

Quarkonia

Klaus Reygers, Kai Schweda Physikalisches Institut Universität Heidelberg / GSI Darmstadt

HELMHOLTZ

	-
 _	-

Building Blocks of Matter

Time Scales

Plot: courtesy of R. Stock.

• **QGP life time** 10 fm/c \approx 3•10⁻²³ s

- thermalization time 0.2 fm/c \approx 7•10⁻²⁵ s
- formation time

 (e.g. charm quark):
 1/2m_c = 0.08 fm/c
 ≈ 3•10⁻²⁵ s
- collision time $2R/\gamma = 0.005 \text{ fm/c}$ $\approx 2 \cdot 10^{-26} \text{ s}$

Where does all the charm go ?

- Total charm cross section: open-charmed hadrons,
 e.g. D⁰, D⁺, D^{*+}, Λ_c, ... and c,b → e(μ) + X
- Quarkonia, e.g. J/ψ carries $\approx 1\%$ of total charm

Outline

- Introduction
- Charmonium production
- Bottomonium production
- Summary

Erste Bleikollisionen in ALICE !

• Excellent tracking & particle identification down to lowest momentum ~ 100 MeV/c $_{5/36}$

8 /A @W

Discovery of charmonium

- J: AGS at Brookhaven Lab., NY $p + Be \rightarrow \mu\mu$
- ψ: SPEAR at SLAC, CA $e^+ + e^- →$ hadrons

 $m_{J/\psi} = 3.1 \text{ GeV}, J^{PC} = 1^- \text{ states}$

Published back-to-back: Phys. Rev. Lett. 33 (1974) 1404 & 1406

Nobel Prize 1976 for Samuel Ting and Burton Richter

Predicted by Sheldon Glashow and James Bjorken

Charmonium (c-cbar)

- Bound state of charmand anti-charm quark
- Hidden-charm meson
- $m_{J/\psi} = 3.1 \text{ GeV},$ $r_{J/\psi} = 0.45 \text{ fm},$ $J^P = 1^- \text{ states}$
- Ψ' : radial excitation, $\psi(2s)$

Plot: M.B. Voloshin, Prog. Part .Nucl .Phys. 61 (2008) 455-511.

7/66

Time scales of charm production

- formation time of charm quark: $1/2m_c = 0.08 \text{ fm/c}$
- thermalization time:
 0.2 fm/c
- to build up wavefunction of J/ψ takes typically 1fm/c
- \rightarrow At LHC energies, QGP formed before J/ ψ can exist
- → J/ ψ unbound in QGP, thus no melting of J/ ψ (does not exist in the first place)
- \rightarrow Generation of J/ ψ at the phase boundary, i.e. at Tc

J/ψ suppression: the original idea

Matsui and Satz, Phys. Lett. B 178 (1986) 416. Color screening will prevent bound ccbar states, i.e. suppression of charmonium signals QGP formation

No J/ Ψ if $\lambda_D < r_{J/\psi}$ Debye length $\lambda_D \sim 1/(g(T) T$, so J/ ψ is thermometer

Thermal picture: $n_{partons} = 5.2 \text{ T}^3$ for 3 flavors For T = 500MeV, $n_{partons} = 84/\text{fm}^3$ Mean separation r = 0.2fm < $r_{J/\psi}$

Dynamical picture: $J/\psi \rightarrow g + c + cbar$

Debye Screening and Quarkonia

Schematical Picture

Suppose J/ ψ does not melt

 \rightarrow R_{AA} should saturate > 0.6

 \rightarrow no more feeding from χ_{C} and $\psi' \rightarrow J/\psi + X$

11

Quarkonia as a Thermometer

- Expect melting of bottomonium (b-bbar) at Tdeconfined ≈ 2 Tc
- Expect melting of charmonium (c-cbar) at $T_{deconfined} \approx 1.2 \text{ Tc}$

Reminder on Statistical Model

<u>B. ψ' to J/ ψ ratio</u>

 $m_{J/\psi} = 3.1 \text{ GeV, } m_{\psi'} = 3.6 \text{ GeV, look up } K_2(m/\text{Tch})$ Ratio = 3%

Charmonium production

- In central Pb+Pb collisions at top SPS energy:
- J/ψ' to J/ψ ratio approaches thermal limit
- Indicates kinetic equilibration of charm

J/ψ (charm-anticharm) Production

P. Braun-Munzinger and J. Stachel, Nature 448 (2007) 302.

• Low energy (SPS):

screening of J/ ψ

- \Rightarrow suppression
- High energy (LHC):

generation at phase boundary

 \Rightarrow enhancement

- additional production mechanism at high-energy
- fingerprint of de-confinement

Some remarks

- number of charm quarks conserved throughout collision
- charm quarks are only produced in early stage
- No annihilation of charm quarks
- thermal production of charm unlikely: $\sim \exp(-2m_c/T)$, T << m_c
- thus, charm is only re-shuffled amongst charmed hadrons
- effects of statistical hadronization of charm beyond current experimental sensitivity for open charmed hadrons (99% of all charm
- effects sizeable for charmonium (1% of all charm) 16/36

Charmonium detection

$J/\Psi \rightarrow e^+ + e^- (BR = 6\%)$ $J/\Psi \rightarrow \mu^+ + \mu^- (BR = 6\%)$	doable, also with trigger doable, also with trigger
$\Psi' \rightarrow e^+ + e^- (BR = 0.8\%)$ $\Psi' \rightarrow \mu^+ + \mu^- (BR = 0.8\%)$	lower rate, otherwise same as above lower rate, otherwise same as above
$\begin{array}{l} X_{c1} \rightarrow J/\Psi + \gamma \; (BR = 34\%) \\ X_{c2} \rightarrow J/\Psi + \gamma \; (BR = 20\%) \end{array}$	hard, needs detection of soft photon hard, needs detection of soft photon

 $\eta_c \rightarrow \gamma + \gamma$ (BR = 1.8 x 10⁻⁴) a real challenge (!)

- → Need **dileptons** to address **charmonium** production
- \rightarrow Similar arguments hold for **bottomonium** Y(1), Y(2s), Y(3s)

Dimuons from CMS at LHC

Statistical Hadronization of Charm

A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Phys. Lett. B 652 (2007) 259.

 up to 100 charm quark pairs in a single Pb+Pb collision at LHC

generation of J/ψ from
 deconfined quarks

• depends on total number of charm quarks $N_{J/\psi} \sim (N_{ccbar})^2$

→ **Suppression** at RHIC

→ Enhancement at LHC

19/66

Prompt J/ ψ and from B \rightarrow J/ ψ + X

disentangle prompt from secondary production by

proper decay length (exponential decay of J/ψ from B)

• tag B-meson production

20/36

Comparison to other hadrons

- Mass ordering in R_{AA} ? $J/\psi \leftarrow B$ (upper) D (middle) π (lower)
- γ,W,Z-bosons:
 R_{AA} ≈ 1 (!)
 checks normalization,
 does not probe the
 medium

ALICE, arXiv:1203.2160 [nucl-ex], CMS Z-boson: Phys. Rev. Lett. 106 (2011)212301.

Sequential Y suppression

Observation of sequential suppression of Y family

When compared to pp collisions

22/36

Quarkonium-thermometer

Apparent hierarchy in R_{AA} of different quarkonium states

However: J/ψ from CMS are from high- $p_T > 6.5$ GeV/c

Not necessarily equilibrated in QGP

CMS-PAS HIN-11-011

LHC versus RHIC energies

24/36

ALICE versus CMS at LHC

charmonium less
 suppressed at low
 momentum (ALICE)
 or (in other words)

More generation in
 the bulk (at low p_T)

suppression at high-p_T
 likely due to energy
 loss (as for D-mesons)
 25/36

Lesson learnt

- Quarkonia (charmonium and bottomonium) and their production are unique probes of QGP
- Story has evolved over the last 30 years and is rather intricate
- Y family apparently shows sequential melting with more strongly bound $\Upsilon(1)$ less suppressed than $\Upsilon(2s)$
- J/ψ at high momentum shows suppression similar to open charmed hadrons (energy loss)
- J/ψ shows effects of generation at the phase boundary due to statistical hadronization of charm at low momentum (bulk)
- \rightarrow Harbinger of de-confinement