

Statistical Hadronization and Strangeness

PD Klaus Reygers, Kai Schweda Physikalisches Institut University of Heidelberg

HELMHOLTZ

QGP lecture, Univ. HD, May 2013

5/22/13

Outline

- Introduction
- Collision history
- Excursus: particle identification
- Canonical suppression
- Statistical hadronization model
- Particle abundances T_{ch}
- Summary

Quark Gluon Plasma

Source: Michael Turner, National Geographic (1996)

Quark Gluon Plasma:

deconfined and

5/22/13

thermalized state of quarks and gluons

⇒ Study **partonic EoS** at **highest** collider **energies**

High-energy nucleus-nucleus Collisions

Time Scales

Plot: courtesy of R. Stock.

• **QGP life time** 10 fm/c \approx 3•10⁻²³ s

- thermalization time 0.2 fm/c \approx 7•10⁻²⁵ s
- formation time

 (e.g. charm quark):
 1/2m_c = 0.08 fm/c
 ≈ 3•10⁻²⁵ s
- collision time $2R/\gamma = 0.005 \text{ fm/c}$ $\approx 2 \cdot 10^{-26} \text{ s}$

Temperature scales

- T_{max} : initial temperature at time τ_0 , when initial energy density thermalized
- T_c: critical temperature, transition from quark-gluon plasma to hadron gas
- **T**_{ch}: chemical freeze-out, inelastic interaction cease particle abundances are fixed
- **T**_{fo}: kinetic freeze-out, elastic interaction cease particle spectra are fixed

N.B.: T_c , T_{ch} and T_{fo} can coincide !

5/22/13 QGP lecture, Univ. HD, May 2013

Particle Abundances

or: how to measure a temperature of 2 000 000 000 000 $^{\circ}\mathrm{C}$

QGP lecture, Univ. HD, May 2013

5/22/13

Sonnenspektrum

Graphik: Max-Plack-Institut für Plasmaphysik

Wellenlänge und Intensität festgelegt durch Temperatur T_{Sonne} = 5600 °C

QGP lecture, Univ. HD, May 2013

5/22/13

Wie heiss ist die Quelle ?

• Lichtquelle \Rightarrow Teilchenquelle

Häufigkeit von Teilchen am besten beschrieben durch T = 2 000 000 000 000 °C
(2 Billionen Grad Celsius)

⇒ 100 000 mal heißer als im Innern der Sonne !

Plot: A. Andronic, GSI Darmstadt

5/22/13

First Pb+Pb collisions in ALICE !

Particle Identification – time of flight

- Time-of-flight resolution ~ 85ps
- Time of flight: separate K from π up to ~ 1.5 GeV

Particle Identification – dE/dx

dE/dx:
 5% resolution

• TPC dE/dx: separate p from K up to 1.1 GeV/c

5/22/13 QGP lecture, Univ. HD, May 2013

Exotica

(anti-)helium trigger: J. Klein, PhD thesis, in preparation; F. Muecke, bachelor thesis (2012), Univ. Heidelberg.

Heavy-quark detection

• golden channel: $D^0 \rightarrow K^- + \pi^+$, $C\tau$

= 123 μm

displaced decay vertex is
 signature of heavy-quark
 decay

5/22/13

plot: courtesy of D. Tlusty.

STAR year 2 data

White papers - STAR: Nucl. Phys. A757, p102.

Statistical Ensemble

Grand Canonical Ensemble (GC): in a large system, with large number of produced particles, **conservation** of additive quantum numbers (B, S, I₃) can be implemented **on average** by use of **chemical potential** μ

→ asymptotic realization of exact canonical approach much simpler to compute

Canonical Ensemble (C): in a small system, with small particle multiplicity,
 conservation laws must be implemented locally on event-by-event basis
 → severe phase space reduction for particle production "canonical suppression"

Results of C and GC can be related in a simple way: (Tounsi/Redlich 2001) here 'K' stands generically for all hadrons with S = -1

$$\langle N_K \rangle^C = \langle N_K \rangle^{GC} \frac{I_1(2\langle N_K \rangle^{GC})}{I_0(2\langle N_K \rangle^{GC})}$$

and analogously for S = -2 (S = -3): $I_1 \rightarrow I_2(I_3)$

Canonical Suppression

A. Tounsi and K. Redlich, arXiV:0111159[hep-ph].

In central Pb-Pb collisions (100 of 416 nucleons in overlap zone) deviations already small (< 10%)at SPS energies

Deviation gets even smaller with higher collision energy

Lifting of strangeness suppression

Relative effect (compared to pp collisions) larger for increasing strangeness and larger at lower energies

5/22/13 QGP lecture, Univ. HD, May 2013

Statistical hadronization model

Partition function

$$\ln Z_{i} = \frac{Vg_{i}}{2\pi^{2}} \int_{0}^{\infty} \pm p^{2} \, dp \ln(1 \pm exp(-(E - \mu_{i})/T))$$

Particle density

$$\rho_i = N/V = -\frac{T}{V} \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 \, dp}{exp((E_i - \mu_i)/T) \pm 1}$$

For every conserved quantum number there is a chemical potential

 $\mu_i = \mu_B B_i + \mu_S S_i + \mu_{I_3} I_{3,i}$

Use conservation laws to constrain:

 V, μ_S, μ_{I_3}

$$V \sum_{i}^{i} n_{i}B_{i} = Z + N$$

$$V \sum_{i}^{i} n_{i}S_{i} = 0 \quad \Rightarrow \text{ only 2 parameters left to fit to data:}$$

$$V \sum_{i}^{i} n_{i}I_{3,i} = \frac{Z - N}{2} \quad T, \mu_{B}$$

Chemical Freeze-out Model

P. Braun-Munzinger et al., nucl-th/0304013.

Density of particle *i*

$$\rho_{i} = \boxed{\frac{g_{i}}{2\pi^{2}}T_{ch}^{3}\left(\frac{m_{i}}{T_{ch}}\right)^{2}} K_{2}(m_{i}/T_{ch}) \lambda_{q}^{Q_{i}} \lambda_{s}^{s_{i}}}$$

$$\frac{\lambda_{q} = \exp(\mu_{q}/T_{ch}), \quad \lambda_{s} = \exp(\mu_{s}/T_{ch})}{\lambda_{q}^{2} + \lambda_{s}^{2} + \lambda_{s}$$

Example

A. Proton to anti-proton ratio

All terms drop, except fugacity $\Lambda^{Qi} = \exp(\mu_q/T_{ch})^{Qi}$ For proton, $Q_i = 3$ (3 quarks, uud) For anti-proton, $Q_i = -3$ At RHIC: $T_{ch} = 160$ MeV, $\mu_q = 7$ MeV Proton to anti-proton ratio = $\exp[(3*7 - (-3*7))/160] = 0.77$

Hadron Yields - Ratios

RHIC white papers - 2005, Nucl. Phys. A757, STAR: p102; PHENIX: p184; Statistical Model calculations: P. Braun-Munzinger *et al.* nucl-th/0304013.

 At RHIC: T_{ch} = 160 ± 10 MeV µ_B = 25 ± 5 MeV

 γ_S = 1. ⇒ The hadronic system is thermalized at RHIC.

 Short-lived resonances show deviations.

 ⇒ There is life after chemical freeze-out.

(Anti)-Proton Production at LHC

ALICE, Phys. Rev. Lett. 105, 072002 (2010).

- At LHC energies: Ratio of anti-p/p ≈ 1
- No need for exotic baryon transport mechanism
- Address hadro-chemistry in PbPb within 1 day

Anti-nuclei production

- Anti-alpha particle discovered
- Penalty factor of ~1000 per added nucleon

 \rightarrow anti-alpha / anti-proton ~ 10⁻⁹

5/22/13

Beam Energy Dependence

With increasing energy:

- T_{ch} increases and saturates

at $T_{ch} = 160 \text{ MeV}$

- Coincides with Hagedorn temperature
- Coincides with early lattice results

⇒ **limiting temperature** for hadrons, $T_{ch} \approx$ 160 MeV !

- μ_B decreases, μ_B = 1MeV at LHC
- \Rightarrow Nearly **net-baryon free** !

A. Andronic et al., NPA 772 (2006) 167. 5/22/13

QCD phase diagram

5/22/13

Lesson learnt

- From measured particle abundances and description within the Statistical Model, determine
 T_{ch} = 160 MeV at highest collider energies
- canonical suppression of strangeness production
 lifted in nucleus-nucleus collisions
- Limiting temperature where hadrons can exist
- Study phase QCD diagram by dialing μ_{B} and T_{ch} via beam energy