

Recent CP violation measurements

Recap of last week

What we have learned last week:

- Indirect searches (CP violation and rare decays) are good places to search for effects from new, unknown particles.
	- Example from past: GIM mechanism
- Symmetries are a very important concept in physics
	- Lead to conservation laws, new theories, etc.
- P (parity) and C (charge conjugation) are completely broken in weak interactions
	- CPT is still an exact symmetry (required by field theory).
- Weak interaction shows a small CP violation.
	- Not enough to explain baryon asymmetry in the Universe.
- Fermion masses and the CKM matrix originate from the Yukawa couplings with the Higgs.
	- V_{CKM} relates the quarks in the mass eigenbase with the weak eigenbase.
- $\bm{\mathsf{V}}_{\textsf{CKM}}$ has one complex phase which is responsible for CP violation.
	- All current CP-violating measurements are consistent with this single phase.

Wolfenstein Parametrization (recap)

Makes use of the fact that the off-diagonal elements are small compared to the diagonal elements.

 \rightarrow Expansion in λ = V_{us}, A = V_{cb}/ λ^2 and ρ , η .

$$
V = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)
$$

$$
V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}
$$

 $\lambda \sim 0.22$ (sinus of Cabibbo angle) $A \sim 1$ (actually 0.80) $ρ ~ 0.14$ $η ~ 0.34$

Mixing of neutral mesons (recap)

0.1

8

 $\overline{9}$ 10

0.01

 10

The 4 different neutral meson systems have very different mixing properties.

B_s system: very fast mixing

Kaon system: large decay time difference.

Charm system: very slow mixing

The weak box diagram

These two diagrams contribute to mixing in $B_{d,s}$ system:

The (heavy) top quark dominates the internal loop. No GIM cancellation (if u,c,t would have the same mass these diagrams would cancel)

Oscillations in B_d versus B_s system: V_{td} versus V_{ts} Order $λ^3$ Order $λ^2$ \rightarrow Much faster oscillation in B_s system (less Cabbibo suppression). In the D system, the d,s,b quarks in internal loop (no top): small mixing. Why is are the oscillations in the B_s system so much faster than in B_d ? Why is the mixing in the D system so small?

Now this measurement has been repeated with much better precision by LHCb:

Measurement of Δ*m*_s (*Bs*-*Bs* mixing frequency)

What is needed to measure Δm_s ?

Flavour tagging

In a perfect detector, why is the OS mistag rate not 0% ?

Measurement of Δ*m*_s

CP violation

So we just learned that neutral mesons mix, that we can actually measure the oscillations, but what has this to do with CP violation?

Types of CP violation

Phenomenologically, there are 3 types of CP violation:

Types of CP violation

Phenomenologically, there are 3 types of CP violation:

- 1. CPV in mixing
- 2. CPV in decay
- 3. CPV in the interference between mixing and decay

1. CP violation in mixing 1. CP violation in mixing

We had already the probability that an initially pure B^0 or \overline{B}^0 oscillates into \overline{B}^0 or B^0 :

$$
\frac{|\langle B^0|B_{\rm phys}^0(t)\rangle|^2 = |g_+(t)|^2}{|\langle \overline{B}^0|B_{\rm phys}^0(t)\rangle|^2 = \left|\frac{q}{p}\right|^2 |g_-(t)|^2 ,}
$$

$$
|\langle B^0|\overline{B}_{\rm phys}^0(t)\rangle|^2 = \left|\frac{p}{q}\right|^2 |g_-(t)|^2 ,
$$

$$
|\langle \overline{B}^0|\overline{B}_{\rm phys}^0(t)\rangle|^2 = |g_+(t)|^2 ,
$$

Not the same if $|q/p| \neq 1$

One can see that in case $|q/p| \neq 1$ the oscillation probability $P(B^0 \rightarrow \overline{B}^0)$ is different from the CP conjugate process $P(\overline{B}^0 \rightarrow B^0)$.

Remember that:

$$
\frac{q}{p} = -\sqrt{\frac{M_{12}^* - i\Gamma_{12}^*/2}{M_{12} - i\Gamma_{12}/2}}
$$

In the B_d and B_s systems Γ_{12} is small \rightarrow Small CP violation in mixing.

1. CP violation in mixing 1. CP violation in mixing

Remember that:

$$
\frac{q}{p} = -\sqrt{\frac{M_{12}^* - i\Gamma_{12}^*/2}{M_{12} - i\Gamma_{12}/2}}
$$

Requirements for CP violation in mixing, i.e. $|q/p| \neq 1$

- M_{12} and Γ_{12} must be non-negligible.
- M_{12} and Γ_{12} must have a phase difference.

 \rightarrow CP violation in mixing is due to the interference between the amplitudes M_{12} and Γ_{12} . (between off-shell and on-shell mixing amplitudes)

Example of CPV in mixing: kaon system Example of CPV in mixing: kaon system

CP violation in mixing small in SM: (due to cancellations) *K0* system: Order 1% *D0* system: Order 10-5 B_d system: Order 5x10⁻⁴
 B_s system: Order 10⁻⁵ B_s system: Not yet observed

Hints for New Physics?

Semileptonic measurement of CPV in *B* mixing from D0 (Tevatron)

Discrepancy of central value too large for New Physics.

Hints for New Physics?

Semileptonic measurement of CPV in *B* mixing from D0 (Tevatron)

2. CP violation in decay 2. CP violation in decay

We define the decay amplitudes as:

$$
A_f = \langle f|T|B^0 \rangle \quad , \quad \bar{A}_f = \langle f|T|\bar{B}^0 \rangle A_{\bar{f}} = \langle \bar{f}|T|B^0 \rangle \quad , \quad \bar{A}_{\bar{f}} = \langle \bar{f}|T|\bar{B}^0 \rangle
$$

CP violation in decay means: $|A_f| \neq |A_{\bar{f}}|$

In other words:

$$
\Gamma(B^0 \to f) \neq \Gamma(\overline{B}^0 \to \overline{f})
$$

This only occurs when there are different decay amplitudes (Feynman diagrams) to the same final state with different weak phases and different strong phases:

Weak phase changes sign under CP transformation

$$
A_f = \sum_k A_k \underbrace{\left\langle i \delta_k \right\rangle}_{k} \underbrace{\left\langle i \phi_k \right\rangle}_{k}, \quad \bar{A}_{\bar{f}} = \sum_k A_k \underbrace{\left\langle i \delta_k \right\rangle}_{k} e^{\underbrace{\left\langle i \phi_k \right\rangle}_{k}}
$$

Strong phase invariant under CP transformation

$$
\sum_{k=1}^{N} C
$$
P violation in decay is also called direct CP violation

2. CP violation in decay 2. CP violation in decay

No strong phase difference $\blacktriangleright |A_f| = |\bar{A}_{\bar{f}}|$

No CP violation

2. CP violation in decay 2. CP violation in decay

Strong phase difference (δ not zero) \rightarrow $|A_f| \neq |A_{\bar{f}}|$

CP violation in decay due to interference between strong and weak phase difference. CP violation in decay does not require mixing: can also occur in charged hadrons decays

Problem: strong phases unknown, so difficult to extract the weak phase.

Example: CP violation in decay

Charmless charged two-body *B* decays

Direct CP violation possible due to treepenguin interference in $B_{d,s}$ \rightarrow *K* π decays.

Example: CP violation in decay

B_{d,s} → *K⁺π*⁻: Clear asymmetry in raw distributions

Example: CP violation in decay

Definition of asymmetry (time-integrated):

$$
A_{CP}(B^0 \to K\pi) = \frac{\Gamma(\bar{B}^0 \to K^- \pi^+) - \Gamma(B^0 \to K^+ \pi^-)}{\Gamma(\bar{B}^0 \to K^- \pi^+) + \Gamma(B^0 \to K^+ \pi^-)}
$$

$$
A_{CP}(B_s^0 \to \pi K) = \frac{\Gamma(\bar{B}_s^0 \to \pi^- K^+) - \Gamma(B_s^0 \to \pi^+ K^-)}{\Gamma(\bar{B}_s^0 \to \pi^- K^+) + \Gamma(B_s^0 \to \pi^+ K^-)}.
$$

Note that this does not require flavour tagging: we want to know flavour at decay.

 $A_{CP}(B^0 \to K\pi) = -0.088 \pm 0.011 \pm 0.008$ \rightarrow Most precise, and first 5 σ observation of CP violation in hadronic machine. $WA: -0.098^{+0.012}_{-0.011}$

 $A_{CP} (B_s \to \pi K) = 0.27 \pm 0.08 \pm 0.02$ \rightarrow first 3σ evidence of CP violation in $B_s^o \rightarrow \pi K$

Caveat: strong phases and T/P unknown, so difficult to extract the weak phase.

Another Example: CP violation in decay

 Δ *A_{CP}* in *Dº→h⁺h*- (CPV in decay)

Preliminary [LHCb-CONF-2011-061]

$$
\Delta A_{CP} = A_{CP}(D^0 \to K^+K^-) - A_{CP}(D^0 \to \pi^+\pi^-) = \Delta a_{CP}^{\text{dir}} - 0.1a_{CP}^{\text{ind}}
$$

Measurement (2011 only; 580 pb^{-1}):

 $\Delta A_{CP} = [-0.82 \pm 0.21 \text{(stat.)} \pm 0.11 \text{(sys.)}]$ %

Signifance 3.5σ

New result! Only presented 3 weeks ago at HCP

First evidence of CP violation in charm sector!

Now you have seen two examples of CP violation:

- 1. CPV in mixing (interference between M_{12} and Γ_{12})
- 2. CPV in decay (interference between strong and weak phases)

And both are due to interference.

Now the obvious third type of CP violation (and most beautiful) is:

3. CPV in the interference between mixing and decay

We have seen already the time-dependence of flavour of a initially pure $\overline{B^0}$ or B^0 :

$$
|B_{\text{phys}}^{0}(t)\rangle = g_{+}(t)|B^{0}\rangle + \frac{q}{p}g_{-}(t)|\overline{B}^{0}\rangle
$$

$$
|\overline{B}_{\text{phys}}^{0}(t)\rangle = g_{+}(t)|\overline{B}^{0}\rangle + \frac{p}{q}g_{-}(t)|B^{0}\rangle
$$

with

$$
g_{\pm}(t) = \frac{1}{2} (e^{-(im_L + \Gamma_L/2)t} \pm e^{-(im_H + \Gamma_H/2)t})
$$

But what we are actually interested in is the decay rate of a *B* into a final state *f*

$$
\Gamma_{B \to f}(t) = |\langle f|T|B_{\text{phys}}^0(t)\rangle|^2
$$

So, we define the decay amplitudes as:

$$
A_f = \langle f|T|B^0 \rangle \quad , \quad \bar{A}_f = \langle f|T|\overline{B}^0 \rangle
$$

$$
A_{\overline{f}} = \langle \overline{f}|T|B^0 \rangle \quad , \quad \bar{A}_{\overline{f}} = \langle \overline{f}|T|\overline{B}^0 \rangle
$$

Now let's just write down the full time-dependent decay rate:

$$
\Gamma_{B\to f}(t) = |A_f|^2 (1+|\lambda_f|^2) \frac{e^{-\Gamma t}}{2}.
$$
\n
$$
\begin{aligned}\n\left(\cosh\frac{\Delta\Gamma t}{2} + \frac{D_f \sinh\frac{\Delta\Gamma t}{2}}{2} + C_f \cos\Delta mt - \frac{S_f \sin\Delta mt}{S_f \sin\Delta mt}\right) \\
\Gamma_{\overline{B}\to f}(t) &= |A_f|^2 \left|\frac{p}{q}\right|^2 (1+|\lambda_f|^2) \frac{e^{-\Gamma t}}{2}.\n\end{aligned}
$$
\nCompared to plain B mixing: Two new interference terms

\n
$$
\left(\cosh\frac{\Delta\Gamma t}{2} + \frac{D_f \sinh\frac{\Delta\Gamma t}{2}}{2} - C_f \cos\Delta mt + \frac{S_f \sin\Delta mt}{S_f \sin\Delta mt}\right)
$$

where:

$$
D_f = \frac{2\text{Re}\lambda_f}{1+|\lambda_f|^2} \quad , \quad C_f = \frac{1-|\lambda_f|^2}{1+|\lambda_f|^2} \quad , \quad S_f = \frac{2\text{Im}\lambda_f}{1+|\lambda_f|^2}
$$

and:

$$
\lambda_f = \frac{q \,\bar{A}_f}{p \,A_f} \quad , \quad \lambda_{\bar{f}} = \frac{q \,\bar{A}_{\bar{f}}}{p \,A_{\bar{f}}}
$$

This beast simplifies a lot when assuming no CPV in decay and no CPV in mixing:

$$
|q/p| = 1
$$

$$
|A_f/\bar{A}_f| = 1
$$

Then defining the CP asymmetry as:

$$
\mathcal{A}_{CP}(t) = \frac{\Gamma_{\overline{B}\to f}(t) - \Gamma_{B\to f}(t)}{\Gamma_{\overline{B}\to f}(t) + \Gamma_{B\to f}(t)} \mathcal{H} \text{ in } \Delta m t
$$

The asymmetry is oscillating with Δm and amplitude $Im(\lambda)$. Experimentally, you simply need to measure this amplitude to access directly the phases of the CKM matrix (time-dependent + flavour tagging)

For example, for the "golden" decay $B^0 \to J/\psi K^0_{\ S}$ this amplitude equals:

$$
\mathrm{Im}\lambda_{J\!/\!\psi\,K^0_S}=\sin2\beta
$$

CKM phase *β* directly observable!

Example: Measurement of sin2β

The "golden" decay $B^0 \to J/\psi K^0_{\ S}$ (final state is CP eigenstate)

Mixing (box) diagram:

 $\lambda_{J/\psi K_S^0} = \left(\frac{q}{p}\right)_{B} \frac{A_{J/\psi K_S^0}}{A_{J/\psi K_S^0}} = -\left(\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*}\right) \left(\frac{V_{cb} V_{cs}^*}{V_{cb}^* V_{cs}}\right)$

 $\text{Im}\lambda_{J/\psi K^0_{\mathcal{S}}}=\sin 2\beta$

Decay diagrams:

Example: Measurement of sin2β

Overview: Types of CP violation

"Mr. Osborne, may I be excused?
My brain is full."

Backup slides

Measurement of Δ*m*_s

- The *D*_s decays as *D*_s→ *K*⁺ *K*[−] π [−] (largest hadronic BR)
- Intermediate resonances used for this analysis:
	- D_s → φπ

$$
\bullet D_s \rightarrow K^*K^-
$$

- *D_s → K⁺ K[−] π[−] (non-resonant)*
- Event selection based on kaon ID, track IP and vertex χ^2

Advanced topics in Particle Physics: LHC physics, 2011 **Section Control Physics**, 2011 Advanced Control Physics: LHC physics, 2011 **Section 2009** 39/38

Example: measurement of ϕ_s

Angular analysis of $B_s \rightarrow J/\psi \phi$

*Bs → J/*ψ φ has vector-vector final state:

- Mixture of CP-odd and CP-even decay amplitudes
- Even and odd amplitudes can be disentangled using decay angles.

Example: measurement of ϕ_s

Angular analysis of $B_s \rightarrow J/\psi \phi$

PDF of unbinned ML fit described as:

Complicated PDF: 3 independent implementations in LHCb

Example: measurement of ϕ_s

Angular analysis of $B_s \rightarrow J/\psi \phi$

Time and angular distributions

- data E
 $V = 500$
 400
 400 Events / 0.13 ps sig. component **LHCb preliminary LHCb preliminary** co-even sig, component \sqrt{s} = 7 TeV, L \approx 337 pb⁻¹ \sqrt{s} = 7 TeV, L \approx 337 pb⁻¹ co-odd sia, component ve component bka, component 400 complete pdf 300 200 $10₁$ 100 -0.5 0.5 $\overline{2}$ Δ $\mathbf{0}$ Proper time t [ps] $cos w$ $\frac{6}{6}$ 600 10.1 600 **LHCb preliminary LHCb preliminary** \sqrt{s} = 7 TeV, L \approx 337 pb⁻¹ \sqrt{s} = 7 TeV, L \approx 337 pb⁻¹ Events / 0.31 Events 500 500 400 300 300 200 200 100 100 0.5 -0.5 -2 $\overline{2}$ $\bf{0}$ -1 φ [rad] $cos \theta$

Main systematic errors from uncertainties in the description of angular and decay time acceptance and background angular distribution.

пифиц

CL contours obtained using Γ_s from J/ψφ.

— 68% C.L.

-- 90% C.L.

....... 95% C.L.

LHC_b

Sammo

Result of the two fits

