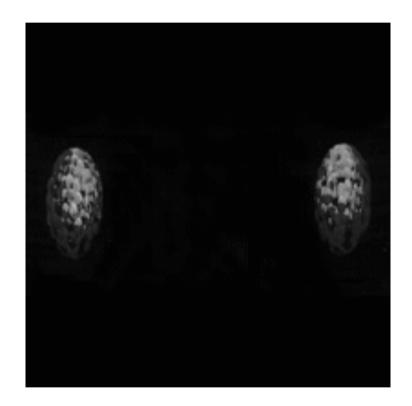


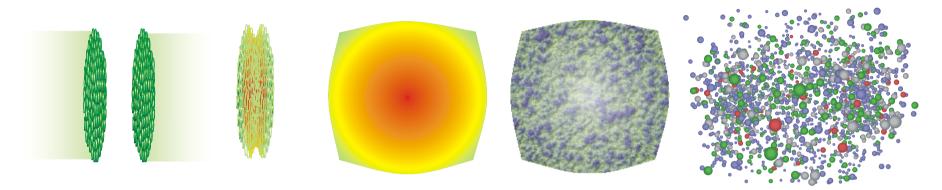
Space-time evolution of the Quark Gluon Plasma

Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg

High-energy nucleus-nucleus Collisions



High-Energy Nuclear Collisions



Time \rightarrow

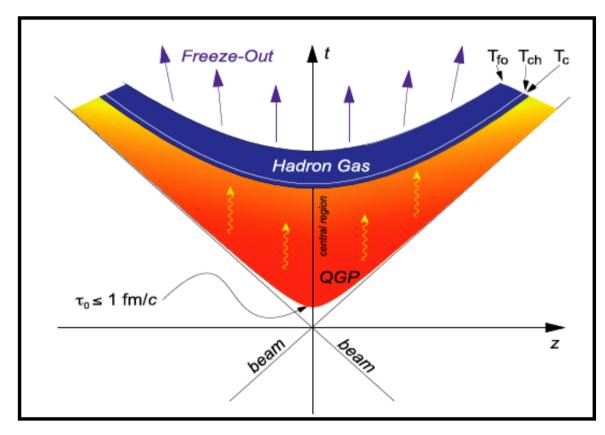
Plot: Steffen A. Bass, Duke University

- 1) Initial condition: 2) System evolves:
- -Baryon transfer
- E_T production
- -Partonic dof

- - parton/hadron expansion
- 3) Bulk freeze-out
- hadronic dof
- - particle ratios, $T_{ch'} \mu_B$

Particle spectra, T_{th} , $<\beta_T>$

Space-time evolution



Plot: courtesy of R. Stock.

```
    QGP life time
    10 fm/c ≈ 3•10<sup>-23</sup> s
```

• thermalization time

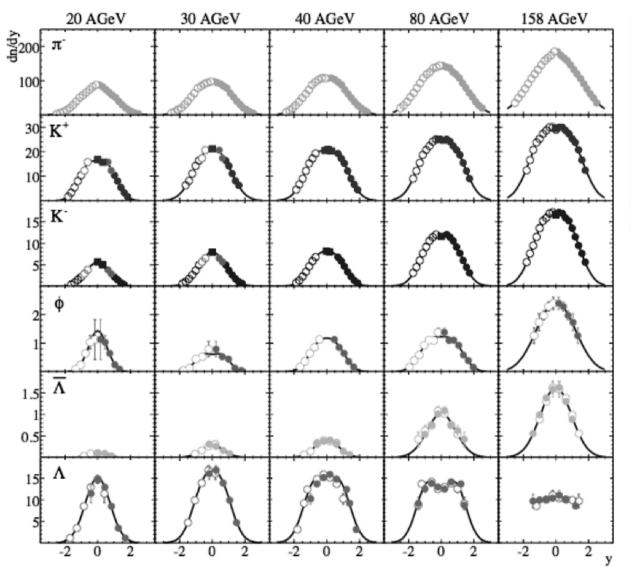
0.2 fm/c ≈ $7 \cdot 10^{-25}$ s → hydrodynamical expansion until freeze-out simplest model: only longitudinal expansion, 1d → Bjorken model

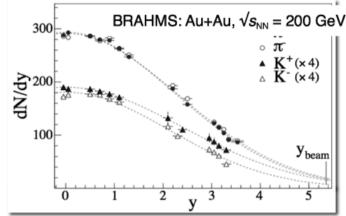
• collision time $2R/\gamma = 0.005 \text{ fm/c}$ $\approx 2 \cdot 10^{-26} \text{ s}$

Outline

- Introduction
- Longitudinal expansion Bjorken picture
- Transverse expansion
 - transverse radial flow
 - transverse elliptic flow v_2
 - higher harmonics, v_3 , v_4 , v_5 , ...
- Hydrodynamical model description
- Summary

Rapidity distribution in A-A



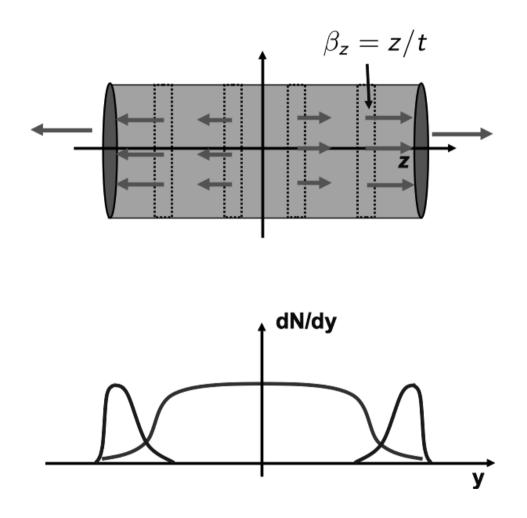


With increasing collision energy:

- wider distribution,
- becomes flatter

around mid-rapidity

Bjorken model



Velocity of the local system at position z at time t:

 $\beta_z = z/t$

Proper time τ in this system:

$$\tau = t/\gamma = t\sqrt{1-\beta^2}$$

In the Bjorken model all thermodynamic quantities only depend on τ , e.g., the particle density:

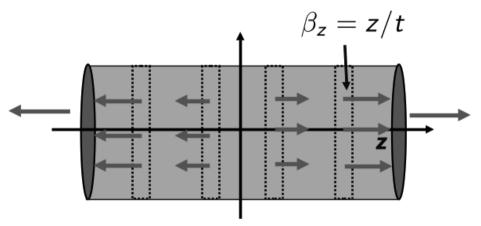
 $=\sqrt{t^2-z^2}$

 $n(t,z) = n(\tau)$

This leads to a constant rapidity density of the produced particles (at least atcentral rapidities):

 $\frac{dN_{ch}}{dy} = \text{const.}$

1d - Bjorken model (I)



The 1D Bjorken model is based on the assumption that dNch/dy ist constant (around mid-rapidity). This means that the central region is invariant under Lorentz transformation. This implies $\beta z = z/t$ and that all thermodynamic quantities depend only on the proper time τ

 $\frac{\mathrm{d}\varepsilon}{\mathrm{d}\tau} + \frac{\varepsilon + p}{\tau} =$

Initial conditions in the Bjorken model:

$$\varepsilon(\tau_0) = \varepsilon_0, \quad u^{\mu} = \frac{1}{\tau_0}(t, 0, 0, z) = \frac{x^{\mu}}{\tau_0}$$

Initial energy density

In this case the equations of ideal hydrodynamics simplify to

$$\varepsilon = E/V: \text{ energy density}$$

$$p: \text{ pressure}$$

$$s = S/V: \text{ entropy density}$$

7/66

Bjorken model (II)

For an ideal gas of quarks and gluons, i.e., for

 $\varepsilon = 3p, \quad \varepsilon \propto T^4$

This leads to

$$\varepsilon(\tau) = \varepsilon_0 \left(\frac{\tau}{\tau_0}\right)^{-4/3}, \quad T(\tau) = T_0 \left(\frac{\tau}{\tau_0}\right)^{-1/3}$$

The temperature drops to the critical temperature at the proper time

$$\tau_c = \tau_0 \left(\frac{T_0}{T_c}\right)^3$$

And thus the lifetime of the QGP in the Bjorken model is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$\Delta \tau_{\rm QGP} = \tau_c - \tau_0 = \tau_0 \left[\left(\frac{T_0}{T_c} \right) - 1 \right]$$

QGP lifetime in 1d - Bjorken model

 $\varepsilon_0 = 11 \,\mathrm{GeV/fm^3} = 11 \cdot 0.197^3 \,\mathrm{GeV^4}$ for $\tau_0 = 1 \,\mathrm{fm/c}$ $1 = \hbar c = 0.197 \,\mathrm{GeV} \cdot \mathrm{fm}$

$$\varepsilon_0 = g_{\text{QGP}} \frac{\pi^2}{30} T^4 \quad \rightarrow \quad T_0 = \left(\frac{30}{\pi^2} \frac{\varepsilon}{g}\right)^{1/4}$$

Parameters $\Delta \tau_{QGP}$ $\epsilon_0 \tau = 3 \text{ GeV/fm2}$ 0.84 fm/c

 $\varepsilon_0 \tau = 5 \text{ GeV/fm2} \quad 1.70 \text{ fm/c}$

 $\varepsilon_0 \tau = 11 \text{ GeV/fm2} 3.9 \text{ fm/c}$

Fixed parameters: Nf = 2, Tc = 170 MeV, $\tau 0 = 1$ fm/c

Quick estimate for LHC

Bjorken formula: $\varepsilon \cdot \tau_0 = \frac{\langle m_T \rangle}{A} \left| \frac{\mathrm{d}N}{\mathrm{d}y} \right|_0$

Transverse area in collisions with $b \approx 0$: $A \approx \pi R_{\rm Pb}^2 = \pi (6.62 \, {\rm fm})^2 \approx 140 \, {\rm fm}^2$

Estimate for the mean transverse momentum:

 $\langle p_T \rangle = 0.66 \,\mathrm{GeV}/c \rightsquigarrow \langle m_T \rangle \approx \sqrt{(0.138 \,\mathrm{GeV})^2 + (0.66 \,\mathrm{GeV})^2} = 0.67 \,\mathrm{GeV}$

Measured charged particle multiplicity:

 $dN_{ch}/d\eta \approx 1601 \pm 60 \quad (5\% \text{ most central})$

$$\longrightarrow \quad \frac{\mathrm{d}N}{\mathrm{d}y}\Big|_{y=0} = \frac{3}{2} \underbrace{\cdot \left(1 - \frac{m^2}{\langle m_T \rangle}\right)^{-1/2}}_{\mathbf{d}y} \cdot \frac{\mathrm{d}N_{ch}}{\mathrm{d}\eta}\Big|_{\eta=0} = 2450 \pm 92$$

Larger (up to ≈ 1.2) if p and K are taken into account

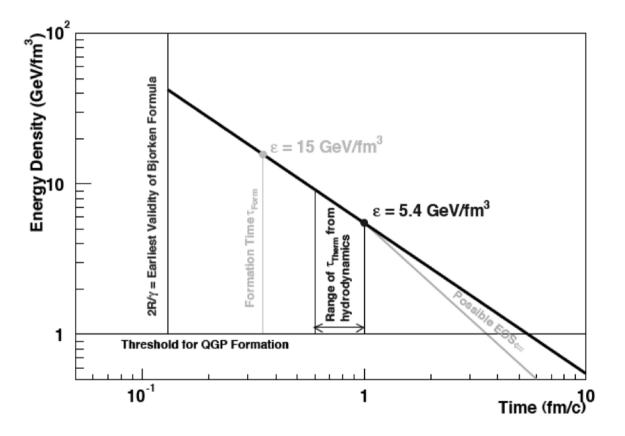
LHC: $\varepsilon \cdot \tau_0 = (11.7 \pm 0.43) \,\text{GeV/fm}^2 \quad (\text{Pb+Pb}@\sqrt{s_{NN}} = 2.76 \,\text{TeV})$

RHIC:

 $\varepsilon \cdot \tau_0 \approx 5 \,\mathrm{GeV/fm^2} \quad (\mathrm{Au} + \mathrm{Au} @ \sqrt{s_{NN}} = 0.2 \,\mathrm{TeV})$

10/66

Energy density evolution in 1d-Bjorken



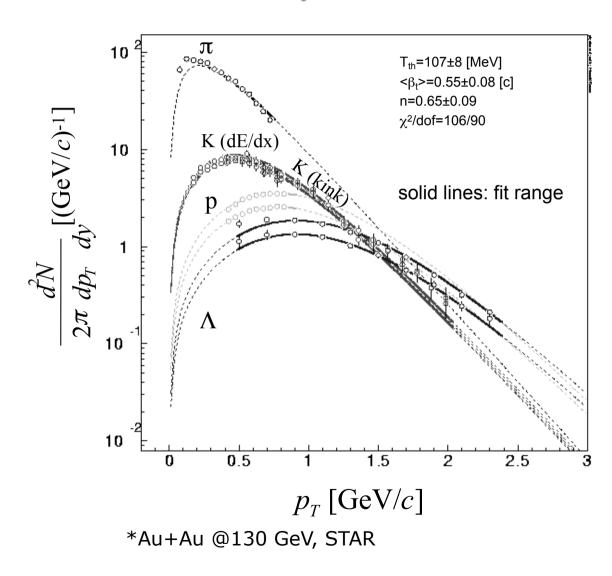
 $\tau_0 = 1$ fm/*c* is generally considered as a conservative estimate for the use in the Bjorken formula.

Other estimates yields shorter times (e.g. $\tau_0 = 0.35$ fm/c) resulting in initial energy densities at RHIC of up to 15 GeV/fm³

Transverse Expansion

Transverse radial flow: particle spectra

Particle Spectra*



- Typical mass ordering in inverse slope from light π to heavier Λ
- Two-parameter fit

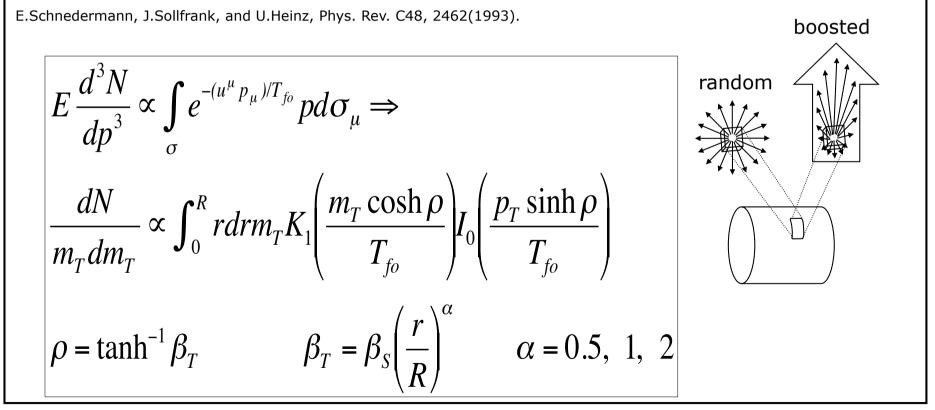
describes yields of

- π, Κ, ρ, Λ
- $T_{th} = 90 \pm 10 \text{ MeV}$
- $<\beta_t> = 0.55 \pm 0.08 c$
- ⇒ Disentangle
 collective motion from
 thermal random walk
 13/66

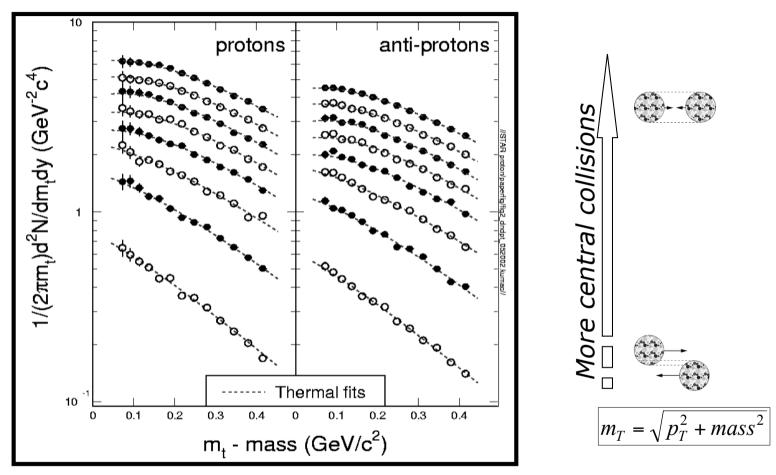
Thermal Model + Radial Flow Fit

Source: each volume element is assumed to be

- in local thermal equilibrium: T_{fo}
- **boosted** in transverse radial direction: $\rho = f(\beta_s)$



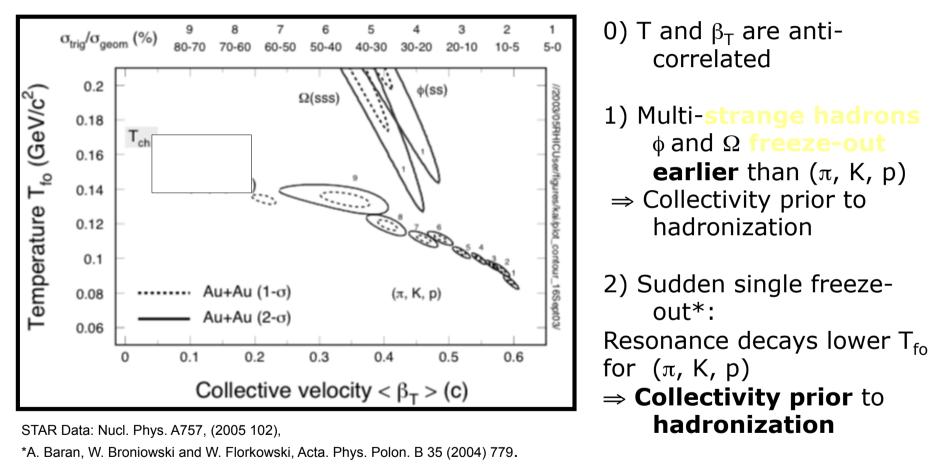
(anti-)Protons From RHIC Au+Au@130GeV



Centrality dependence:

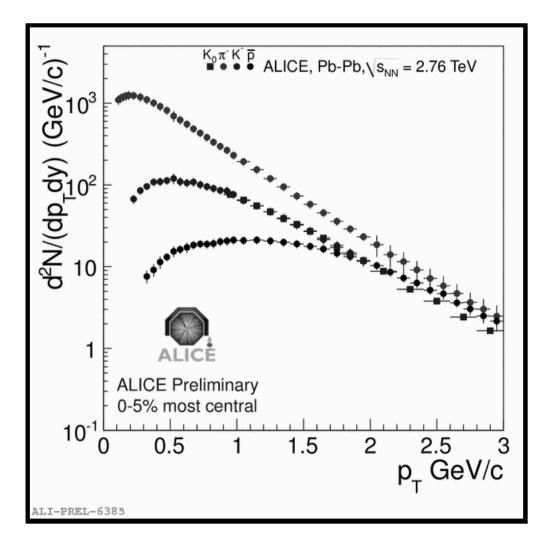
- spectra at low momentum de-populated, become flatter at larger momentum
- \Rightarrow stronger collective flow in more central collisions, $<\beta_t> = 0.55 \pm 0.08$ 15/66

Kinetic Freeze-out at RHIC



$$\Rightarrow$$
 Partonic Collectivity ?

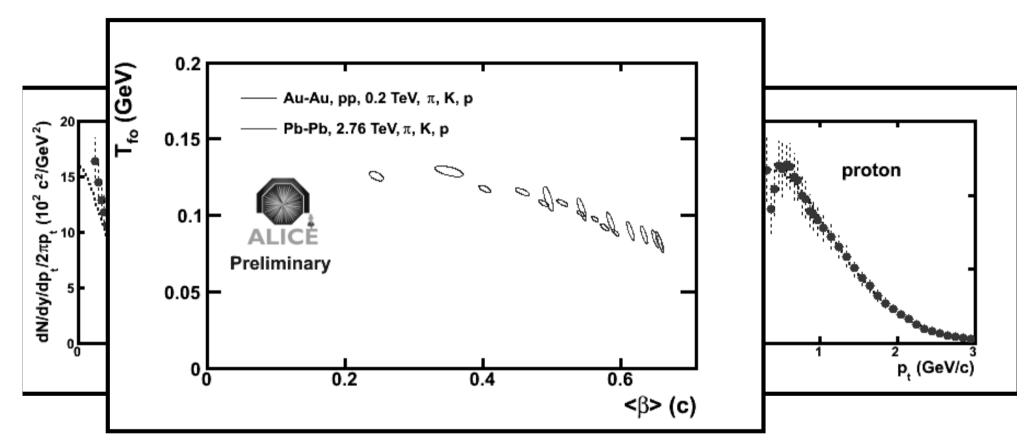
LHC: Identified particle spectra



Spectra harder at LHC

⇒ stronger collective
flow at LHC than at
RHIC

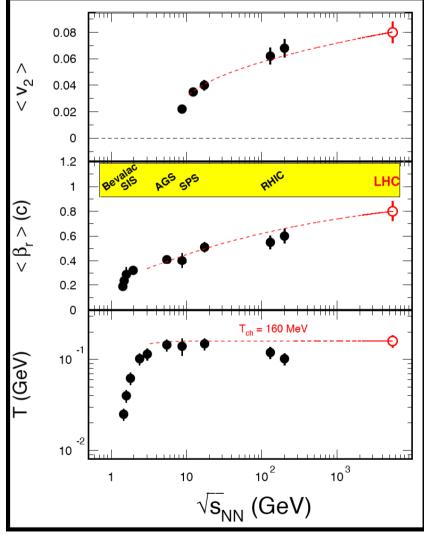
Collective expansion



Blast wave parametrization describes spectra at 10% level

Collective **flow velocity increases** from RHIC to LHC by **10%** 18/66

Collective Flow - Energy Dependence



Collectivity parameters $<\beta_{T}>$ and <v₂> **increase** with collision energy strong collective expansion at RHIC ! $<\beta_T>RHIC \gg 0.6$ expected strong partonic expansion at LHC, $<\beta_{\rm T}>$ LHC ~ 0.8 , T_{fo} \sim T_{ch}

K.S., ISMD07, arXiv:0801.1436 [nucl-ex].

Lesson I

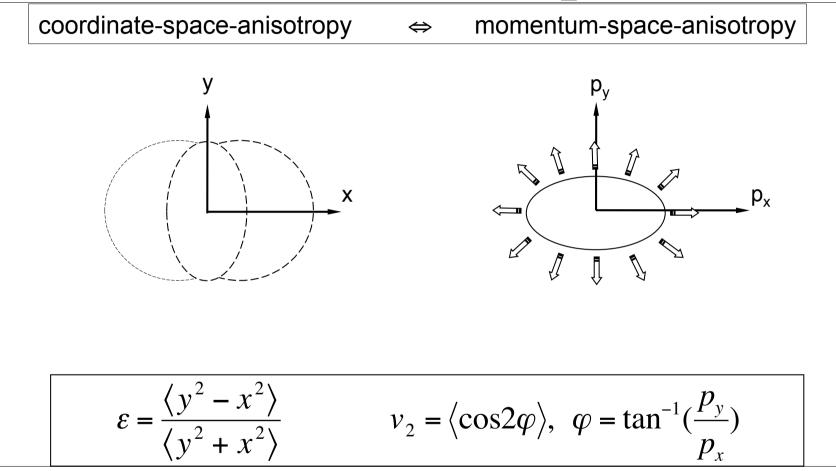
- At LHC, Initial energy density approx. 50 GeV/fm³
- much larger than critical energy density $\varepsilon_c = 0.7 \text{ GeV/fm}^3$

- Strong collective expansion, $<\beta_T> = 0.6 0.7$ at highest collider energies
- Particles carrying strange quarks show that collective expansion develops before hadronization, $<\beta_{T}> = 0.3 0.4$
- among quarks and gluons (?)

Transverse Expansion

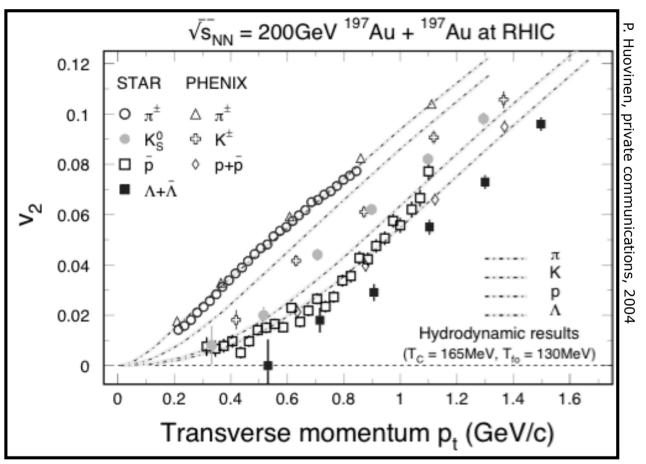
Transverse elliptic flow: event anisotropy

Anisotropy Parameter v₂



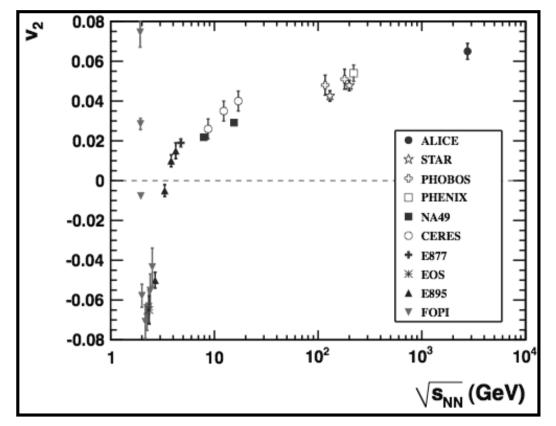
Initial/final conditions, EoS, degrees of freedom

 v_2 in the low- p_T Region



- v₂ approx. linear in p_{T} , mass ordering from light π to heavier Λ
- characteristic of hydrodynamic flow, sensitive to EOS !

Elliptic flow in ALICE



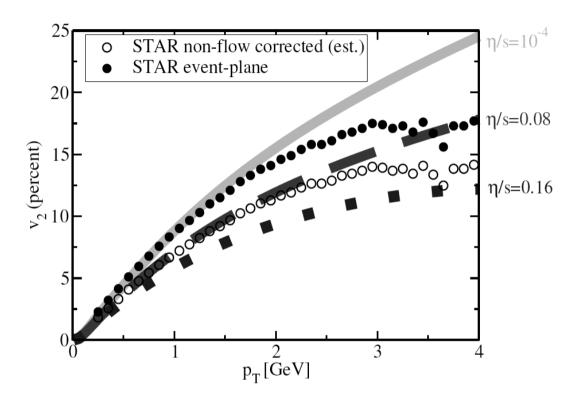
ALICE, submitted for publication, arXiv:1011.3914 [nucl-ex].

 $\sqrt{s_{NN}}$ > ~ 4 GeV:initial excentricity leads to pressure gradients that cause positive v₂

 $2 < \sqrt{s_{NN}} < 4$ GeV:velocity of the nuclei is small so that presence of spectator matter inhibits in-plane particle emission ("squeeze-out")

 $\sqrt{s_{NN}}$ < 2 GeV:rotation of the collision system leads to fragments being emitted inplane

Non-ideal Hydro-dynamics



M.Luzum and R. Romatschke, PRC 78 034915 (2008); P. Romatschke, arXiv:0902.3663.

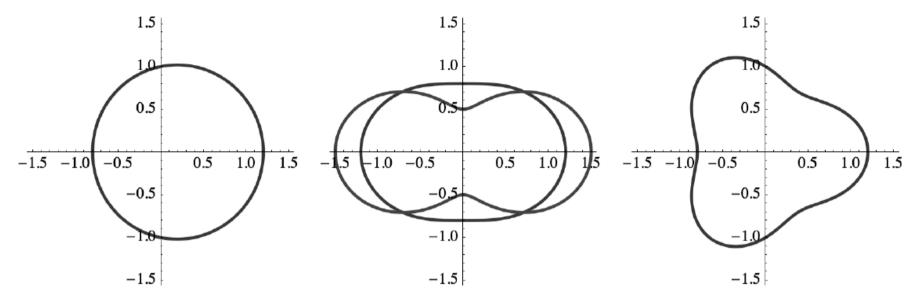
Spectra and flow
 reproduced by ideal
 hydrodynamics calcs.

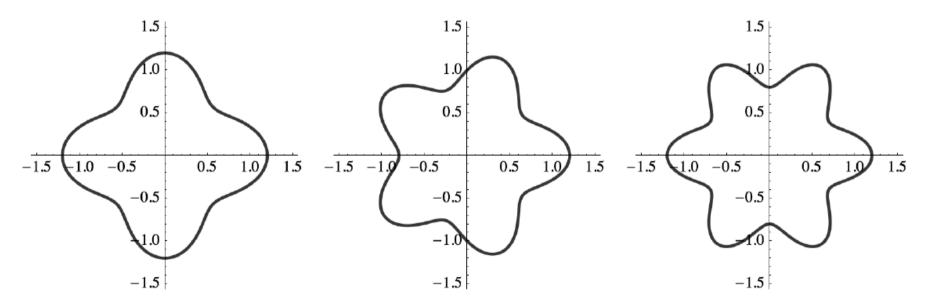
 Shear viscosity to entropy density ratio close to AdS/CFT bound

• viscosity leads to decrease in v_2 , ultralow viscosity sufficient to describe data

• Hydro-limit exceeded at LHC ?

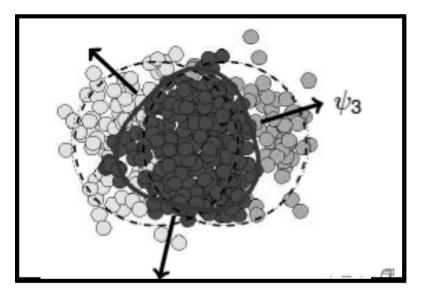
 $f(\varphi) = 1 + 2v_n \cos(n\varphi)$





26/66

Can there be v₃ ?



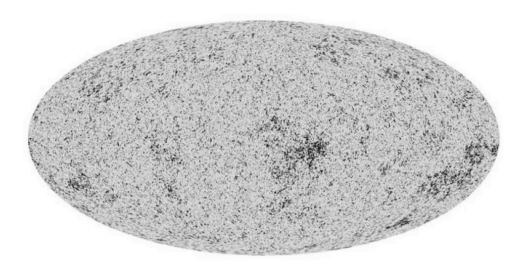
figs.: courtesy of M. Luzum.

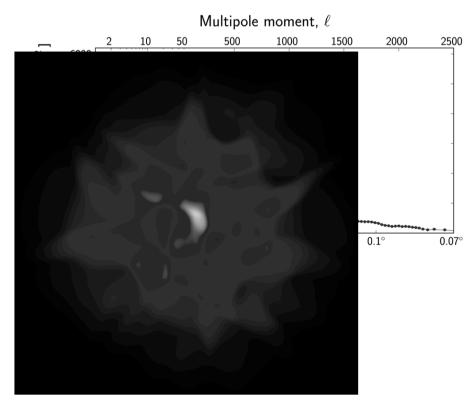
- reaction plane ≠ participant plane
- fluctuating initial state is seed for v₃
- \Rightarrow can CGC be challenged ?

higher harmonics

- extract power spectrum of v_n,
 like Planck*
- higher harmonics
- odd harmonics important
- v_3 : access η/s
- Higher harmonics strongly damped $(v_{n, n>10} = 0)$

STAR, arXiv:1301.2187 [nucl-ex];
STAR, PRL 92 (2004) 062301;
A. Mocsy and P. Sorensen, NPA 855 (2011) 241;
B. Alver and G. Roland, PRC 81 (2010) 054904;
Planck data: EAS and the Planck collaboration
QGP plot: B. Schenke, S. Jeon, and C. Gale, arXiV:1109.6289.





28/66

Lesson II

- Geometrical anisotropy is seed for elliptic flow v_2
- Elliptic flow v_2 sensitive to QGP equation of state
- \bullet Triangular flow v_3 due to fluctuations, e.g. in initial energy density
- \bullet Triangular flow $v_3\,$ especially sensitive to shear viscosity / entropy density ratio
- Higher harmonics V_4 , V_5 , ... strongly damped

Hydrodynamical model description

Some basic concepts

Relativistic Hydrodynamics (I)

The energy-momentum tensor $T^{\mu\nu}$ is the four-momentum component in the μ direction per three-dimensional surface area perpendicular to the v direction.

$$\begin{split} \Delta \mathbf{p} &= (\Delta E, \Delta p_x, \Delta p_y, \Delta p_z) \\ \Delta \mathbf{x} &= (\Delta t, \Delta x, \Delta y, \Delta z) \\ \mu &= \nu = 0 : \ T_R^{00} = \frac{\Delta E}{\Delta x \Delta y \Delta z} = \frac{\Delta E}{\Delta V} = \varepsilon \\ \mu &= \nu = 1 : \ T_R^{11} = \frac{\Delta p_x}{\Delta t \Delta y \Delta z} \quad \text{force in} \\ \Delta y \Delta z \text{ percent} \end{split}$$

force in x direction acting on an surface $\Delta y \Delta z$ perpendicular to the force \rightarrow pressure

 $T^{\mu\nu} = \begin{pmatrix} \text{energy density} & \text{energy flux density} \\ \text{momentum density} & \text{momentum flux density} \end{pmatrix} \equiv \begin{pmatrix} \varepsilon & \vec{j}_{\varepsilon} \\ \vec{g} & \Pi \end{pmatrix}$

Relativistic Hydrodynamics (II)

Isotropy in the fluid rest implies that

the energy flux T^{0j} and the momentum density T^{j0} vanish and that $\Pi^{ij} = P \delta_{ij}$

$$T_R^{\mu\nu} = \begin{pmatrix} \varepsilon & 0 & 0 & 0 \\ 0 & P & 0 & 0 \\ 0 & 0 & P & 0 \\ 0 & 0 & 0 & P \end{pmatrix}$$

Off-diagonal elements \neq 0 in case of viscous

hydrodynamics, not considered here

 \rightarrow ideal (perfect) fluid.

See also Ollitrault, arXiv:0708.2433.

Relativistic Hydrodynamics (III)

Energy-momentum tensor (in case of local thermalization) after Lorentz transformation the lab frame:

$$\begin{split} T^{\mu\nu} &= \left(\varepsilon + P\right) u^{\mu} u^{\nu} - P \, g^{\mu\nu} & \text{metric tensor diag(1,-1,-1,-1)} \\ \text{Energy density} & \text{4-velocity:} u^{\mu} = \mathrm{d} x^{\mu}/\mathrm{d} \tau \\ \text{and pressure in} & = \gamma(1,\vec{v}) \end{split}$$

Energy and momentum conservation:

 $\partial_{\mu}T^{\mu\nu} = 0, \quad \nu = 0, \dots, 3$ in components: $\begin{cases} \frac{\partial}{\partial t}\varepsilon + \vec{\nabla}\vec{j}_{\varepsilon} = 0 \text{ (energy conservation)} \\ \frac{\partial}{\partial t}g_i + \nabla_j\Pi_{ij} = 0 \text{ (momentum conservation)} \end{cases}$

Conserved quantities, e.g., baryon number:

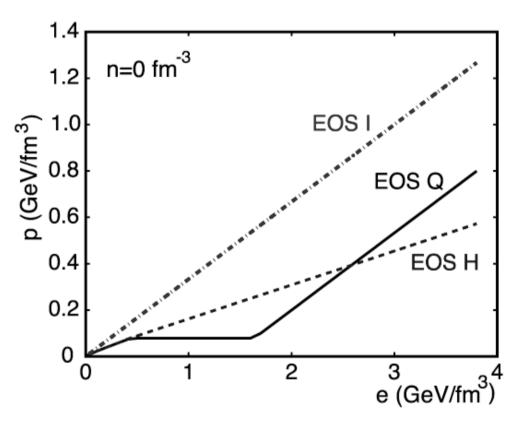
 $j_{B}^{\mu}(x) = n_{B}(x) u^{\mu}(x), \qquad \partial_{\mu} j_{B}^{\mu}(x) = 0 \quad \Leftrightarrow \quad \frac{\partial}{\partial t} N_{B} + \vec{\nabla} (N_{B} \vec{v}) = 0$ continuity equation $N_{B} = \gamma n_{B}$ 33/66

Ingredients of Hydro - models

 Equation of motion and baryon number conservation:

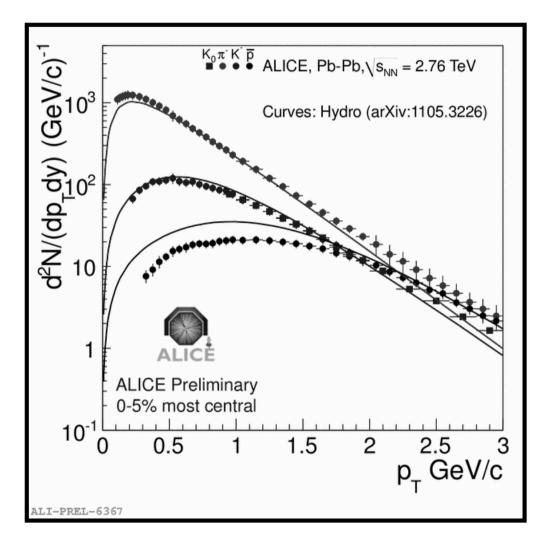
 $\partial_{\mu}T^{\mu\nu} = 0, \quad \partial_{\mu}j^{\mu}_{\mathbf{B}}(x) = 0$

- 5 equations for 6 unknowns: $(u_x, u_y, u_z, \varepsilon, P, n_{
 m B})$
- Equation of state: $P(\varepsilon, n_{\rm B})$
- (needed to close the system)
- Initial conditions,
 - e.g., from Glauber calculation
- Freeze-out condition



EOS I: ultra-relativistic gas $P = \epsilon/3$ EOS H: resonance gas, $P \approx 0.15 \epsilon$ EOS Q: phase transition, QGP \Leftrightarrow resonance gas 34/66

LHC: Identified particle spectra

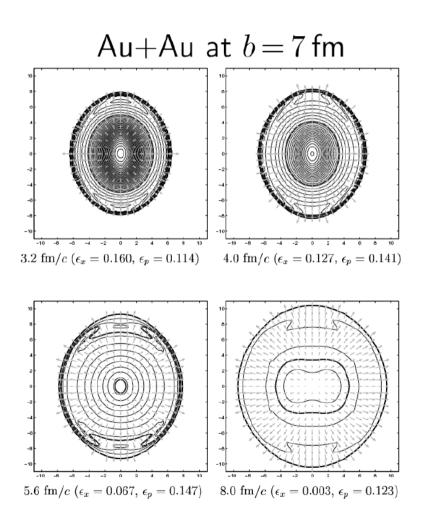


Initial conditions fixed by pion abundance

Protons overestimated

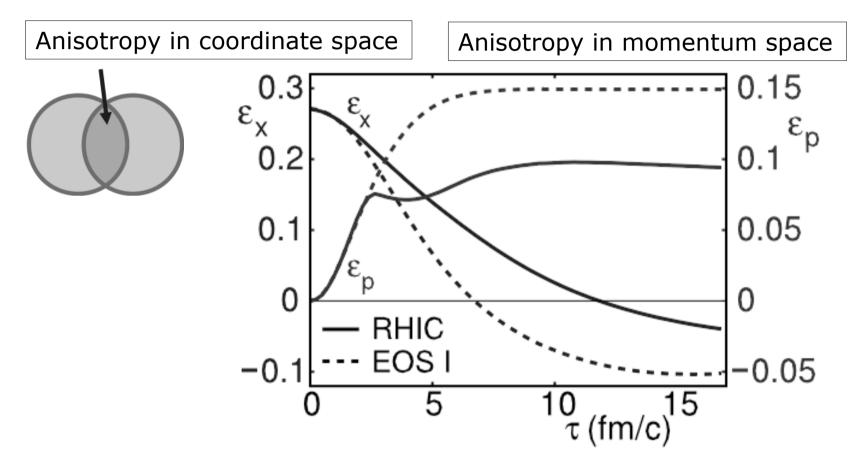
Annihilation of protons and anti-protons in the hadron phase ?

Elliptic flow in Hydro - models



Elliptic flow is "selfquenching": The cause of elliptic flow, the initial spacial anisotropy, decreases as the momentum anisotropy increases

Anisotropy in momentum space

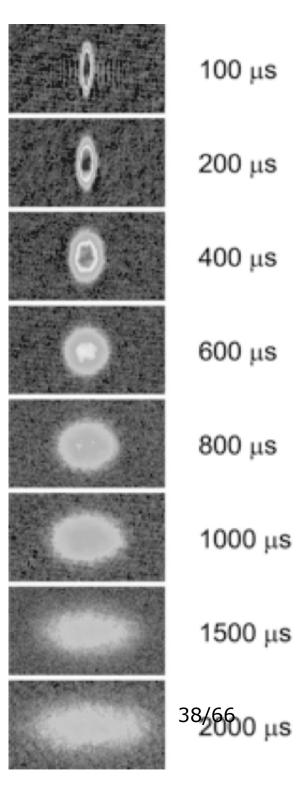


Ulrich Heinz, Peter Kolb, arXiv:nucl-th/0305084

In hydrodynamic models the momentum anisotropy develops in the early (QGP)phase of the collision. Thermalization times of less then 1 fm/c are needed to describe the data. $^{37/66}$

Cold atomic gases

200 000 Li-6 atoms in an highly anisotropic trap (aspect ratio 29:1) Very strong interactions between atoms (Feshbach resonance) Once the atoms are released the one observed a flow pattern similar to elliptic flow in heavyion collisions



Lesson III

• First results from ALICE at LHC show large increase in energy density (factor 2-3 compared to RHIC)

- longer life-time of qgp
- larger collective flow effects
- anisotropic flow comparable to ultra-low viscosity
- triangular flow sensitive to initial energy density fluctuations and viscosity/entropy ratio
- Hydrodynamical model provides framework to characeterize QGP, i.e. equation of state, viscosity/entropy ratio