty	-7.3,+7.2	-4.6,+3.8	-4.3,+4.5
Cross section [13]	±1.1	±1.2	±0.5


Source	NC uncert.	CC uncert.	ES uncert. (%)
Energy scale	-3.7,+3.6	-1.0,+1.1	±1.8
Energy resolution	±1.2	± 0.1	± 0.3
Energy non-linearity	± 0.0	-0.0, +0.1	± 0.0
Radial accuracy	-3.0,+3.5	-2.6,+2.5	-2.6, +2.9
Vertex resolution	±0.2	±0.0	±0.2
Angular resolution	±0.2	±0.2	±2.4
Isotropy mean †	-3.4,+3.1	-3.4,+2.6	-0.9, +1.1
Isotropy resolution	±0.6	±0.4	±0.2
Radial energy bias	-2.4, +1.9	± 0.7	-1.3, +1.2
Vertex Z accuracy †	-0.2, +0.3	± 0.1	± 0.1
Internal background neutrons	-1.9, +1.8	± 0.0	±0.0
Internal background y's	±0.1	±0.1	± 0.0
Neutron capture	-2.5, +2.7	± 0.0	± 0.0
Cherenkov backgrounds	-1.1, +0.0	-1.1,+0.0	±0.0
"AV events"	-0.4, +0.0	-0.4, +0.0	± 0.0
Total experimental uncertainty	-7.3,+7.2	-4.6,+3.8	-4.3,+4.5
Cross section [13]	±1.1	±1.2	±0.5

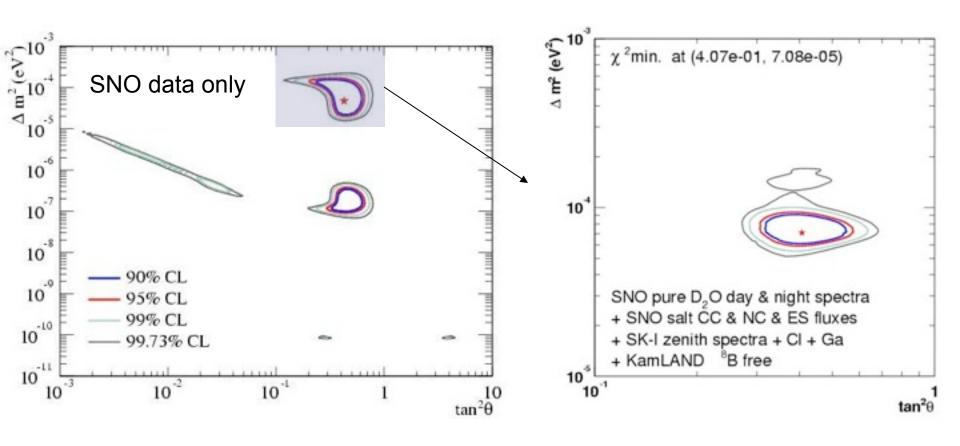
Source	NC uncert.	CC uncert.	ES uncert.
Energy scale	-3.7,+3.6	-1.0,+1.1	±1.8
Energy resolution	±1.2	± 0.1	± 0.3
Energy non-linearity	± 0.0	-0.0, +0.1	± 0.0
Radial accuracy	-3.0,+3.5	-2.6,+2.5	-2.6,+2.9
Vertex resolution	±0.2	±0.0	±0.2
Angular resolution	±0.2	±0.2	±2.4
Isotropy mean †	-3.4,+3.1	-3.4,+2.6	-0.9, +1.1
Isotropy resolution	±0.6	± 0.4	±0.2
Radial energy bias	-2.4, +1.9	± 0.7	-1.3, +1.2
Vertex Z accuracy †	-0.2, +0.3	± 0.1	± 0.1
Internal background neutrons	-1.9, +1.8	± 0.0	± 0.0
Internal background y's	±0.1	±0.1	± 0.0
Neutron capture	-2.5, +2.7	± 0.0	± 0.0
Cherenkov backgrounds	-1.1, +0.0	-1.1, +0.0	±0.0
"AV events"	-0.4, +0.0	-0.4, +0.0	±0.0
Total experimental uncertainty	-7.3,+7.2	-4.6,+3.8	-4.3,+4.5
Cross section [13]	±1.1	±1.2	±0.5


Comparison to previous results and SSM (BP2000)

More precise salt results confirm D₂O results.

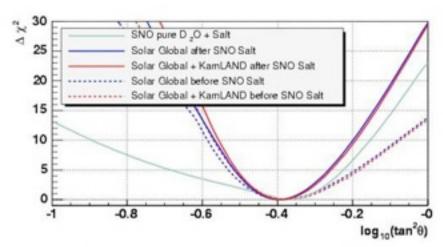

Interpretation of salt flux results: neutrino oscillation parameters

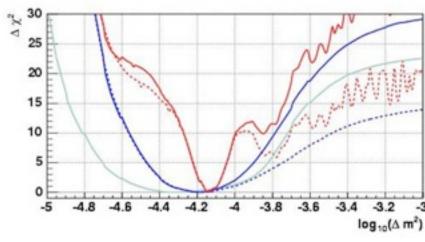
• $P(v_e \rightarrow v_e) = 1 - \sin^2(2\theta) \sin^2(1.27\Delta m^2 L/E)$



Interpretation of salt flux results: neutrino oscillation parameters

Interpretation of salt flux results: neutrino oscillation parameters


Interpretation of salt flux results: neutrino oscillation parameters


 1-D projections of oscillation parameters give marginal uncertainties on tan²θ and Δm².

$$\theta = 32.5^{+1.7}_{-1.6}$$
 degrees

Maximal mixing (θ = 45 degrees) excluded at 5.4 σ .

$$\Delta m^2 = (7.1^{+1.0}_{-0.3}) \times 10^{-5} \text{ eV}^2$$

Road map to talk...

- Introduction to SNO
- Previous solar neutrino results with D₂O
- Most recent solar neutrino result with D₂O + salt

- Non-solar neutrino results
- SNO's future
- Summary

Recent non-solar v SNO results

Nucleon Decay

- "Invisible" decay of n and p (e.g. $N \rightarrow 3 v$) from ¹⁶O produces γ -ray of $6 \rightarrow 7$ MeV.
- In SNO, γ-ray of 6→7 MeV looks like n-capture.
- Compare n-capture rates in SNO Phases 1 and 2 (different n-efficiences) to set limit on τ_{inv} of p and n.

$$\tau_{\text{inv}}^{p} > 2.1 \times 10^{29} \text{ years, } 90\% \text{ CL}$$

$$\tau_{\text{inv}}^{n} > 1.9 \times 10^{29} \text{ years, } 90\% \text{ CL}$$

\overline{v}_e search

- Solar v_e might convert to v_e via Spin Flavour Precession or v_e decay.
- Look for 2- or 3-fold coincidences from

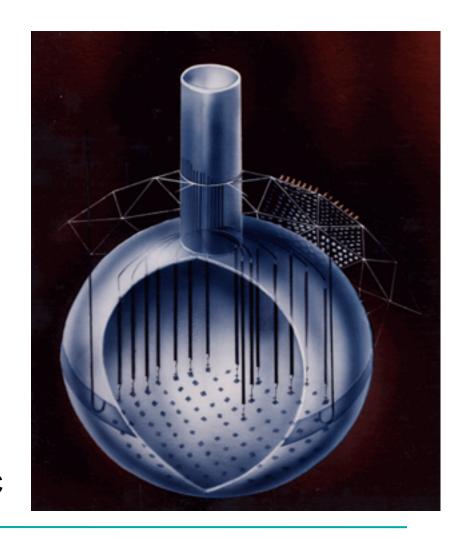
$$v_e + d \rightarrow n + n + e^+$$

- 2 candidate coincidences (one 2fold, one 3-fold) in Phase 1.
- 1.68^{+0.93}_{-0.45} background expected

$$Prob(v_e \rightarrow \overline{v_e}) < 0.81\%, 90\% CL$$

Road map to talk...

- Introduction to SNO
- Previous solar neutrino results with D₂O
- Most recent solar neutrino result with D₂O + salt
- Non-solar neutrino results

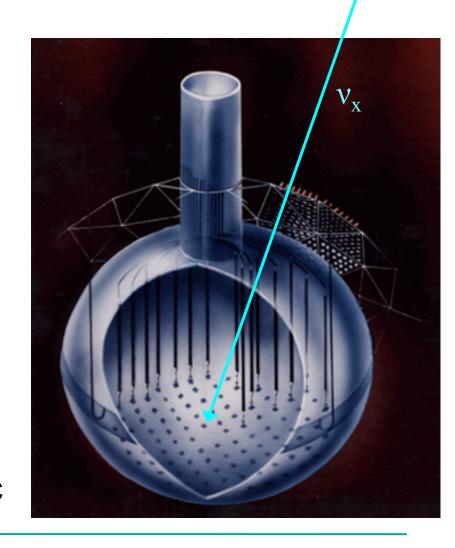

- SNO's future
- Summary

Future of SNO: ³He counters

 Detect neutrons from NC interactions via

$$n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H}$$

- ³He-filled proportional tubes detect recoiling p and ³H.
- 40 ³He-filled proportional tubes in 1m grid (398 m total length).
- $\sigma(n + {}^{3}\text{He}) = 10^{7} \, \sigma(n + {}^{2}\text{H})$
- Event-by-event identification of NC interactions (no correlation with CC rate like in earlier phases).

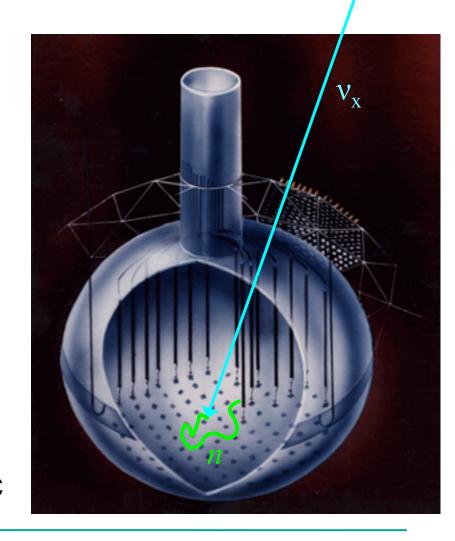


Future of SNO: ³He counters

 Detect neutrons from NC interactions via

$$n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H}$$

- 3 He-filled proportional tubes detect recoiling p and 3 H.
- 40 ³He-filled proportional tubes in 1m grid (398 m total length).
- $\sigma(n + {}^{3}\text{He}) = 10^{7} \, \sigma(n + {}^{2}\text{H})$
- Event-by-event identification of NC interactions (no correlation with CC rate like in earlier phases).

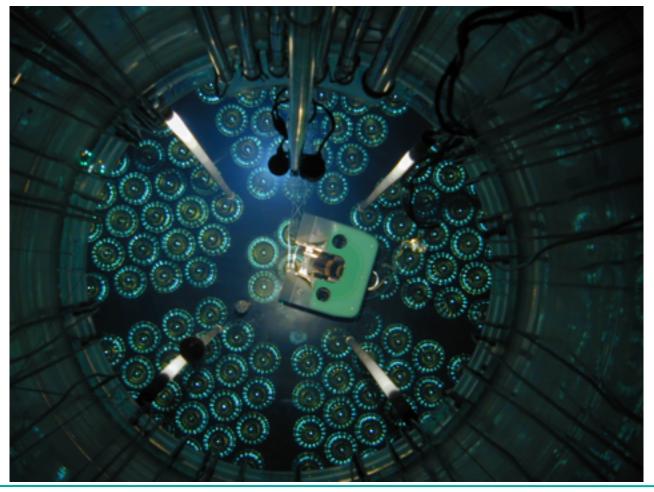


Future of SNO: ³He counters

 Detect neutrons from NC interactions via

$$n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H}$$

- 3 He-filled proportional tubes detect recoiling p and 3 H.
- 40 ³He-filled proportional tubes in 1m grid (398 m total length).
- $\sigma(n + {}^{3}\text{He}) = 10^{7} \, \sigma(n + {}^{2}\text{H})$
- Event-by-event identification of NC interactions (no correlation with CC rate like in earlier phases).


Advantage of ³He counters

	Correlation Coefficient		
	D ₂ O	Salt	³ He
CC,NC	-0.950	-0.521	~0
NC,ES	-0.297	-0.064	~0
CC,ES	-0.208	-0.156	~ -0.2

- Reduction in anti-correlation between NC and CC will help to reduce uncertainty in CC/NC ratio.
- Smaller uncertainty in CC/NC ratio means smaller uncertainty in tan²θ.

Installation of ³He counters complete! Commissioning in progress.

Summary

- SNO has completed data-taking for first two phases (D₂O and D₂O +Salt).
- Results from first two phases give convincing evidence of solar neutrino flavour change (first direct evidence of v_e flavour change!).
 - v_e has non-zero mass.
- Solar Neutrino Problem resolved after 30+ years (SSM correct!).
- Searches for "invisible" nucleon decay and electron anti-neutrinos have set interesting new limits.
- Last phase with ³He proportional counters has begun.

SNO Collaboration

Carleton University
Laurentian University
Queen's University
TRIUMF
University of British Columbia
University of Guelph

Brookhaven National Laboratory
Lawrence Berkeley National Laboratory
Los Alamos National Laboratory
University of Pennsylvania
University of Texas at Austin
University of Washington

Oxford University
Rutherford Laboratory
University of Sussex

References

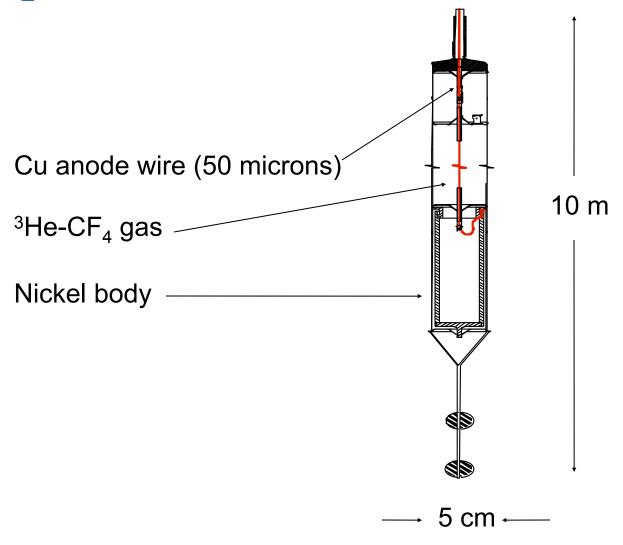
SNO detector details:
 Nucl.Instrum.Meth.A449:172-207,2000, nucl-ex/9910016

CC flux in D2O: Phys.Rev.Lett.87:071301,2001, nucl-ex/0106015

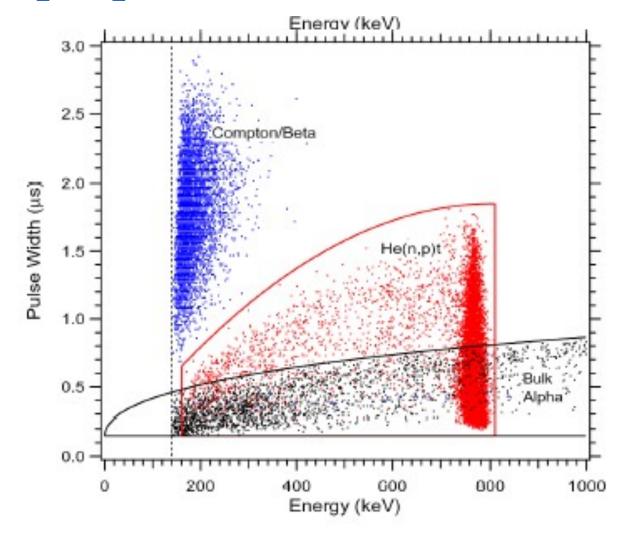
NC flux in D2O:
 Phys.Rev.Lett.89:011301,2002, nucl-ex/0204008

Night-Day Asymmetry in D2O:
 Phys.Rev.Lett.89:011302,2002, nucl-ex/0204009

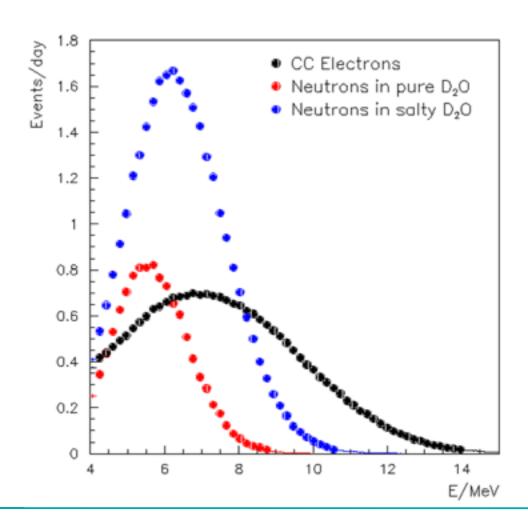
NC in in D2O+Salt:
 Phys.Rev.Lett.92:181301,2004, nucl-ex/0309004


Nucleon Decay:
 Phys.Rev.Lett.92:102004,2004, hep-ex/0310030

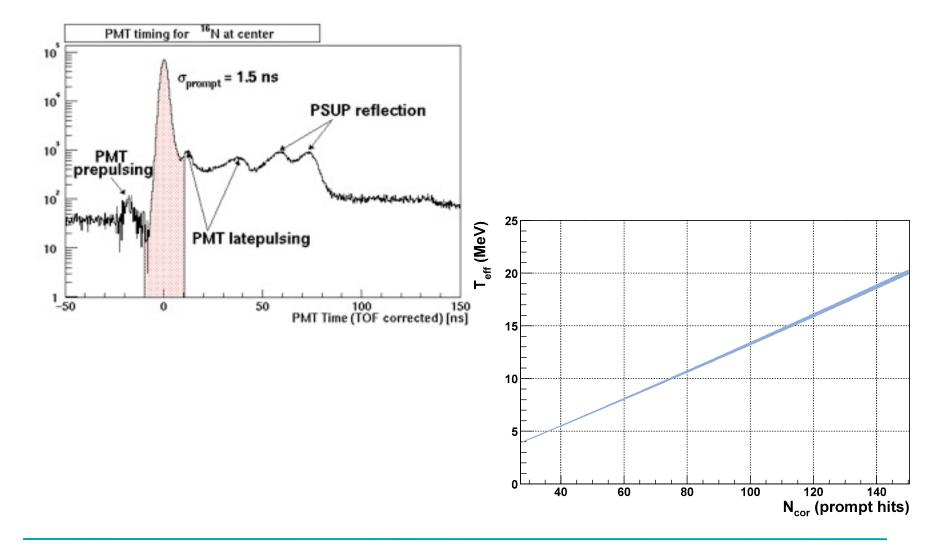
Anti-neutrino Search:


Extra slides...

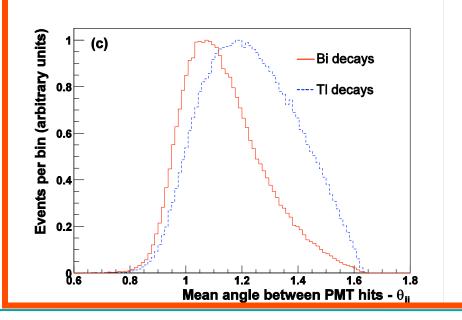
³He proportional counters



³He proportional counters



Advantage of adding salt to D₂O


PMT timing and T_{eff} vs. NHIT

Ex-situ

- ► Ion exchange (²²⁴Ra, ²²⁶Ra)
- Membrane Degassing (²²²Rn) count daughter product decays In-situ
- Low energy data analysis
- Separate ²⁰⁸TI & ²¹⁴Bi

