Results from the Sudbury Neutrino **Observatory**

David Waller for the SNO Collaboration Carleton University, Ottawa, Canada SLAC Summer Institute 2004

August 4, 2004 D. Waller, SLAC Summer Institue 2004

Results from the Sudbury Neutrino **Observatory**

David Waller for the SNO Collaboration Carleton University, Ottawa, Canada SLAC Summer Institute 2004

August 4, 2004 D. Waller, SLAC Summer Institue 2004

Outline

- **Introduction to SNO**
- **Previous solar neutrino results with D₂O**
- Most recent solar neutrino result with D_2O + salt
- **Non-solar neutrino results**
- SNO's future
- **Summary**

Road map to talk…

- **Introduction to SNO**
- **Previous solar neutrino results with D₂O**
- Most recent solar neutrino result with $D_2O +$ salt
- **Non-solar neutrino results**
- SNO's future
- Summary

- Resolve Solar Neutrino Problem (SNP): measured flux of v from Sun is ~1/3 the predicted flux of Standard Solar Model.
	- □ Is Standard Solar Model wrong?
	- □ Do neutrinos oscillate from ν*^e* to ν*µ* and/or ν*^τ* ?
	- \Box Something else happening (e.g. v_e to sterile v)?
- Observe $ν$ from ${}^{8}B$ β-decay in Sun. $8B \rightarrow 8Be + e^+ + v_e$

- Resolve Solar Neutrino Problem (SNP): measured flux of v from Sun is ~1/3 the predicted flux of Standard Solar Model.
	- □ Is Standard Solar Model wrong? **change flavour!**
	- Do neutrinos oscillate from ν*^e* to ν*µ* and/or ν*^τ* ?
	- \Box Something else happening (e.g. v_e to sterile v)?
- Observe $ν$ from ${}^{8}B$ β-decay in Sun. $8B \rightarrow 8Be + e^+ + v_e$

- If Solar Neutrino Problem due to v_e oscillation to v_{μ} and/or v_{τ} , SNO should provide direct evidence .
- \blacksquare SNO measures flux of $\boldsymbol{\mathrm{v}}_e$ and flux of $(\boldsymbol{\mathrm{v}}_e+\boldsymbol{\mathrm{v}}_{\mu})$ +ν*^τ*).
- **Previous expt's sensitive to only** v_e **or** mainly ν_e.

- If Solar Neutrino Problem due to v_{e} flavour mixing $\mathsf{to} \; \mathsf{v}_{\mu}$ and/or v_{τ} , SNO should provide direct evidence .
- \blacksquare SNO measures flux of $\boldsymbol{\mathrm{v}}_e$ and flux of $(\boldsymbol{\mathrm{v}}_e+\boldsymbol{\mathrm{v}}_{\mu})$ +ν*^τ*).
- **Previous expt's sensitive to only** v_e **or** mainly ν_e.

- If Solar Neutrino Problem due to v_{e} flavour mixing $\mathsf{to} \; \mathsf{v}_{\mu}$ and/or v_{τ} , SNO should provide direct evidence .
- \blacksquare SNO measures flux of $\boldsymbol{\mathrm{v}}_e$ and flux of $(\boldsymbol{\mathrm{v}}_e+\boldsymbol{\mathrm{v}}_{\mu})$ +ν*^τ*).
- **Previous expt's sensitive to only ν_ε or** mainly *ν_e*.

Radiochemical expt's: ³⁷Cl at Homestake and 71Ga at Gran Sasso/Baksan

- **If Solar Neutrino Problem due to** v_e flavour mixing $\mathsf{to} \; \mathsf{v}_{\mu}$ and/or v_{τ} , SNO should provide direct evidence .
- \blacksquare SNO measures flux of $\boldsymbol{\mathrm{v}}_e$ and flux of $(\boldsymbol{\mathrm{v}}_e+\boldsymbol{\mathrm{v}}_{\mu})$ +ν*^τ*).

- 1,000 tonnes of D_2O .
- 6 m radius transparent acrylic vessel.
- 9,456 inward looking PMTs (with reflectors around PMTs have 54% geometrical acceptance).
- PMTs mounted on 9 m radius steel support structure.
- 7,000 tonnes of $H₂O$ to support and shield D_2O .
- All materials carefully selected and tested to ensure minimal radioactive backgrounds (e.g. U, Th).

- 1,000 tonnes of D_2O .
- 6 m radius transparent acrylic vessel.
- 9,456 inward looking PMTs (with reflectors around PMTs have 54% geometrical acceptance).
- PMTs mounted on 9 m radius steel support structure.
- 7,000 tonnes of $H₂O$ to support and shield D_2O .
- All materials carefully selected and tested to ensure minimal radioactive backgrounds (e.g. U, Th).

- 1,000 tonnes of D_2O .
- 6 m radius transparent acrylic vessel.
- 9,456 inward looking PMTs (with reflectors around PMTs have 54% geometrical acceptance).
- PMTs mounted on 9 m radius steel support structure.
- 7,000 tonnes of $H₂O$ to support and shield D_2O .
- All materials carefully selected and tested to ensure minimal radioactive backgrounds (e.g. U, Th).

- 1,000 tonnes of D_2O .
- 6 m radius transparent acrylic vessel.
- 9,456 inward looking PMTs (with reflectors around PMTs have 54% geometrical acceptance).
- PMTs mounted on 9 m radius steel support structure.
- 7,000 tonnes of $H₂O$ to support and shield D_2O .
- All materials carefully selected and tested to ensure minimal radioactive backgrounds (e.g. U, Th).

- 1,000 tonnes of D_2O .
- 6 m radius transparent acrylic vessel.
- 9,456 inward looking PMTs (with reflectors around PMTs have 54% geometrical acceptance).
- PMTs mounted on 9 m radius steel support structure.
- 7,000 tonnes of $H₂O$ to support and shield D_2O .
- All materials carefully selected and tested to ensure minimal radioactive backgrounds (e.g. U, Th).

Location of SNO

- Located 2 km underground in active nickel mine near Sudbury, Canada
- Shielding from 2 km of rock reduces flux of cosmic ray muons to 70 /day (>10 ⁹/day on surface).
- Reduced cosmic ray background improves sensitivity to solar neutrinos.

• Phase 1: D_2O

- Phase 1: D_2O
- Phase 2: D_2O + Salt (NaCl)

- Phase 1: D_2O
- Phase 2: D_2O + Salt (NaCl)
- Phase 1a: D_2O

• Phase 1a: D_2O

- Phase 2: D_2O + Salt (NaCl)
- Phase 1a: D_2O
- Phase 3: $D_2O + 3He$ counters

Neutrino detection in SNO

- **PMTs detect** Čerenkov photons from relativistic *e-* :
	- □ *e*-from CC or ES reaction
	- γ from *n*-capture (NC reaction) usually Compton-scatters *e-* (pair production less likely).

Neutrino detection in SNO

- Hit pattern from Čerenkov cone indicates physics event.
- PMT hit times and locations used to reconstruct *e-* direction and location
- Number of PMT hits used to estimate electron energy.

Differentiating CC, ES and NC reactions

- **Statistical separation** based on several variables (e.g. during $D₂O$ phase):
	- \blacksquare Electron kinetic energy, **T** (# of PMT hits)
	- **Radial position of** reconstructed vertex, **(R/600)^3** (volume-weighted)

Direction of electron w.r.t. Sun, $\cos \theta_{\text{sun}}$

Road map to talk…

- **Introduction to SNO**
- **Previous solar neutrino results with D₂O**
- Most recent solar neutrino result with $D_2O +$ salt
- **Non-solar neutrino results**
- SNO's future
- Summary

CC measurement with D_2O

 Measured CC reaction $\phi(v_a)$ (relative to BPB01) 0.2 0.8 1.2 0.4 0.6 rate: $φ_{CC} \equiv φ(v_e)$ $\phi_{ES}^{SK} = \phi(v_e) + 0.154 \phi(v_{ut}$ ϕ_{CC}^{SNO} ϕ_{ES}^{SK} 1.4 (relative to BPB01 **□** Can compare SNO's $φ(v_e)$
to Super-K's $φ(v_e)$
(assuming all ES
interactions at Super-K to Super-K's $\phi(v_e)$ SK+SNO (assuming all ES interactions at Super-K due to v_e) 0.2 3.3 σ difference between Ω $\phi(v_e)$'s. $\phi(v_a)$ (10⁶ cm⁻²s⁻¹)

NC measurement with D_2O

 Measured NC reaction rate: $\phi_{NC} \equiv \phi(v_e + v_\mu + v_\tau)$

 $\phi_{\text{CC}} = (1.76^{+0.06}_{-0.05} \text{(stat)} \pm 0.09 \text{(syst)}) \times 10^{6} \text{cm}^{-2} \text{s}^{-1}$

 $\phi_{\rm NC} = (5.09^{+0.44}_{-0.43} \text{(stat)} \, {}^{+0.46}_{-0.43} \text{(syst)}) \times 10^6 \text{ cm}^{-2} \text{s}^{-1}$

- $\frac{1}{\phi_{\mu\tau}} (10^{6} \text{ cm}^{-2} \text{ s}^{-1}$ **SNO** SNO Φ_{CC} $\phi_{\rm SSM}$ 3 $\phi_e (10^6 \text{ cm}^{-2} \text{ s}^{-1})$
- \Box 5.3 σ signal for solar neutrino flavour mixing.
- ϕ_{NC} consistent with SSM

August 4, 2004 D. Waller, SLAC Summer Institue 2004 15 with neutrino flavour mixing.

More results from first phase (pure D_2O)

- Measured Night-Day rate asymmetry ($A^e_{\ N\text{-}D}$) and electron energy spectra for Night and Day.
- At Night, ν pass through Earth; CC and ES rates may increase due to matter enhanced mixing of v_μ/v_τ to v_e .

$$
A_{N-D}^e \equiv \frac{(\phi_N - \phi_D)}{(\phi_N + \phi_D)/2} = 0.140 \pm 0.063^{+0.015}_{-0.014}
$$

$$
A_{N-D}^e \equiv \frac{(\phi_N - \phi_D)}{(\phi_N + \phi_D)/2} = 0.070 \pm 0.049^{+0.013}_{-0.012}, \ A_{NC} = 0
$$

Road map to talk…

- **Introduction to SNO**
- **Previous solar neutrino results with D₂O**
- **Most recent solar neutrino result with D₂O + salt**
- **Non-solar neutrino results**
- SNO's future
- Summary

$|D_2O + Salt$: why add salt?

- 2 tonnes of NaCl added.
- Change response to neutrons from NC reaction.
- Cl has larger σ than ²H so *n*-capture efficiency improves.
- More energy released from ³⁵Cl +*n*.
	- Higher E event means more NC events above kinetic E threshold of analysis (5.5 MeV)
	- \Box Multiple γ's \rightarrow Č. photons from NC reaction more isotropic in detector (ES and CC produce single electron).

Advantages of salt: *n*-detection efficiency

Advantages of salt: event isotropy

Calibration of detector

435,721,068 triggers

- **Data recorded from July** 2001 to October 2002 (2/3 of D_2O + salt data).
- 254.2 live days (detector maintenance and calibration during remaining time).
- Blind analysis performed
	- □ Analysis and cuts tuned with MC and "spoiled" subset of data.

Data recorded from July 2001 to October 2002 (2/3 of D_2O + salt data).

435,721,068 triggers

Instrumental background cuts

- 254.2 live days (detector maintenance and calibration during remaining time).
- Blind analysis performed
	- □ Analysis and cuts tuned with MC and "spoiled" subset of data.

D_2O + Salt analysis: data set and data reduction 435,721,068 triggers

- **Data recorded from July** 2001 to October 2002 (2/3 of D_2O + salt data).
- 254.2 live days (detector maintenance and calibration during remaining time).
- Blind analysis performed
	- □ Analysis and cuts tuned with MC and "spoiled" subset of data.

Instrumental background cuts

Cosmic ray muons + spallation products

- **Data recorded from July** 2001 to October 2002 (2/3 of D_2O + salt data).
- 254.2 live days (detector maintenance and calibration during remaining time).
- Blind analysis performed
	- □ Analysis and cuts tuned with MC and "spoiled" subset of data.

- **Data recorded from July** 2001 to October 2002 (2/3 of D_2O + salt data).
- 254.2 live days (detector maintenance and calibration during remaining time).
- Blind analysis performed
	- □ Analysis and cuts tuned with MC and "spoiled" subset of data.

- **Data recorded from July** 2001 to October 2002 (2/3 of D_2O + salt data).
- 254.2 live days (detector maintenance and calibration during remaining time).
- Blind analysis performed
	- □ Analysis and cuts tuned with MC and "spoiled" subset of data.

Radioactive backgrounds

- *Ex situ* measurements show U and Th levels lower than goals (1 background neutron/day).
- *Ex situ* measurements consistent with *in situ* measurements
- *In situ* measurements more precise so used for solar neutrino analysis.

Backgrounds

Measurement of CC, NC, ES events

- MC PDFs compared to data; extended unbinned ML fit used to estimate free parameters in fit.
- 3 (or 4) variables used to calculate likelihood PDFs:
	- Radial position of reconstructed vertex
	- **Direction of electron w.r.t. Sun, cos** θ_{sun}
	- \Box Event isotropy, β_{14} (PMT hit pattern)
	- Electron kinetic energy (PMT hits) *(optional)*

Free parameters in fit:

 \Box number of NC, CC, ES signal events

Measurement of CC, NC, ES events

■ MC PDFs compared to data; extended unbinned ML fit used to estimate free parameters in fit.

3 (or 4) variables used to calculate likelihood PDFs:

- Radial position of reconstructed vertex
- **Direction of electron w.r.t. Sun, cos** θ_{sun}
- \Box Event isotropy, β_{14} (PMT hit pattern)
- □ Electron kinetic energy (PMT hits) *(optional)*

Matter enhanced oscillations change ES and CC spectra

- Free parameters in fit:
	- □ number of NC, CC, ES signal events

PDFs for signals and backgrounds

PDFs for signals and backgrounds To Sun **Away from Sun** Sun-electron direction Electron kinetic energy 140 Events per 500 keV Events per 0.05 wide bin (b) (c) 50 120 100 400 neutrons 300 60 200 neutrons 40 **CC** 100 20 -0.8 -0 0.2 0.4 0.6 0.8 10 11 -0.6 -0.4 -0.2 13 $cos \theta_{sun}$ T_{eff} (MeV)

Flux results from fit

Units for ϕ are 10⁶ cm⁻² s⁻¹

 $= 1.70 \pm 0.07(stat.)^{+0.09}_{-0.10}(syst.)$ $\phi_{\text{ES}}^{\text{SNO}} = 2.13^{+0.29}_{-0.28} \text{(stat.)}^{+0.15}_{-0.08} \text{(syst.)}$ $\phi_{\rm NC}^{\rm SNO}$ = 4.90 ± 0.24 (stat.)^{+0.29}(syst.)

Energy spectrum of 8B ν's constrained to Ortiz, *et al*. spectrum

Flux results from fit

Units for ϕ are 10⁶ cm⁻² s⁻¹

$$
\phi_{\rm CC}^{\rm SNO} = 1.70 \pm 0.07(\text{stat.})^{+0.09}_{-0.10}(\text{syst.})
$$

\n
$$
\phi_{\rm ES}^{\rm SNO} = 2.13^{+0.29}_{-0.28}(\text{stat.})^{+0.15}_{-0.08}(\text{syst.})
$$

$$
\phi_{\rm NC}^{\rm SNO} = 4.90 \pm 0.24 \, (\text{stat.})_{-0.27}^{+0.29} \, (\text{syst.})
$$

Energy spectrum of 8B ν's unconstrained (Energy not used in fit)

Energy spectrum

of 8B ν's constrained

to Ortiz, *et al*. spectrum

$$
\begin{array}{rcl}\n\phi_{\text{CC}}^{\text{SNO}} &=& 1.59_{-0.07}^{+0.08} \text{(stat)}_{-0.08}^{+0.06} \text{(syst)} \\
\phi_{\text{ES}}^{\text{SNO}} &=& 2.21_{-0.26}^{+0.31} \text{(stat)} \pm 0.10 \text{ (syst)} \\
\phi_{\text{NC}}^{\text{SNO}} &=& 5.21 \pm 0.27 \text{ (stat)} \pm 0.38 \text{ (syst)}\n\end{array}
$$

Flux results from fit

Units for ϕ are 10⁶ cm⁻² s⁻¹

$$
\phi_{\rm CC}^{\rm SNO} = 1.70 \pm 0.07 \text{(stat.)}^{+0.09}_{-0.10} \text{(syst.)}
$$

$$
\phi_{\rm ES}^{\rm SNO} = 2.13^{+0.29}_{-0.28} \text{(stat.)}^{+0.15}_{-0.08} \text{(syst.)}
$$

$$
\phi_{\rm NC}^{\rm SNO} = 4.90 \pm 0.24 \, (\text{stat.})_{-0.27}^{+0.29} \, (\text{syst.})
$$

 $\phi_{\text{CC}}^{\text{SNO}} = 1.59^{+0.08}_{-0.07} \text{(stat)}^{+0.06}_{-0.08} \text{(syst)}$ Energy spectrum $\phi_{\text{FS}}^{\text{SNO}} = 2.21^{+0.31}_{-0.26} \text{(stat)} \pm 0.10 \text{ (syst)}$ of 8B ν's unconstrained (Energy not used in fit) ϕ_{NC}^{SNO} = 5.21 ± 0.27 (stat) ± 0.38 (syst)

Standard Solar Model $\frac{1}{2}$ extracted by the product violent and $\phi_{\text{BP04}} = 5.82 \pm 1.34$

Energy spectrum

of 8B ν's constrained

to Ortiz, *et al*. spectrum

Comparison to previous results and SSM (BP2000)

■ 1-D projections of oscillation parameters give marginal uncertainties on tan2θ and Δ m².

$$
\theta = 32.5^{+1.7} \text{--} \text{degrees}
$$
\nMaximal mixing ($\theta = 45 \text{ degrees}$)

\nexcluded at 5.4 σ .

 Δ m² = (7.1^{+1.0}_{-0.3}) x 10⁻⁵ eV²

Road map to talk…

- **Introduction to SNO**
- **Previous solar neutrino results with D₂O**
- Most recent solar neutrino result with $D_2O +$ salt
- **Non-solar neutrino results**
- SNO's future
- Summary

Recent non-solar ν SNO results

Nucleon Decay

- "Invisible" decay of *n* and *p* (e.g. $N \rightarrow 3 \text{ v}$) from ¹⁶O produces γ -ray of 6 \rightarrow 7 MeV.
- In SNO, γ-ray of 6→7 MeV looks like *n*-capture.
- Compare *n*-capture rates in SNO Phases 1 and 2 (different *n*-efficiences) to set limit on τ_{inv} of *p* and *n.*

 $\tau_{\text{inv}}^p > 2.1 \times 10^{29}$ years, 90% CL

 $\tau_{\mathsf{inv}''}$ > 1.9 \times 10²⁹ years, 90% CL

ν*e* search

- Solar *ν_e* might convert to *ν_e* via Spin Flavour Precession or *ν_e* decay.
- Look for 2- or 3-fold coincidences from $\overline{}$

$$
v_e + d \rightarrow n + n + e^+
$$

- 2 candidate coincidences (one 2 fold, one 3-fold) in Phase 1.
- **1.68**^{+0.93} $_{-0.45}$ background expected $\frac{1}{2}$ (mainly $\frac{1}{2}$ Prob(ν*^e →* ν*e*) < 0.81%, 90% CL

.

Road map to talk…

- **Introduction to SNO**
- **Previous solar neutrino results with D₂O**
- Most recent solar neutrino result with $D_2O +$ salt
- **Non-solar neutrino results**
- **SNO's future**
- Summary

Future of SNO: 3He counters

 Detect neutrons from NC interactions via

 $n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H}$

- 3He-filled proportional tubes detect recoiling p and 3 H.
- \blacksquare 40 ³He-filled proportional tubes in 1m grid (398 m total length).
- σ(*n* + 3He) = 107 σ(*n* + 2H)
- Event-by-event identification of NC interactions (no correlation with CC rate like in earlier phases).

Future of SNO: 3He counters

 Detect neutrons from NC interactions via

 $n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H}$

- 3He-filled proportional tubes detect recoiling p and 3 H.
- \blacksquare 40 ³He-filled proportional tubes in 1m grid (398 m total length).
- σ(*n* + 3He) = 107 σ(*n* + 2H)
- Event-by-event identification of NC interactions (no correlation with CC rate like in earlier phases).

Future of SNO: 3He counters

 Detect neutrons from NC interactions via

 $n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H}$

- 3He-filled proportional tubes detect recoiling *p* and 3H.
- \blacksquare 40 ³He-filled proportional tubes in 1m grid (398 m total length).
- σ(*n* + 3He) = 107 σ(*n* + 2H)
- Event-by-event identification of NC interactions (no correlation with CC rate like in earlier phases).

Advantage of 3He counters

- Reduction in anti-correlation between NC and CC will help to reduce uncertainty in CC/NC ratio.
- Smaller uncertainty in CC/NC ratio means smaller uncertainty in $tan^2\theta$.

Installation of ³He counters complete! Commissioning in progress.

Summary

- SNO has completed data-taking for first two phases (D_2O and D_2O +Salt).
- Results from first two phases give convincing evidence of solar neutrino flavour change (first direct evidence of *ν_e* flavour change!).
	- *νe* has non-zero mass.
- Solar Neutrino Problem resolved after 30+ years (SSM correct!).
- Searches for "invisible" nucleon decay and electron anti-neutrinos have set interesting new limits.
- Last phase with ³He proportional counters has begun.
August 4, 2004 D. Waller, SLAC Summer Institue 2004 40

SNO Collaboration

Carleton University Laurentian University Queen's University TRIUMF University of British Columbia University of Guelph

IMEN

Oxford University Rutherford Laboratory University of Sussex

References

- SNO detector details: Nucl.Instrum.Meth.A449:172-207,2000, **nucl-ex/9910016**
- CC flux in D2O: Phys.Rev.Lett.87:071301,2001, **nucl-ex/0106015**
- \blacksquare NC flux in D2O: Phys.Rev.Lett.89:011301,2002, **nucl-ex/0204008**
- Night-Day Asymmetry in D2O: Phys.Rev.Lett.89:011302,2002, **nucl-ex/0204009**
- NC in in D2O+Salt: Phys.Rev.Lett.92:181301,2004, **nucl-ex/0309004**
- Nucleon Decay: Phys.Rev.Lett.92:102004,2004, **hep-ex/0310030**
- Anti-neutrino Search:

Extra slides…

Advantage of adding salt to D_2O

PMT timing and T_{eff} vs. NHIT

Ex-situ Ion exchange (224Ra, 226Ra) Membrane Degassing (222Rn) count daughter product decays In-situ Low energy data analysis Separate 208Tl & 214Bi 1 \overline{a} \overline{b} **Bi decays** --- TI decays $8\overline{6}$ $\overline{1.2}$ 0.8 $\overline{1.4}$ $\overline{1.6}$ \blacksquare 1.8 Mean angle between PMT hits - θ_{ii}