

Space-time evolution of the Quark Gluon Plasma

Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg

High-energy nucleus-nucleus Collisions

High-Energy Nuclear Collisions

Time \rightarrow Time \rightarrow Plot: Steffen A. Bass, Duke University

- 1) Initial condition: 2) System evolves: 3) Bulk freeze-out
-
- E_T production
-
- -Baryon transfer parton/hadron expansion
-
- hadronic dof
- production **inel. interactions cease:**
- **string & hadronic TM** -Partonic dof **particle ratios, Tch, ^B**
	- **elas. interactions cease**
		- **Particle spectra,** T_{th} **,** $\langle \beta_T \rangle$

Space-time evolution

Plot: courtesy of R. Stock.

• **QGP life time** 10 fm/c $\approx 3 \cdot 10^{-23}$ s

• **thermalization time** 0.2 fm/c \approx 7•10-25 s \rightarrow hydrodynamical expansion until freeze-out simplest model: only longitudinal expansion, 1d → Bjorken model

• **collision time** $2R/\gamma = 0.005$ fm/c $\approx 2 \cdot 10^{-26}$ s

Outline

- Introduction
- Longitudinal expansion Bjorken picture
- Transverse expansion
	- transverse radial flow
	- transverse elliptic flow $v₂$
	- higher harmonics, V_3 , V_4 , V_5 , ...
- Hydrodynamical model description
- Summary

Rapidity distribution in A-A

With increasing collision energy: - wider distribution, - becomes flatter around mid-rapidity

Bjorken model

Velocity of the local system at position z at time t:

$$
\beta_z=z/t
$$

Proper time τ in this system:

$$
\tau = t/\gamma = t\sqrt{1-\beta^2}
$$

 $=\sqrt{t^2-z^2}$ In the Bjorken model all thermodynamic quantities only

depend on τ, e.g., the particle density:

 $n(t,z)=n(\tau)$

This leads to a constant rapidity densityof the produced particles (at least atcentral rapidities):

 $\frac{dN_{ch}}{du} = \text{const.}$

1d - Bjorken model (I)

The 1D Bjorken model is based on the assumption that dNch/dy ist constant (around mid-rapidity). This means that the central region is invariant under Lorentz transformation.This implies βz = z/t and that all thermodynamic quantities depend only on the proper time τ

Initial conditions in the Bjorken model:

$$
\varepsilon(\tau_0)=\varepsilon_0,\quad u^\mu=\frac{1}{\tau_0}(t,0,0,z)=\frac{x}{\tau_0}
$$

Initial energy density

In this case the equations of ideal hydrodynamics simplify to

$$
\varepsilon = E/V: \text{ energy density} \n\rho: \text{ pressure} \n s = S/V: \text{ entropy density}
$$

Bjorken model (II)

For an ideal gas of quarks and gluons, i.e., for

 $\varepsilon = 3p, \quad \varepsilon \propto T^4$

This leads to

$$
\varepsilon(\tau) = \varepsilon_0 \left(\frac{\tau}{\tau_0}\right)^{-4/3}, \quad T(\tau) = T_0 \left(\frac{\tau}{\tau_0}\right)^{-1}
$$

The temperature drops to the critical temperature at the proper time

$$
\tau_c = \tau_0 \left(\frac{T_0}{T_c} \right)
$$

And thus the lifetime of the QGP in the Bjorken model is

$$
\Delta \tau_{\rm QGP} = \tau_c - \tau_0 = \tau_0 \left[\left(\frac{T_0}{T_c} \right) - 1 \right]
$$

QGP lifetime in 1d - Bjorken model $\varepsilon_0 = 11 \,\text{GeV}/\text{fm}^3 = 11 \cdot 0.197^3 \,\text{GeV}^4 \quad \text{for } \tau_0 = 1 \text{fm}/c$ $1 = \hbar c = 0.197 \,\text{GeV} \cdot \text{fm}$

 $\varepsilon_0 = g_{\rm QGP} \frac{\pi^2}{30} T^4 \longrightarrow T_0 = \left(\frac{30 \varepsilon}{\pi^2} \frac{\varepsilon}{q}\right)^{1/4}$

 $Parameters$ Δ τ_{oGP} ϵ_0 τ = 3 GeV/fm2 0.84 fm/c

 ϵ_0 τ = 5 GeV/fm2 \pm 1.70 fm/c

 ϵ_0 τ = 11 GeV/fm2 3.9 fm/c Fixed parameters: $Nf = 2$, Tc = 170 MeV, $T0 = 1$ fm/c

Quick estimate for LHC

Bjorken formula: $\varepsilon \cdot \tau_0 = \frac{\langle m_T \rangle}{A} \left. \frac{{\rm d}N}{{\rm d}y} \right|_{\omega=0}$

Transverse area in collisions with $b \approx 0$: $A \approx \pi R_{\rm Ph}^2 = \pi (6.62 \,\rm fm)^2 \approx 140 \,\rm fm^2$

Estimate for the mean transverse momentum: $\langle p_T \rangle = 0.66 \,\text{GeV}/c \rightsquigarrow \langle m_T \rangle \approx \sqrt{(0.138 \,\text{GeV})^2 + (0.66 \,\text{GeV})^2} = 0.67 \,\text{GeV}$

Measured charged particle multiplicity:

 $dN_{ch}/d\eta \approx 1601 \pm 60$ (5% most central)

$$
\int \frac{dN}{dy}\bigg|_{y=0} = \frac{3}{2} \cdot \left(1 - \frac{m^2}{\langle m_T \rangle}\right)^{-1/2} \cdot \frac{dN_{ch}}{d\eta}\bigg|_{\eta=0} = 2450 \pm 92
$$

1.02 Larger (up to \approx 1.2) if p and K are taken into account

LHC:
 $\varepsilon \cdot \tau_0 = (11.7 \pm 0.43) \,\text{GeV} / \text{fm}^2$ $(\text{Pb} + \text{Pb} @ \sqrt{s_{NN}} = 2.76 \,\text{TeV})$

RHIC:
 $\varepsilon \cdot \tau_0 \approx 5 \,\text{GeV}/\text{fm}^2$ $(\text{Au+Au@}\sqrt{s_{NN}} = 0.2 \,\text{TeV})$ 11/66

Energy density evolution in 1d-Bjorken

 $\tau_{\text{o}} = 1$ fm/*c* is generally considered as a conservative estimate for the use in the Bjorken formula.

Other estimates yields shorter times (e.g. $\tau_0 = 0.35$ fm/*c*) resulting in initial energy densities at RHIC of up to 15 GeV/fm³

Transverse Expansion

Transverse radial flow: particle spectra

Particle Spectra*

• Typical **mass ordering** in inverse slope from **light** π to **heavier** Λ • Two-parameter fit describes yields of π , K, p, Λ • $T_{\text{th}} = 90 \pm 10 \text{ MeV}$ • ϵ_{β_t} = 0.55 ± 0.08 c \Rightarrow Disentangle **collective motion** from thermal random walk 14/66

Thermal Model + Radial Flow Fit Source: each volume element is assumed to be $-$ in local **thermal equilibrium**: T_{fo}

> **boosted** in transverse radial direction: $\rho =$ $f(\beta_s)$

Boosted E.Schnedermann, J.Sollfrank, and U.Heinz, Phys. Rev. C48, 2462(1993).

$$
E\frac{d^3N}{dp^3}\propto \int\limits_{\sigma}e^{-(u^{\mu}p_{\mu})/T_{f\sigma}}pd\sigma_{\mu}\Rightarrow
$$

$$
\frac{dN}{m_T dm_T} \propto \int_0^R r dr m_T K_1 \left(\frac{m_T \cosh \rho}{T_{f0}} \right) I_0 \left(\frac{p_T \sinh \rho}{T_{f0}} \right)
$$

$$
\rho = \tanh^{-1} \beta_T \qquad \beta_T = \beta_S \left(\frac{r}{R} \right)^\alpha \qquad \alpha = 0.5, 1, 2
$$

random

(anti-)Protons From RHIC Au+Au@130GeV

Centrality dependence:

- **spectra** at low momentum de-populated, become **flatter** at larger momentum

 \ddot{u} stronger **collective flow** in more central collisions, $\langle \text{F}(\mathbf{x}) | u \rangle = 0.55 \pm 10$ 0.08 16/66

Kinetic Freeze-out at RHIC

STAR Data: Nucl. Phys. A757, (2005 102), *A. Baran, W. Broniowski and W. Florkowski, Acta. Phys. Polon. B 35 (2004) 779. 0) T and β _T are anticorrelated

1) Multi-**strange hadrons** and **freeze-out earlier** than (π, K, p) Collectivity prior to hadronization

2) Sudden single freezeout*: Resonance decays lower T_{fo} for (π, K, p) **Collectivity prior** to **hadronization**

 Partonic Collectivity ? 17/66

LHC: Identified particle spectra

Spectra harder at LHC

stronger collective **flow** at LHC than at RHIC

Collective expansion

Blast wave parametrization **describes spectra** at **10% level** Collective **flow velocity increases** from RHIC to LHC by **10%** 19/66

Collective Flow - Energy Dependence

Collectivity parameters $\langle \beta_{\tau} \rangle$ and $\langle v_{2} \rangle$ **increase** with **collision energy strong** collective **expansion** at RHIC ! $<\beta$ _T>RHIC » 0.6 expected **strong partonic expansion** at **LHC**, $\langle 6.8, 7.6, 10.8, 10.$

K.S., ISMD07, arXiv:0801.1436 [nucl-ex].

Lesson I

• At LHC, Initial energy density approx. 50 GeV/fm³

• much larger than critical energy density $\varepsilon_c =$ 0.7 GeV/fm³

- Strong **collective expansion**, $<\beta_T>$ = 0.6 0.7 at **highest collider energies**
- Particles carrying **strange quarks** show that **collective expansion** develops **before hadronization**, $<\beta_T>$ = 0.3 - 0.4 - among quarks and gluons (?) 21/66

Transverse Expansion

Transverse elliptic flow: event anisotropy

Anisotropy Parameter v₂

coordinate-space-anisotropy momentum-space-anisotropy

$$
\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle} \qquad \qquad v_2 = \langle \cos 2\varphi \rangle, \ \ \varphi = \tan^{-1}(\frac{p_y}{p_x})
$$

Initial/final conditions, EoS, degrees of freedom

v2 in the low-pT Region

- v_2 approx. linear in p_T , mass ordering from light π to heavier Λ - characteristic of hydrodynamic flow, sensitive to EOS !

Elliptic flow in ALICE

ALICE, submitted for publication, arXiv:1011.3914 [nucl-ex].

 $\sqrt{s_{NN}} > \sim 4$ GeV:initial excentricity leads to pressure gradients that cause positive v_2

 $2 < \sqrt{s_{NN}} < 4$ GeV: velocity of the nuclei is small so that presence of spectator matter inhibits in-plane particle emission ("squeeze-out")

 $\sqrt{s_{NN}}$ < 2 GeV: rotation of the collision system leads to fragments being emitted inplane 25/66

Non-ideal Hydro-dynamics

M.Luzum and R. Romatschke, PRC 78 034915 (2008); P. Romatschke, arXiv:0902.3663.

• Spectra and flow reproduced by ideal hydrodynamics calcs.

• Shear viscosity to entropy density ratio close to AdS/CFT bound

• viscosity leads to decrease in v₂, ultralow viscosity sufficient to describe data

• Hydro-limit exceeded at LHC ?

 $f(\varphi) = 1 + 2v_n \cos(n\varphi)$

Can there be v³ ?

figs.: courtesy of M. Luzum.

- reaction plane ü participant plane
- fluctuating initial state is seed for v_3 can CGC be challenged ?

higher harmonics

- extract power spectrum of v_{n} , like Planck*
- higher harmonics
- odd harmonics important
- v_{s} : access η/s
- Higher harmonics strongly damped $(v_{n, n>10} = 0)$

STAR, arXiv:1301.2187 [nucl-ex]; STAR, PRL 92 (2004) 062301; A.Mocsy and P. Sorensen, NPA 855 (2011) 241; B. Alver and G. Roland, PRC 81 (2010) 054904; Planck data: EAS and the Planck collaboration QGP plot: B. Schenke, S. Jeon, and C. Gale, arXiV:1109.6289. 2020 2020 2020 2020 29/66

Lesson II

- Geometrical anisotropy is seed for elliptic flow $v₂$
- Elliptic flow v_2 sensitive to QGP equation of state
- Triangular flow v_3 due to fluctuations, e.g. in initial energy density
- Triangular flow v_3 especially sensitive to shear viscosity /entropy density ratio
- Higher harmonics V_4 , V_5 , ... strongly damped

Hydrodynamical model description

Some basic concepts

Relativistic Hydrodynamics (I)

The energy-momentum tensor $T^{\mu\nu}$ is the four-momentum component in the μ direction per three-dimensional surface area perpendicular to the v direction.

 $\Delta \mathbf{p} = (\Delta E, \Delta p_x, \Delta p_y, \Delta p_z)$ $\Delta \mathbf{x} = (\Delta t, \Delta x, \Delta y, \Delta z)$ $\mu = \nu = 0$: $T_R^{00} = \frac{\Delta E}{\Delta x \Delta y \Delta z} = \frac{\Delta E}{\Delta V} = \varepsilon$ $\mu=\nu=1: \quad T^{11}_R=\frac{\Delta p_x}{\Delta t \Delta y \Delta z} \quad ,$

force in *x* direction acting on an surface Δ*y* Δ*z* perpendicular to the force → pressure

 $T^{\mu\nu} = \begin{pmatrix} \text{energy density} & \text{energy flux density} \\ \text{momentum density} & \text{momentum flux density} \end{pmatrix} \equiv \begin{pmatrix} \varepsilon & \vec{j}_{\varepsilon} \\ \vec{q} & \vec{\Pi} \end{pmatrix}$

Relativistic Hydrodynamics (II)

Isotropy in the fluid rest implies that the energy flux T^{0j} and the momentum density T^{0} vanish and that $\Pi^{ij} = P \delta_{ij}$

Off-diagonal elements \neq 0 in case of viscous hydrodynamics, not considered here

 \rightarrow ideal (perfect) fluid.

See also Ollitrault, arXiv:0708.2433.

Relativistic Hydrodynamics (III)

Energy-momentum tensor (in case of local thermalization) after Lorentz transformationto the lab frame:

$$
T^{\mu\nu} = (\varepsilon + P) u^{\mu} u^{\nu} - P g^{\mu\nu}
$$
metric tensor diag(1,-1,-1,-1)
Energy density 4-velocity: $u^{\mu} = dx^{\mu}/d\tau$
and pressure in = $\gamma(1, \vec{v})$
Energy and momentum conservation:
Energy and momentum conservation:

$$
\partial_{\mu} T^{\mu\nu} = 0, \quad \nu = 0, \dots, 3
$$
\n
$$
\partial_{\mu} = \left(\frac{\partial}{\partial t}, \vec{\nabla}\right)
$$
\nin components:
$$
\begin{cases}\n\frac{\partial}{\partial t} \varepsilon + \vec{\nabla} \vec{j}_{\varepsilon} = 0 \text{ (energy conservation)} \\
\frac{\partial}{\partial t} g_i + \nabla_j \Pi_{ij} = 0 \text{ (momentum conservation)}\n\end{cases}
$$

Conserved quantities, e.g., baryon number:
 $j_B^\mu(x) = n_B(x) u^\mu(x),$ $\qquad \partial_\mu j_B^\mu(x) = 0 \iff \frac{\partial}{\partial t} N_B + \vec{\nabla}(N_B \vec{v}) = 0$ continuity equation $N_{\rm B} = \gamma n_{\rm B}$

Ingredients of Hydro - models

- Equation of motion and baryon number conservation: $\partial_{\mu}T^{\mu\nu}=0, \quad \partial_{\mu}j^{\mu}_{\rm B}(x)=0$
- 5 equations for 6 unknowns: $(u_x, u_y, u_z, \varepsilon, P, n_{\rm B})$
- Equation of state: $P(\varepsilon, n_{\text{B}})$
- (needed to close the system)
- Initial conditions,
	- e.g., from Glauber calculation
- Freeze-out condition

EOS I: ultra-relativistic gas *P* = ε/3 EOS H: resonance gas, $P \approx 0.15 \varepsilon$ EOS Q: phase transition, QGP resonance gas 35/66

LHC: Identified particle spectra

Initial conditions fixed by pion abundance

Protons overestimated

Annihilation of protons and anti-protons in the hadron phase ?

Elliptic flow in Hydro - models

Au+Au at $b = 7$ fm

8.0 fm/c ($\epsilon_x = 0.003$, $\epsilon_y = 0.123$) 5.6 fm/c ($\epsilon_x = 0.067$, $\epsilon_p = 0.147$)

Elliptic flow is "selfquenching":The cause of elliptic flow, the initial spacial anisotropy, decreases as the momentum anisotropy increases

Anisotropy in momentum space

Ulrich Heinz, Peter Kolb, arXiv:nucl-th/0305084

In hydrodynamic models the momentum anisotropy develops in the early (QGP)phase of the collision. Thermalization times of less then 1 fm/c are neededto describe the data. 38/66

Cold atomic gases

200 000 Li-6 atoms in an highly anisotropic trap (aspect ratio 29:1) Very strong interactions between atoms (Feshbach resonance) Once the atoms are released the one observed a flow pattern similar to elliptic flow in heavyion collisions

Lesson III

- **First results** from **ALICE** show large **increase** in **energy**
- **density** (**factor 2-3** compared to RHIC)
- **longer life-time** of qgp
- **larger collective flow** effects
- **anisotropic flow** comparable to **ultra-low viscosity**
- triangular flow sensitive to initial energy density fluctuations and viscosity/entropy ratio
- Hydrodynamical model provides framework to characeterize QGP, i.e. equation of state, viscosity/entropy ratio