Elliptic Flow of D Mesons in Pb-Pb Collisions

Christian Möhler

Heidelberg University Journal Club on heavy-ion collisions

6 June 2014

ALICE papers discussed

○ D meson elliptic flow in non-central Pb-Pb collisions at ∫s_{NN} = 2.76 TeV PRL 111, 102301 (2013)

• elliptic flow v_2 of D^0 , D^+ , D^{*+} in 30-50% centrality

• Azimuthal anisotropy of D meson production in Pb-Pb collisions at $\int s_{NN} = 2.76 \text{ TeV}$ submitted to Phys. Rev. C, 2014

- v_2 of D^0 , D^+ , D^{*+} in 3 centrality classes in 0-50%
- 3 different methods to determine v₂
- R_{AA} with respect to event plane

What is Azimuthal Anisotropy?

coordinate basis in momentum space: (p_T, y, ϕ)

transverse plane

ultrarelativistic heavy-ion collisions:

collision geometry **not** symmetric in ϕ

- -> initial spatial azimuthal anisotropy
- \rightarrow particle production dN/d ϕ can be anisotropic

depending on the effect of the quark gluon plasma (QGP)

What is Flow?

- thermalized QGP can be described by hydrodynamis
- Euler equation: collective dynamics driven by pressure gradients
- expansion of the fireball
- flow is affected by azimuthal anisotropy
 -> different pressure gradients in different directions

Characterizing Anisotropy

 $dN/d\phi$ - 2π -periodic function in ϕ -> expand in Fourier series

$$\frac{dN}{d\phi} = \frac{N_0}{2\pi} \left[1 + 2\sum_{n=0}^{\infty} v_n \cos\left[n(\phi - \Psi_n)\right] \right]$$

Fourier coefficients:

 $v_{n} = \int_{0}^{2\pi} \frac{dN}{d\phi} \cos\left[n\left(\phi - \Psi_{n}\right)\right] d\phi = \left\langle \cos\left[n(\phi - \Psi_{n})\right] \right\rangle$ $V_{2} \qquad V_{3} \qquad V_{4}$ $(\text{elliptic} flow) \qquad (\text{triangular} flow) \qquad (\text{quadrupole} flow) \qquad (\text{quadrup$

shape of participant zone (overlap of the nuclei)

Centrality Classes

- more central collision —> higher multiplicity
- take amplitude in VZERO detectors (scintillators) as a measure for multiplicity
- cluster into percentiles = centrality classes

Outline

Introduction

- heavy quarks in the QGP
- interest in measuring charm flow
- Analysis
 - reconstruction of D mesons in ALICE
 - ALICE detector
 - determination of v2
- Results
- Conclusion

7

Heavy Quarks in the QGP

- heavy quarks: charm ~1.5 GeV, bottom ~4.5 GeV, [top ~173 GeV]
- $m_{c,} m_{b} >> \Lambda_{QCD}$ heavy quarks produced in early pQCD stage
- masses generated mainly by Higgs field
 -> remain heavy when chiral symmetry is restored
- m_c, m_b >> T_{QCD}
 -> no thermal production in medium
- no annihilation
- total charm/beauty is conserved in the medium
- heavy quark experiences full evolution of the system

heavy quark = unique probe of QGP medium properties

Charm v₂

- two contributing mechanisms:
 - collective expansion (low p_T)
 - path-length dependence of in-medium energy loss (high p_T)
- does charm participate in the collective expansion?
- o how does charm interact in the QGP?
- strong interplay between experiment and theory

Reconstruction of D Mesons in ALICE

meson	M (GeV/ c^2)	$c au~(\mu{ m m})$	decay channel	$\mathrm{BR}~(\%)$		
$D^0 (c\overline{u})$	1865	123	$K^-\pi^+$	3.9		
$D^+ \ (c\overline{d})$	1870	312	$K^-\pi^+\pi^+$	9.1		
D^{*+} $(c\overline{d})$	2010	$\Gamma = 83.3 \text{ keV}$	$D^0(K^-\pi^+)\pi^+$	67.7		
$D_s^+ \ (c\overline{s})$	1969	150	$\phi(K^-K^+)\pi^+$	5.5		
+ anti-particles						

- D mesons decay before they can be detected
- invariant mass analysis in selected decay channels
- downside: large combinatorial background
 - need excellent particle identification (PID)
 - expoloit topology of secondary decay vertex

ALICE Detector

Particle Identification

- specific energy loss dE/dx in TPC gas
- velocity **B** via time of flight in **TOF**
- require measured signal to be within 3σ of the expected signal for each species (K, π)

Topological Selection for D⁰

decay vertex displaced from primary vertex by a few 100 µm
most effective topological cuts:

- pointing angle: $cos(\theta_{pointing}) > 0.95$
- product of impact parameters: $d_0^K \times d_0^\pi < -(200 \ \mu m)^2$

Reconstruction of the Event Plane

$$\frac{dN}{d\phi} = \frac{N_0}{2\pi} \left[1 + 2\sum_{n=0}^{\infty} v_n \cos\left[n(\phi - \Psi_n)\right] \right]$$

- $\circ\,$ reconstruct event plane angle ψ_2 from the distribution of charged particles
- select 'good' TPC tracks from event
- exclude candidates for D mesons to remove auto-correlations

$$\vec{Q} = \begin{pmatrix} \sum_{i=1}^{N} w_i \cos 2\varphi_i \\ \sum_{i=1}^{N} w_i \sin 2\varphi_i \end{pmatrix} \qquad \psi_2 = \frac{1}{2} \tan^{-1} \left(\frac{Q_y}{Q_x}\right)$$

- N multiplicity of the event
- $\bullet \ \phi_i$ azimuthal angle of particle i
- w_i weight to correct for azimuthal non-uniformity in TPC

Pb

2Ψ2

 Ψ_n

Pb

event plane

Event Plane Method

$$\frac{dN}{d\phi} = \frac{N_0}{2\pi} \left[1 + 2\sum_{n=0}^{\infty} v_n \cos\left[n(\phi - \Psi_n)\right] \right]$$

- \circ divide ϕ into 4 quartiles
- 2 categories: in plane, out of plane
- integrate dN/dφ to get the yields
 N_{in-plane} and N_{out-of-plane}
- \circ v₂ can be determined as:

$$v_{2} = \frac{1}{R_{2}} \frac{\pi}{4} \frac{N_{\text{in-plane}} - N_{\text{out-of-plane}}}{N_{\text{in-plane}} + N_{\text{out-of-plane}}}$$

Invariant Mass Distributions

- invariant mass of daughter particles (e.g. $K\pi$ for D^{0})
- fitted by second order polynomial (for the background) plus Gaussian (for the signal)
- $\circ~extract~N_{in\mbox{-plane}}$ and $N_{out\mbox{-of\mbox{-plane}}}$ as the integral of the Gaussian
- higher yield in-plane than out-of-plane
- −> non-negative v₂

$$v_2 = \frac{1}{R_2} \frac{\pi}{4} \frac{N_{\text{in-plane}} - N_{\text{out-of-plane}}}{N_{\text{in-plane}} + N_{\text{out-of-plane}}}$$

Feed-Down from B

B --> D + X

- contribution of D mesons from B decays ~10-20%
- feed-down enhanced by topological selection
- want to give result for prompt D only
- \circ m_b > m_c \rightarrow V₂^{feed-down} \leq V₂^{prompt}
- most conservative assumption: $v_2^{\text{feed-down}} = v_2^{\text{prompt}} \longrightarrow v_2^{\text{prompt}} = v_2^{\text{all}}$
- use as an upper limit for systematic uncertainties:
- use $v_2^{\text{feed-down}} = 0 \longrightarrow v_2^{\text{prompt}} = v_2^{\text{all}}/f_{\text{prompt}}$

Relevant Systematic Uncertainties

Particle		D^0			D^+			D*+	
v_2 analysis	v_2 {EP}	v_2 {SP}	$v_2{2}$	v_2 {EP}	v_2 {SP}	$v_2{2}$	v_2 {EP}	v_2 {SP}	$v_2{2}$
M and v_2 fit stability	9%	10%	8%	25%	8%	17%	30%	14%	11%
2 or 3 sub-ev. R_2	2.3%	-	-	2.3%	-	-	2.3%	-	-
R_2 centrality dependence	2%	-	-	2%	-	-	2%	-	_
Centrality selection	-	10%	10%	-	10%	10%	-	10%	10%
Total (excl. B feed-down)	9%	14%	13%	25%	13%	20%	30%	17%	15%
B feed-down	$^{\prime n}$ $^{+48}_{-0}\%$		+26 - 0%		$^{+26}_{-0}\%$				

4 < p_T < 6 GeV/c, 30-50%

signal extraction

- vary fit range, functional form, binning...
- bin counting instead of integral
- fix fit parameters
- feed-down from B
 - as described on previous slide

Results

D meson elliptic flow in non-central Pb-Pb collisions at ∫s_{NN} = 2.76 TeV PRL 111, 102301 (2013)

• elliptic flow v_2 of D^0 , D^+ , D^{*+} in 30-50% centrality

• Azimuthal anisotropy of D meson production in Pb-Pb collisions at $\int s_{NN} = 2.76$ TeV submitted to Phys. Rev. C, 2014

- v₂ of D⁰, D⁺, D^{*+} in 3 centrality classes in 0-50%
- 3 different methods to determine v₂
- R_{AA} with respect to event plane

D meson v₂ in 30-50% centrality

- o first measurement of D meson v₂ in ALICE!
- non-zero v₂ for all species
- \circ v₂ of different species consistent within uncertainties

Average D meson v₂ in 30-50%

- average computed using statistical significance as weights
- full propagation of systematic uncertainties

- \circ v₂ of D mesons comparable to light flavor
- v₂ in 2<pt<6 GeV/c: 0.204 ± 0.030 (stat) ± 0.020 (syst) $^{+0.092}_{-0}$
- \circ larger than 0 with 5.7 σ !

Results

 D meson elliptic flow in non-central Pb-Pb collisions at ∫s_{NN} = 2.76 TeV PRL 111, 102301 (2013)

• elliptic flow v₂ of D⁰, D⁺, D^{*+} in 30-50% centrality

• Azimuthal anisotropy of D meson production in Pb-Pb collisions at $\int s_{NN} = 2.76$ TeV submitted to Phys. Rev. C, 2014

- v₂ of D⁰, D⁺, D^{*+} in 3 centrality classes in 0-50%
- \bullet 3 different methods to determine v_2
- RAA with respect to event plane

D₀ Elliptic Flow vs. centrality

 \circ indication for increase of v_2 vs. mid-central collisions

comparable to charged particles in all centrality bins

Modelling Flow

• e.g. BAMPS model:

O. Fochler, J. Uphoff, Z. Xu and C. Greiner Phys. Rev. C 84 (2011) 024908

- Boltzmann approach to multi-parton scattering
- microscopic partonic transport model
- o implemented processes:
 - elastic collisions
 - gluon radiation

Comparison with Models

- many different models exist that predict v₂
- with better precision (Run 2) models will be constrained further

Take Home Messages

- D mesons reconstructed via invariant mass analysis using topological selection and particle identification
- \circ D meson elliptic flow v₂ measured for the first time in ALICE
- in $2 < p_T < 6 \text{ GeV/c}$:

- $v_2 = 0.204 \pm 0.030$ (stat) ± 0.020 (syst) $^{+0.092}_{-0}$

- $v_2 > 0$ with 5.7 σ significance
- elliptic flow of D mesons and charged particles consistent within uncertainties
- indication for an increase of v₂ from central to mid-central collisions

evidence for collective flow of charm quarks

• no model describes all data yet -> challenge for theory!

Backup

Journal Club on heavy-ion collisions, 6 June 2014

RAA in plane and out of plane

 stronger suppression in out-of-plane direction where the path length is larger

Elliptic Flow with Different Methods

