QGP physics – from fixed target to LHC (SS 2011): Homework asssignments

Prof. Dr. J. Stachel	version 3
PD Dr. K. Reygers	31-May-2011

Problem 1: Spectrometer Acceptance

The CERES/NA45 spectrometer was covering an acceptance of $\theta = 8 - 14$ degrees. What pseudorapidity coverage does this correspond to? Indicate in a transverse momentrum p_T vs rapidity y diagram the acceptance for protons and pions.

Problem 2: Phase diagram

Use the bag model to draw a phase boundary between nuclear matter and quark-gluon matter and add in this phase diagram as well the region of the interior of neutron stars assuming that the central density is between 5 and 10 times nuclear matter density. In the phase diagram, use the axes temperature and baryon chemical potential.

Problem 3: Glauber Monte Carlo

Download the macro glauber_mc.C from the lecture website and run it under root. Modify it to answer the following questions

- a) What is the total inelastic Pb+Pb cross section for a nucleon-nucleon cross section of $\sigma_{\text{NN}}^{\text{inel}} = 64 \text{ mb}$?
- b) What is the total inelastic S+S cross section for $\sigma_{\rm NN}^{\rm inel}=64\,{\rm mb}?$
- c) What is the total inelastic cross section and the average number of nucleon-nucleon collisions in p+Pb collisions for $\sigma_{NN}^{inel} = 64 \text{ mb}$?

Problem 4: Average transverse momentum

The invariant cross section of a certain particle species can be parameterized as $E \frac{d^3\sigma}{d^3p} = A \exp(-p_T/T)$. Calculate the average transverse momentum of these particles.