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6 Collective Flow
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Types of Collective Flow

Radial flow

® The only type of collective flow in A+A collisions with
impact parameter b =0

m Affects the shape of particle spectra at low p.

v

Elliptic flow

®  Caused by anisotropy of the overlap zone (b # 0)
@ ®  Requires early thermalization of the medium
.
X

Directed flow

L/@_
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® |s produced in the pre-equilibrium phase of the collision

Gets smaller with increasing \/sNN



m_Spectra from a Stationary Thermal Source

Stationary thermal Ed3_n: 1 . dn _ gV Ee(E—w)/T
source: d3p  mp dmpdydep  (2m)3

V = volume
g = spin/isospin-degeneracy factor

u = bup + sus = chemical potential from baryon and strangeness quantum numbers

The corresponding transverse mass spectrum can be obtained by integrating
over rapidity:

I dn VmK(
mp dmy 272 o

mT
T

mr >T —
) "BV mge /T

K1 = Modified Bessel functions of 2nd kind

Schnedermann, Sollfrank, Heinz,
Phys.Rev.C48:2462-2475,1993
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Relation between Temperature and Slope

1/m; dN/dm_ (willk. Einheiten)

my Ky(m_/T)
— T =150 MeV
— T = 80 MeV
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Slope of the m_ (or pT) spectrum reflects the

temperature of the fireball

®" However, other effects like collective flow
and resonance decays affect the slope as
well and make the extraction of the
temperature more difficult

= m_spectraare indeed approximately

exponential with an almost uniform slope
1/T

® However, clear deviation are visible:
A stationary thermal source clearly is an
oversimplification

Schnedermann, Sollfrank, Heinz,
Phys.Rev.C48:2462-2475,1993
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Radial Flow

explosive

purely thermal source
source

Heavier particles profit mo o
more from collective (E) =~ (Ewm) + T Vcollective
flow than the light ones:
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Identified Particle p_ Spectra in Pb+Pb at 2.76 TeV
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e & ALICE, Pb-Pb,\'s,, = 2.76 TeV
o oo PHENIX, Au-Au,\ s, = 200 GeV

* %  STAR, Au-Au,\ s, = 200 GeV

- ALICE Preliminary
- 0-5% most central
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Inverse slope (“effective temperature”)
at LHC larger than at RHIC

10

)

Ko K B
e ¢ o ALICE, Pb-Pb,\'s,, = 2.76 TeV

Curves: Hydro (arXiv:1105.3226)

" ALICE Preliminary
- 0-5% most central

o 05 1 15 2 25 3
pT(GeV/c)

ALI-PREL-6367

Hydro predictions quite good for pions
and Kaons, some discrepancies for
protons
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Blast Wave Fit of Particle SpeCtra Schnedermann, Sollfrank, Heinz,
Phys.Rev.C48:2462-2475,1993

Transverse velocity profile: Br(r) = Bs (}%)
1 d ri ol h
n S COS
This leads to: X /fr dr mrly pr P K, pr P
mrp dmr T T

0
p := arctanh(8r) ”transverse rapidity”

b K ti-b K, :
Sl | e ® _ Blast wave fits capture the essence of
Q107" =125 5 3MeV 4 T=213mev 2 fyll-blown hydro calculations.
e F Br=0.48+ 0.01 f;=0.48 £ 0.01 .
T _ %’/NDF=100/41 ~ X*/NDF=49/41 -
I 1 Ingeneral good description
< L “~x 1 of particle spectra
NS " 1 (example from NA49)
¢
A (x0.05) 3
~ 2 (x0.05) 5 (% 0.1) h
SN Q(x02) YA (x001)
3 T d(x001) S E(x001) 3
Q (x 0.05)
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Effect on Radial Flow on m_Spectra

m = 0.494 GeV

dN/dydM;~ [1/GeV’]
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review: Huovinen, Ruuskanen, arXiv:nucl-th/0605008
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The apparent temperature,
l.e., the inverse slope at high
m_, is larger than the original

temperature by a blue shift
factor:

1+ 5,

Tog =T —L"
ff -3
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Radial Flow Velocities as a Function of \/sNN
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LHC: Strong radial flow, ~10% higher in most central collisions than at RHIC
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Transition from Soft to Hard Physics Around p.=2 - 3 GeVic
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At large p_the hydro description
yields exponential spectra

However, around p_=2 -3 GeV/c

the measured spectra start to follow
a power law shape: hard scattering
of partons becomes relevant

12



The Reaction Plane

reaction plane
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The impact parameter vector b and
the beam axis span the reaction
plane

Experimentally, the reaction plane
can be measured (with some finite
resolution) on an event-by-event
basis

One can then study particle
production as a function of the
emission angle w.r.t. the reaction
plane
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Fourier Decomposition of the Azimuthal Particle
Distribution

anisotropy in coordinate space — anisotropy in momentum space

0.‘
- ==
0® ° : : )

reaction plane

d*N 1 d°N
d3P 27 pedpedy

E

142 Z v, cos[n(p — ‘PRP)])

n=1

The sine terms in the Fourier expansion vanish because of the reflection symmetry
with respect to the reaction plane.

Fourier coefficients: v, (pr,y) = (cos[n(¢p — Urp)])

V1 ¢ Strength of the directed flow (small at midrapidity)
V2 ¢ Strength of the elliptic flow
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Visualization of v

f(p) =1+ 2vy cos(ny)
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Hydrodynamic Models

Ingredients of hydrodynamic models 1.4
-3 .
= Equation of motion and baryon 1.2} n=01m
number conservation:
&~ 1.0} EOS | .~
aMTMV = 0, a'u,jg (LU) = 0 HE ‘_J“
S 0.8 .

5 equations for 6 unknowns:

(Ug, Uy, Uz, €, P,nB)

= Equation of state: P(g,nB)
(needed to close the system)

" |deal hydro: Zero viscosity (zero 0 1 2 ea(GeV ffm3)4

mean free path)

= |nitial conditions, e.g., from Glauber EOS |- ultra-relativistc gas P = ¢/3
calculation EOS H: resonance gas, P=0.15¢

EOS Q: phase transition, QGP « resonance gas
"  Freeze-out condition

Advanced Topics in Particle Physics: LHC Physics — Heavy-lon Physics 16



Time Dependence of the Momentum Anisotropy

Ulrich Heinz, Peter Kolb, arXiv:nucl-th/0305084
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In hydrodynamic models the momentum anisotropy develops in the early (QGP)
phase of the collision. Thermalization times of less then 1 fm/c are needed

to describe the data.
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An Interesting Connection:
Elliptic Flow of Cold Atoms in a Trap

= 200 000 Li-6 atoms in an highly anisotropic
trap (aspect ratio 29:1)

" Very strong interactions between atoms
(Feshbach resonance)

" Once the atoms are released the one
observed a flow pattern similar to elliptic
flow in heavy-ion collisions
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Sensitivity of v, to Viscosity

Kovtun, Son, Starinets,
PRL 94 (2005) 111601

200 T T T T T 1T T T T T T TT T T T T T 1T TT
. | L o Based on a correspondence
— Helium 0. a | ] | .
s 1|22 Niwogen 10viPa | j between string theory and
ol Water 100MPa ﬂ i | quantum field theory ("AdS/CFT
| ”
\ ] correspondence”) Kovtun, Son,
H ! o .
i ‘\‘ L 1 and Starinets argued that there is
ol \‘ ¥ | alower limit for the viscosity of
\ i any fluid:
I \ e ]
\ ;o
0= \\\ /// 7 Q = f
| Viscosity bound \\\_/ J ! | S 47TkB
(.25 T I . T
0 e - lI ] > | — n/s=10 (b) |
1 10 100 1000 — 1)/s=0.08 =
T,K 0200 _ . 1/s=0.16 _ - .
i -~
~
0.15+ e i
S e .
s e * .
: i : : 0.10(- P -
v, Iis sensitive to the viscosity of _ 0 ]
00st A0 S
the quark_gluon plasma' The | ¢ CGC initial conditions
larger n/s, the smaller is the ol
. 0 1 2 3 4
resulting v,

P, [GeV/c]
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Event Plane Method ()

S. A. Voloshin, A. M. Poskanzer, R. Snellings, arXiv:0809.2949

Event flow vector Q :  Qp,» = Z w; cos(neg;) = Qp cos(n¥,,)

Qn,y — Z Wy Sin(n¢7;) = Qn Sin(n\I!n)

The optimal choice for w. is to approximate v (p_; y). w = p__is often used as
a good approximation.

1
Event plane angle: U, = —atan2(Qn,y, Qn.z)
n

atan2(y, x) is defined such that (r, atan2(y,x)) are the polar coordinates of

the cartesian coordinates (x,y); r := v/x? + y2. atan2 is a C/C-++ function.

Advanced Topics in Particle Physics: LHC Physics — Heavy-lon Physics
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Event Plane Method (lIl)

Fourier coefficient w.r.t. the event plane (not the reaction plane):

observed

Uy, (pr,y) = (cos[n(p — Urp)])

To remove auto-correlations one has to subtract the Q-vector of the particle of

interest from the total event Q-vector, obtaining y_to correlate with the particle.

Alternatively, one determines the reaction plane at forward rapidities and
correlates this event plane with particles measured at mid-rapidity.

Since finite multiplicity limits the estimation of the angle of the reaction plane,
the v_have to be corrected for the event plane resolution for each harmonic:

,Uobserved

Uy, = an : Ry, = (cos[n(¥,, — Yrp)|)

To estimate the event plane resolution one divides the full event up into two
independent sub-events of equal multiplicity

R, = \/<cos[n(\11;§1 —U)))

Advanced Topics in Particle Physics: LHC Physics — Heavy-lon Physics
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Elliptic Flow at RHIC

012 1 e - Plot from
200 GeV Au | Au R oL Braun-Munzinger, Stachel,
e (minimum bias) L o . Nature 448:302-309,2007
= 0104 AP o g “
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Transverse momentum, p, (GeV c¢7)

= Measured v, in good agreement with ideal hydro

®  Hydro predicts mass ordering:

® Indeed observed!

1

vy ~ —=(pr —vmr),

- v = average flow velocity

= “Perfect liquid” created at RHIC
Advanced Topics in Particle Physics: LHC Physics — Heavy-lon Physics
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How Perfect is the QGP Fluid at RHIC?

Glauber
v T ¥ T d T T T v
0.1F = PHOBOS | 7
0.08}- ﬁ;"ﬁ“ T 1
F 1) :é 2 ]

_.006f ]
00415 /s=0.08 g
e n/s=0.16

0 1 1 1
0 100 200 300 300
NPnrt
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0.1

0.08
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Luzum, Romatschke, Phys.Rev.C78:034915,2008
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Glauber initial cond.

= 0<n/s<0.1

CGC initial cond.
= 0.08 <n/s<0.2

Conservative estimate
for the QGP (taking
into account e.g.
effects of EOS
variations, bulk
viscosity, ...):

5><Q

S IKSS
= H X L
N 47

n/s <

23



Breakdown of Ideal Hydro

0.2

o 1 L] ] ] I
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Hydro description for Au+Au at RHIC only works in central collisions
and for p_< 1.5 GeV/c
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v,(p,) in Pb+Pb at Vs  =2.76 TeV from ALICE

Compared to v, at RHIC (1) ALICE, Phys. Rev. Lett. 105, 252302 (2010)
0. 12—+ —

:;-:l : é | | | | | | :
L } ® D. e * —
0.1 . ° e ]
R o L™ 4
0.08 — 7 e L EHIL} ]
B Mz I i
0.06 [ -
B ™ 1’2{2} i
u o O  V,{2} (same charge) |
004 ° = V{4 -
B 0O  v,{4} (same charge) ]
'E_.I. Gt V;{'ll'diSt} -
A vz{LYZ} ]
0.02 %_{'{’ v,{EP} STAR —
v,{LYZ} STAR .
D'....l....l....|....|....|....|....|....'

0 10 20 30 40 50 60 70 80

centrality percentile

v, increases up to 30% (for more peripheral collisions)

Advanced Topics in Particle Physics: LHC Physics — Heavy-lon Physics 25



v,(p,) in Pb+Pb at \s, = 2.76 TeV from ALICE
Compared to v, at RHIC (ll)
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® 1020%
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A 3040%
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mmau% (STAR)
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ALICE, Phys. Rev. Lett. 105, 252302 (2010)

v,(p.) at LHC and RHIC is
virtually identical.

The increase of the mean p_

at the LHC can explain the
increase of the p_-integrated

v, value.
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v, of Identified Particles in Pb+Pb at 2.76 TeV

0.3

ALICE preliminary, Pb-Pb events at \ /s, = 2.7¢ TeV
centrality 40%-50%

@i, v_{SP, |An|>1} e —a
@K, v {SP, [An>1) I‘Fi ar
&P, V,(SP, [ani>1} /f}/ 4
A1) (o
B
—hydro LHGC

(CGC initial conditions) @
(1/5=0.2) '

15 2 2.5 3 35
P, (GeV/c)

Hydrodynamic model predictions are able to describe the data
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v, and Jet Quenching

- 03—
ﬂ'.- - ® Charged particles, minimum bias |
X 0.3f---- Hydro+pQCD, dN*/dy=1000 ]
> - Hydro+pQCD, dN*/dy=500 5
0.25f -~ Hydro+pQCD, dN */dy=200 ]
0.2 e i ]
0.15} gt :
0.1 : .................................... :
005 &£ T :

0_ , , , , , , P L1 L1 :

0 1 2 3 4 5 6

p; (GeV/c)

For p_> 4-6 GeV/c particle production is dominated by jet fragmentation. Jets, i.e,

energetic quark and gluons, are expected to lose energy in the QGP (“jet
quenching”). The shorter path length for jets in the reaction plane compared to jets
perpendicular to the reaction plane is expected to result in a positive v, at hight p_.
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Points to Take Home

®  QGP at RHIC and LHC is close to an ideal fluid (close to KSS bound)

m  Elliptic flow coefficient v, sensitive to viscosity of the QGP (viscosity reduces v2)

®  Largest systematic uncertainty in the extraction of n/s is the unknown initial eccentricity

(ECGC > EGIauber)

®  Similar n/s for RHIC and LHC
"  Upper limit from data/theory comparison (ca. 2009):

n 1
< Hx — =5 X —
77/8 S |KSS A7

" At Quark Matter 2011 somewhat tighter bounds of n/s < 3/(41T) were reported

Advanced Topics in Particle Physics: LHC Physics — Heavy-lon Physics
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7 Jet Quenching
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Hard Scattering

o 10° SWE o
L 105_ PRURY -7 ;
Q E Q F ' + - o
S 4 e % e (mm)i2 5
-g ? *.\. :—-10-1é— g“.\' &
10 W il N, E
o =L 107 s o X
T 10'2 \!\ o E N % o
m-g SE ! Hhok N E
- F kN [ ©
"L‘u 10 E = 102_ - . (@)
10-4? 107 :—...|....|....|....|....|...\ﬁ...|....|....|... .«
s 0051152 253 35 4 45
10 p, (GeVrc)
10° Yield from hard
107 scattering (everything
NLO pQCD “\\ above the exponential)
10-3 (by W.Vogelsang) TR
=  CTEQ6M PDF; KKP FF TR
10° ;g M= P./2, P, 2P, ) Qi‘i‘“f‘}'_;-ﬂ._
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o 2 4 & 5 10 12 14 16 18 20 High-p_ particles in A+A can be used as a
p; (GeVic) probe of the created medium
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Jet Quenching: Basic Idea

kalte Kernmaterie

Expectation:
Schnelles Quark geringer - Slmple scaling from
Energieverlust p+p tO p+A

(no suppression)

Schnelles Quark

hoher Expectation:
E ' lust - . .
rergieverts - Pion suppression in A+A

Expectation:
m . Simple scaling from
Photon urzgerlfirgdeﬂer ‘ p+p to A+A for direct photons

m Durchgang (nO SUppI’GSSiOn)
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What Can We Hope to Learn from
Particles at High p_and Jets?

 In heavy-ion physics, particles at high p_and jets are of great interest

because

» they are produced in the early stage of a heavy-ion collisions, prior
to the formation of the quark-gluon plasma

» their initial production rate can be calculated with perturbative QCD

e OQObservables related to jet quenching may help to
» characterize the new state of matter above T.
» understand the mechanism of parton energy loss

Advanced Topics in Particle Physics: LHC Physics — Heavy-lon Physics
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Theoretical Description of High-p; Particle Production:
Perturbative QCD

e Scattering of pointlike partons described by QCD perturbation theory
(pQCD)

e Soft processes described by universal, phenomenological functions
» Parton distribution function from deep inelastic scattering
» Fragmentation functions from e*e- collisions

0
/E W Leading hadron: factorization:
. Phadron e
Lf/ (z) = <p arton> -~ Fragmentation
0 2p5 (non-perturbative)
q -
q fA X1
R
q \ Hard Scatter -
1\\ (perturbative) © b rton Distributio

in nucleon
(non-perturbative) ,

do= ), f,®f,®d5&5,®D" """
b
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Jet Quenching History

Energy Loss of Energetic Partons in Quark-Gluon Plasma:
Poasible Extinction of High pT Jets in Hadron-Hadron Collisions.

J. D. BJORKEN
Fermi National nccelerqtor Laboratory
P.0. Box 500, Batavia, Illinois 60510

Abstract

High energy quarks and gluons propagating through quark-gluon
plasma suffer differential energy loss via elastic scattering from
quanta in the plasma. This mechanism is very similar in structure to
ionization 1loss of charged particles in ordinary matter. The dE/adx 1s

roughly proportional to the asquare of the plasma temperature. For

this effect. An interesting signature may be events in which the hard
collision occurs near the edge of the overlap region, with one jet

escaping without absorption and the other fully absorbed.

Advanced Topics in Particle Physics: LHC Physics — Heavy-lon Physics

FERMILAB-Pub-82/59-THY

August, 1982

Energy loss via elastic
scattering was later
believed to have only a
minor effect on jets

Radiative energy loss
was discussed in the
literature from 1992 on
by Gyulassy, Pluemer,
Wang, Baier, Dokshitzer,
Mueller, Peigne, Schiff,
Levai, Vitev, Zhakarov,
Wang, Salgado,
Wiedemann, ...
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Analogy:
Energy loss of Charged Particles in Normal Matter

" .
_ on Cu ‘

- K |
“2100 — “_4'--_ =

; C Bethe-Bloch Radiative .

2‘-’ :f, Anderson- ]

= =p Ziegler

s F5% 1 E
) TS

2105 R — K > Cu
R SN Radiative 3

- Minimum  effects sses -

= - ionization reach 1% ==

g | Nuclear - i

@ | losses A, P i

¢ Without &
1 | | | |
0.001 0.01 0.1 1 10 100 1000 104 10° 106
By
| I I I I | ' | |
0.1 1 10 100, 1 10 100, 1 10 100 |
[MeV/d] [GeV/c] [TeV/d]

Muon momentum

e p*on Cu: Radiational energy loss (,bremsstrahlung®) starts to dominate over
collisional energy loss (,Bethe-Bloch formula®) for p >> 100 GeV/c

* For energetic quarks and gluons in QCD matter, radiative energy loss via
induced gluon emission is/was expected to be the dominant process
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The Discovery of Jet Quenching at RHIC

Advanced Topics in Particle Physics: LHC Physics — Heavy-lon Physics
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Discovery of Jet Quenching at RHIC (ca. 2000 - 2003) (I)

PHENIX Au+Au (central collisions):
p-} [ | Direct y ~—
“ 0L A PH “ENIX
- @ n
B GLV parton energy loss (dN%dy = 1100)
1 §. ..... \lL i?.?#ﬁ* .% .+. .+..+ - .+ . .+'.‘ PR # ...........
E gy
: ?‘1“‘{*‘ A+ T ]
10"
OI | 2|¢|I | 1!)‘ | 8I | |1|0| | |1|2| | 1|4
p; (GeVic)
No energy v
loss for y's

\[:mg
g
2

energy loss

forgand g
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dN/dpr ‘A—|—B
(TaB) X doiny/dprl,,

Rap =

where (TaB) = (Neol) /o

inel

e Hadrons are suppressed,
direct photons are not

* No suppression in d+Au
(see slide 22)

e Evidence for parton energy loss

PHENIX: Phys.Rev.Lett.88:022301, 2002
PHENIX: Phys.Rev.Lett.91:072301, 2003
PHENIX: Phys.Rev.Lett.94:232301, 2005

STAR: Phys.Rev.Lett.89:202301,2002
STAR: Phys.Rev.Lett.90:082302,2003
STAR: Phys.Rev.Lett.91:172302,2003
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Discovery of Jet Quenching at RHIC (ca. 2000 - 2003) (ll)

Centrality Dependence of the 1% and direct y Raa:

T ' T ‘* T T T ' T T T
2.0 b= ® 200 GeV Au+Au direct photon -
O 200 GeV Au+Au 1t°

E 1.5
% Sigl _ _
0 _r”‘ i
o ] SO R R EUN. S
© 10K @ _
A Y U ER, /U
=~ (
& QoY
h-ftr 05H O —
x Y O O
O
~— O

0 PH -ENIX

IS N IR I TR BT RN T R T RS

0 50 100 150 200 250 300 350

Npart

Direct photons follow Tas scaling as expected for a hard probe
not affected by the medium
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Discovery of Jet Quenching at RHIC (ca. 2000 - 2003) (lil)

> E  outral bions | Indication for a small , f Cronin effect: Ayu>1
o 1.8 neutral pions Cronin enhancement 3 & TH s
1 4:_ or pions in . d+Au E 1 PN
N d+Au 9 .
1.2F l l—
1 ; [*:II . i|i| —.— E ~2'4 GeVic "
C 1 =
0.8 a
5 ? . Likely explanation for the
0.6 . Au+Au - Cronin effect: multiple soft
0.4F s 8 @ ¢ + - scattering in the initial state
0.2 F *rete e ST E
0 :....I....I....I....I....I....I....I....I....I....:
o 1 2 3 4 5 6 7 8 9 10

No pion suppression in min. bias d+Au collisions
[] pion suppression is a final state effect caused by the created medium
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m R, with Higher Statistics (Run 4)

1.4
’ 25 Au+Au Minimum Blas\[s,,=200GeV - Au+Au 0-10%\[s,,=200GeV
““E PHENIX - PHENIX
T | R I
0.8 ol
0.6F -
0.4__0'5. ] § - o + +
0.2F .. ) A S o
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<, 06F + - o, wii 4
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Phys. Rev. Lett. 101, 232301 (2008)

dN/de|A+B
<TAB> X dainv/de|p+p ’

Rap =

where (Tap) = (Neon) /ol

inel

41



Simple Interpretation of the Constant Raa

: 1 dN 1
% spectrum without energy loss: X

pr dpr DY}

—
=TT

—
<
T

i\ Without energy loss

—

Q
]

™

0 spectra at RHIC energy (Vs = 200 GeV)
described with n= 8

—

<
W

T

Constant fractional energy loss:

Apr .
€logss +— ——— ,1l.€., p?r — (1 — Eloss)pT
pr

(However, QCD expectation is €loss ~ log(pr)/pr)

—
C
o

Fwith /

fenergy loss ™.,
- 4&033 = 02)

—
<C
o

cross section (arbitrary units)
=] o
4 1S
|

'+,
",
b

—
<
[=-]

This leads to: T

Raa = (1 — Eloss)n_2 = E€logs = 1 — leél/f(ln—Q) ~ 0.2 for Raa ~ 0.25

R, depends on the parton energy loss and the shape of the p_ spectrum

In this simplistic view the constant R,,= 0.25 implies a constant fractional
energy loss of about 20% in central Au+Au collisions at 200 GeV
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Vsww Dependence: 10 Raa for Heavy Nuclei
at Vsww = 17.3, 62.4, and 200 GeV

e
- -
e o
b= PHENIX, Au+Au, 200 GeV. N =32528%
| u part
- o PHENIX, Aut+Au, 62 GeV, Np_m =320.7
— 1 i WAGE Pb+Ph, p+C reference, 17.3 GeV, N =322.5
| & part
- central collisions
1 _||| L
- 2 5
B Q@@{; * n
- I.Eéglllll! ] a
[ 1 I 1 ] 1 I ] 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 ] I 1 = 1 I 1
2 4 6 8 10 12 14 16 18 20

p. (GeVic)
CERN SPS data: WA98 experiment, Phys.Rev.Lett.100:242301,2008

Onset of suppression between s, = ~ 20 GeV and 62.4 GeV
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Results from the LHC: 1. Spectra
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R,, for Charged Particles in Pb+Pb at \/sNN =2.76 TeV

% ] I I I I I I 1 I I I I 1 I I I I 1 I I I 1 I 1 I - ° WHDG RHIC Constrained
: m° WHDG LHC Extrapolation
o ALICE, charged particles, Pb-Pb 0 PHENXOS%
v e PHENIX 0-5%
\Syw=276TeV,|n|<0.8 *  ho STAR 0-5%
®  he ALICE 0-5% —T
O he ALICE 70-80%

866+ 10 L :AIXIE ‘ASSEINAD ‘Z)IMOIOH

B P; (GeVic)

®0-5%

ALICE
Al e Prsiktiinany Data test density dependence of light
0.1 | ‘:40'30% | | " quark and gluon energy loss:
0 10 20 30 40 G WS;] chh/anbe@2.76TeV =2 chh/drIAuAu@O.ZTeV
p, (GeVic

ALI-PREL-10239

The relatively small difference between
R,, at RHIC and LHC is a challenge to

theory
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R,, for Charged Particles up to p_= 100 GeVic

1 5|_CMS Prtiminary | pyman i R, rises withp_upto R  =0.5.
L Pbe\jS—W=2.76TeV,ILdl=7ub'1 |
- s CMS 0-5%, |<1.0 1 The increase of RAA is consistent with
-« Alice 0-5%, [|<0.8 Tt
i I the expected p_/p_. ~log(p.)/p_
-1_ ....................................................................... - —H
s | {
D: i .
| J \
0.5} pd ]
[ fgpt) i
_—I.. L :‘I’+ T + +
O _| | | | | I I | | | | I I_
1 10°
p, (Gev)
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Verification of T, Scaling with Hard Photons

—e— PbPb(0-10%)/pp(CT10 I
0.5 ( AR — p, [GeVic]

L Systematic uncertainties ]
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— — NLO Scale uncertainties

— — CT10 PDF uncertainties il RAA = 1 for isolated photons (CMS)

JIIIllIIIlIII\lIIIIlI\IIlILII]IIIIIII

Q0 20 30 40 50 60 70 80 verifies the expected T, (or N_ )
Photon E. (GeV)

scaling for hard processes

Compton ‘i bremsstrahlung, fragmentation
(isolated) \|\ (not isolated)
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Reaction Plane Dependence of R,

% | Centrality 10-20% @ e Inplane % | Centrality 30-40% @ e Inplane
= B ALICE Preliminary AU = = ALICE Preliminary © Out-of-plane
i Pb-Pb at \ sy =2.76 TeV Y Pb-Pb at \ sy =2.76 TeV
- L]
- - . ¢
[ ]
05— o 0. 0.5—5 .o. o ¢ ¢ ¢
_. .. . R _.: .. o @ ©® L N ] . ¢ (})
’_g :O L ] e @ ] g QJ o O o ¢
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0 o | R |
| . | o by by v by v boww v by by e by by o by by o by b bww v by g by
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The reaction plane dependence of R |
constrains the path length dependence of
in plane parton energy loss
out-of-plane
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The reaction plane dependence of R, at RHIC

poses a problem to perturbative energy loss
models (PHENIX, Phys.Rev.Lett.105:142301,2010)
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Results from the LHC: 2. Jets
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Two-Jet Event in Pb+Pb at Vs = 2.76 TeV (ATLAS)

N
Run 168875, Event 1577540 { %
Time 2010-11-10 @1:27:38 CET "w#;

A EXPERIMENT
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Jet-E_Spectrum and Jet R, in Pb+Pb at \s,, =2.76 TeV
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Points to Take Home

= High-p_particles can be regarded as a probe of the medium created in heavy-ion

collisions

m  The suppression of high-pT particles in A+A collisions can be described by parton energy

loss in @ medium of high color charge density
®  Many open issues in parton energy loss theory:
¢ Reaction plane dependence of R,

¢ Heavy-quark energy loss

¢ Similar RAA at RHIC and LHC

o
®  Full jet reconstruction is challenging at RHIC due to large backgrounds

®  The increased jet cross section allows to study parton energy loss in Pb+Pb collisions with
full jet reconstruction at the LHC
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