

Introduction to LHCb

Preface

Next four lectures:

- 1. Introduction to LHCb
- 2. Overview of flavour physics
- 3. Recent CP violation measurements
- 4. Recent results from rare decays

Today:

- Starting with some detector physics (bottom-up approach)
- Aimed to give overview of detector aspects important for LHCb
- Assumes some prior knowledge of detector physics....
- ...but if I go to fast.....

Please ask questions

Not that I know all the answers...

Or if you become bored...

Don't hesitate to tell me.

Jeroen van Tilburg

Heavy flavour physics (next week)

The aim of heavy flavour physics is to study *B* and *D* decays to look for anomalous effects beyond the Standard Model.

- New particles can appear as virtual particles in loop and penguin diagrams.
- Indirect searches have a high sensitivity to effects from new particles.
 - Can see NP effects before the direct searches.
 - Indirect measurements can access higher scales.
- Possible to measure the phases of the new couplings

• New physics at TeV scale must have a flavour structure to provide suppression of FCNC.

→ Complementary to direct searches at ATLAS and CMS.

Typical B decay event

- Typical decay length of *B* hadron ~ 7 mm
- Decay products with p ~ 1 200 GeV

Simulated event

LHCb detector

Forward detector

Why is LHCb not built like ATLAS or CMS?

Most B (and D) hadrons are produced either in forward or backward direction

- \rightarrow Due to boost of the bb pair
- \rightarrow m(b) relatively light compared to high centre-of mass energy of LHC

Build LHCb as a forward detector

(backward direction not covered: only one LHCb fits in the cavern $\ensuremath{\textcircled{}}$)

Advantages:

- High yield of B and D hadrons
- Place vertex detector close to beam
- Modular design (easy maintenance)
- Large integrated magnetic field: high momentum resolution.

<u>Disadvantage</u>

• Very high particle flux (radiation, reconstruction)

parton 1

parton

Collaboration

Member countries of the LHCb Collaboration

1 in

LHCb in the cavern

LHCb setup

Advanced topics in Particle Physics: LHC physics, 2011

But what does this mean? How many B's are produced?

$$N_{b\bar{b}} = \boldsymbol{\sigma}_{b\bar{b}} \int \mathcal{L} \mathrm{d}t$$

B cross section: • σ_{bb} = 284 ± 53 µb (\sqrt{s} = 7 TeV) [PLB **694** 209] \rightarrow 3.1 x 10¹¹ bb pairs already produced at LHCb!

Total	100 mb
Inelastic	$80\mathrm{mb}$
$c\overline{c}$	$3.5\mathrm{mb}$
$b\overline{b}$	$500\mu{ m b}$

In 1 in every 200 collisions a bb pair is produced

Reminder Luminosity

Nb. Of protons per bunch for beam 1

eta - beta function, i.e. Strength of the focussing magnets

Data taking efficiency

Integrated LHCb Efficiency breakdown in 2011

Advanced topics in Particle Physics: LHC physics, 2011

Pushing LHCb to its limits

Parameters:	<u>Design</u>	<u>2011</u>	units
LHC Beam energy	7.0	3.5	GeV
 Number of bunches in LHC 	2808	1300	
Number of interactions per BX:	0.5	1.5 ┥	
 Instantaneous luminosity 	2.0	3.0	$10^{32} \text{ cm}^{-2} \text{s}^{-1} = 10^2 \mu \text{b}^{-1} \text{s}^{-1}$
 Running time 	10 ⁷	0.4*10 ⁷	seconds
 Integrated luminosity per year 	2.0	1.1	fb ⁻¹

Performance of LHC in 2011

- Lower beam energy: b cross section only half.
- Fewer number of bunches
- Effective running time LHC in 2011 only 1.5 month.

Solution LHCb:

- Run at higher instantaneous luminosity
- \rightarrow Trigger and reconstruction must cope with higher multiplicities
- Luminosity leveling (see next slide)

Luminosity leveling

- Continuous, automatic adjustment of offset of colliding beams.
- Allows optimal conditions throughout a fill.
- Very new technique. Not all LHC experts were convinced it would work.
- Allows to take data much more efficiently.

Follow actual status on "LHC page 1"

LHCb from a tracking point of view

Goal	Purpose	Solution
1. Measure proper time of decaying particles	Identify <i>B</i> hadrons and time-dependent analysis.	Vertex detector: VELO (+tracking stations)
2. Measure mass of decaying particles	Identify signal and separate from background.	Magnet + tracking stations: TT, IT, OT (+VELO).

Vertex detector

Two retractable halves.
 21 modules, each with a r- and φ-measuring sensor.
 Strip pitch: 36–102 μm.
 S/N > 20

(Reminder) Silicon detectors

- Bias voltage between backplane and strips.
- Bias voltage such that silicon is depleted of charge carriers (depletion voltage).
- Traversing charged particle creates electron-hole pairs.
- Holes and electrons generated along path (only showing holes)
- Holes attracted by strips, electrons by the backplane.

Vertex reconstruction

Vertex reconstruction

- Impact parameter resolution = 12 μ m for high p_T tracks.
- Good primary and secondary vertex resolution.
 - Suppress background from prompt decays.
- Good proper-time resolution
 - Important for time-dependent measurements.

Vertex reconstruction

Magnet

Tracking system and dipole magnet to measure angles and momenta

 $\Delta p/p \sim 0.4$ %, mass resolution ~ 14 MeV (for $B_s \rightarrow D_s K$)

Tracking system: TT

❑Just after RICH1 and before the magnet
❑ Four layers (0°,+5°,−5°,0°) of 150 x 130 cm.
❑ Strip pitch: 183 µm.
❑ S/N ~ 13

□ 64 modules with 14 sensors each.

 \Box Hit resolution about 50 µm.

Tracking system: TT

 \rightarrow TT needed to compensate scattering of RICH1. \rightarrow Improves mass resolution by about 25-30%.

T stations

Why do the tracking stations after the magnet consist of two detectors?

Tracking system: IT

- ❑ 3 stations with 4 boxes each.
 ❑ Each box has 4 layers (0°,+5°,-5°,0°).
 ❑ Strip pitch: 198 µm.
- □ S/N ~ 16
- **□** Hit resolution about 50 µm.

Tracking system: OT

- □ 3 stations of modules with straw tubes
- \Box Each station has 4 layers (0°,+5°,-5°,0°).
- □ Straw pitch: 5 mm
- Resolution: ~200 micron

Tracking system: OT

Tracking system: Outer Tracker

Outer Tracker

Track reconstruction

Track reconstruction

Why should the tracking detectors be light?

Reason 1: Otherwise they will stop the particles (hadronic showers)

Track fitting

Definition (Merriam-Webster)

Track [trak]: Detectable evidence (as the wake of a ship, a line of footprints, or a wheel rut) that something has passed.

<u>Definition</u> (High-energy physics) Path of a charged particle through a detector.

Track is a collection of track states along this path \rightarrow conveniently parameterized in z positions (LHCb).

Track state:

State vector

$$\vec{x} = \begin{pmatrix} x \\ y \\ t_x \\ t_y \\ q/p \end{pmatrix} \text{ at a given z-position, where } t_x = \frac{\partial x}{\partial z} \text{ and } t_y = \frac{\partial y}{\partial z}.$$

• Plus corresponding covariance matrix (5x5).

Track fitting

Track fit issues:

- Many parameters.
 - 5n free parameters (n = number of states)
- Need to incorporate material effects (see below)
 - More free parameters to fit

<u>Solution</u>

• Run track fit recursively: add measurements one by one. Fit only the state at the current measurement.

 \rightarrow This is the Kalman filter.

Two material effects included in stepping through matter:

- 1. Energy loss
- 2. Multiple scattering

Track fitting

x: track states m: measurements

Material effects in track fit

- 1. Energy loss (all charged particles except electrons)
 - Caused by ionization of the medium.
 - Note that this effect is actually needed to measure the particles (hits)!

Electrons and photons

Electrons

- Electrons loose their energy not by ionization but by bremsstrahlung.
- For bremsstrahlung energy loss is inversely proportional to mass of particle.
- Electrons loose 30% of their energy before magnet due to bremsstrahlung:

• Therefore, momentum (and mass) resolution worse compared to muons

Photons

- Related to bremsstrahlung is photon conversion $\,\gamma \rightarrow e^+ e^-$
- Mean free path is 7/9 X₀
- Converted photons before the magnet cannot be reconstructed.
 - After magnet they still form single cluster in calorimeters.

Material effects in track fit

Why should the tracking detectors be light?

Reason 2: Otherwise they will scatter more (worse momentum resolution)

2. Multiple scattering

- Modeled by increasing covariance (error) matrix (not predictive).
- Uses Molière angular distribution: depends mainly on momentum, density, thickness.
- Significant effect for low momentum particles (depends on spatial resolution)
 - In case of LHCb: particles below p < 80 GeV.

Multiple scattering (Moliere angular distribution):

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta c p} z \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \ln \frac{x}{X_0} \right]$$

Thickness/radiation length: taken from detector description (simulation)

Momentum resolution

- Integrated BdI ~ 4 Tm
- Accurate field map and alignment
- Momentum resolution 0.4-0.6 %
- Mass resolution J/ψ : 13 MeV
 - MC: 10 MeV
- \rightarrow Accurate mass measurements.

Momentum resolution

The momentum kick from the magnet (~1 GeV) depends on integrated magnetic field:

$$\Delta \vec{p} = q \int \mathrm{d}\vec{l} \times \vec{B}$$

The main component can be written as

$$\Delta p_x = p_{x,f} - p_{x,i} = p\left(\frac{t_{x,f}}{\sqrt{1 + t_{x,f}^2 + t_{y,f}^2}} - \frac{t_{x,i}}{\sqrt{1 + t_{x,i}^2 + t_{y,i}^2}}\right) = q \int \left| \mathrm{d}\vec{l} \times \vec{B} \right|_x$$

Where t_x is the slope (dx/dz) of the particle.

Using the multiple scattering formula and the expected hit resolution one obtains the following parameterization:

$$\frac{\partial p}{p} = A \oplus B \cdot p$$

Very simplified model. In particular it does not describe:

- different resolutions of IT and OT
- different amounts of material seen by different particles
- non-Gaussian effects

Invariant mass

Invariant mass formula (2 body decay):

$$m_M^2 = m_1^2 + m_2^2 + 2(\sqrt{\vec{p}_1^2 + m_1^2}\sqrt{\vec{p}_2^2 + m_2^2} - |\vec{p}_1||\vec{p}_2|\cos\Theta)$$

Assuming $m_{1,2} << p_{1,2}$

$$m_M^2 = m_1^2 + m_2^2 + 2|\overrightarrow{p}_1||\overrightarrow{p}_2|(1 - \cos\Theta)$$
 Opening angle term

In LHCb error on opening angle term typically much smaller than momentum error.

Mass resolution mainly determined by momentum resolution

Full mass spectrum

Measurement of B masses

More precise than PDG values!

World-best mass measurements! (2010 data only)

Particle ID

Which particles travel through LHCb?

- Electrons (e⁺, e⁻)
- Muons (μ+, μ-)
- Photons (neutral; detected in calorimeter)
- Pions (π⁺, π⁻)
- Kaons (K⁺, K⁻, K_S⁰ decays after 2 m in $\pi\pi$)
- **Protons** (p⁺, p⁻)
- Neutrons (neutral; detected in calorimeters)
- Lambda's (neutral; decay after ~2m into p π)
- + small fraction of other long-lived strange baryons

PID detectors used to separate the different species. Note that the tracking detector only detect charged particles!

RICH detectors

Two RICH detectors for charged hadron identification

RICH=Ring Imaging CHerenkov detector

RICH detectors are the specialized detectors to allow charged hadron (π, K, p) identification.

Important for B physics, as there are many hadronic decay modes e.g.: $B_s \rightarrow D_s^- K^+ \rightarrow (K^+ K^- \pi^-) K^+$

RICH detectors

RICH detectors

RICH performance

Calorimeters

Calorimeter system to identify electrons, hadrons and neutrals Important for the first level (Level 0) of the trigger.

Jeroen van Tilburg

Muon detectors

Muon system to identify muons, also used in first level (L0) of the trigger

Calorimeters and Muon detectors

Calorimeters:

- Goal is to stop the particles and measure their energy (heavy detectors).
- Particles produce shower of secondary particles.
- Amount of scintillation light is measure for energy of incoming particle.
- Electrons and photons give electromagnetic shower in first part of calorimeters: ECAL
- Hadrons give hadronic shower in second part of calorimeters: HCAL
- Calorimeter is only place where neutral particles are detected.

Muon detectors:

- Muons are not so much affected by material in calorimeters.
 - They cannot have hadronic interaction, only electromagnetic.
- Muon detectors interleaved with iron wall to remove any non-muon.
- Anything that traverses through the muon detector must be a muon.

PID performance: flavour tagging

Trigger: Level-0 trigger

Trigger: High-level trigger

Hardware Level-0 trigger followed by two-stage software
High Level Trigger, HLT1 and HLT2
HLT1 performs partial reconstruction, confirms L0 objects: associates them with reconstructed tracks, especially with those displaced from the PV

•HLT2: full reconstruction; uses reconstructed objects for exclusive selections with clear signature

Depending on luminosity, the L0 and HLT thresholds can be tuned such that not to exceed maximal throughput of the systems.

Trigger: High-level trigger

Higher Level Trigger (Software)

1 MHz

Stepwise event reconstruction:

- Confirmation of trigger signature using tracking chambers
- Secondary vertex reconstruction
- Full event reconstruction

2 KHz Storage (event size ~ 50 kB)

HLT rate	Event type	Calibration	Physics
200 Hz	Exclusive B candidates	Tagging	B (core program)
600 Hz	High mass di-muons	Tracking	J/ψ , b $\rightarrow J/\psi X$ (unbiased)
300 Hz	D* candidates	PID	Charm (mixing & CPV)
900 Hz	Inclusive b (e.g. $b \rightarrow \mu$)	Trigger	B (data mining)

L0, HLT and L0×HLT efficiency

LHCb Upgrade

- Main limitation that prevents exploiting higher luminosity is the Level-0 (hardware) trigger
- To keep output rate < 1 MHz requires raising thresholds → hadronic yields reach plateau
- Proposed upgrade is to *remove* hardware trigger read out detector at 40 MHz (bunch crossing rate) Trigger fully in software in CPU farm.
- Will allow to increase luminosity by factor ~ 5 to 1–2 × 10³³ cm⁻² s⁻¹
- Requires replacing front-end electronics and part of tracking system. Planned for the long shutdown in 2018. Running for 10 years will then give ~ 50 fb⁻¹
- Letter of Intent recently submitted to the LHCC Physics case endorsed, detector R&D underway (*e.g.* scintillating-fibre tracking, TOF, ...)

Conclusion

- LHCb has just collected 1.1 fb⁻¹ of data.
- Waiting for you to be analysed!

