Data analysis 00000 Systematic uncertainties

Results 00000 Conclusions

J/Ψ suppression in PbPb collisions

Martin Fleck

June 13, 2014

Data analysis 00000 Systematic uncertainties

Results

Conclusions

ALICE publication to be discussed

• Centrality, rapidity and transverse momentum dependence of J/ Ψ suppression in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76 {\rm TeV}$

arXiv:1311.0214 [nucl-ex]

Data analysis 00000 Systematic uncertainties

Results

Conclusions

Summary

1 Introduction

- 2 Data analysis
- **3** Systematic uncertainties

4 Results

Data analysis 00000

Introduction

000000

Results 00000 Conclusions

How to study matter, how to study QGP

• Study matter: E.g. via Rutherford Experiment

How to study QGP medium? Auto generated probes:

- Heavy quarks only form in (initial) hard processes
- They experience entire evolution of the system
 → Use heavy guarks as probe

Data analysis

Systematic uncertainties

Results

Conclusions

Charm quarks in QGP

Heavy quarks (e.g. charm quarks) are unique probes:

- charm quarks only produced in early stage (no thermal production)
- number of charm guarks conserved throughout collision
- No annihilation of charm quarks (very small cross section)

After hadronisation: Only 1% charmonium $(c\bar{c})$

Introduction	Data analysis	Systematic uncertainties	Results	Conclusions
000000	00000		00000	

Charmonium resonances

M.B. Voloshin, arXiv:0711.4556 [hep-ph]

Data analysis 00000 Systematic uncertainties

Results 00000 Conclusions

J/Ψ suppression and melting

Deconfined interior of QGP: colour screening prevents $c\bar{c}$ binding

These quarks effectively cannot "see" each other!

$$q\bar{q}$$
 pair in vacuum: $V(r) = -\frac{\alpha}{r} + kr$ (1)
in QGP: $V(r) = -\frac{\alpha}{r}e^{(-r/\lambda_D)}$ (2)

- Debye length $\lambda_D = \lambda_D(T)$
- if e.g. $r_{J/\Psi} > \lambda_D \rightarrow \text{no } J/\Psi \text{ production}$ ("melting")
- $r_{J/\Psi} < r_{\Psi(2s)}$: infer temperature

Data analysis 00000 Systematic uncertainties

Results 00000 Conclusions

J/Ψ suppression and melting

Deconfined interior of QGP: colour screening prevents $c\bar{c}$ binding

Data analysis

Systematic uncertainties

Results

Coole factor/

.

Conclusions

J/Ψ properties and decay modes

From PDG particle physics booklet:

110 Meson Summary Table

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass
$$m = 3096.916 \pm 0.011$$
 MeV
Full width $\Gamma = 92.9 \pm 2.8$ keV (S = 1.1)
 $\Gamma_{e e} = 5.55 \pm 0.14 \pm 0.02$ keV

$J/\psi(1S)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level (MeV/c)
hadrons	(87.7 ± 0.5) %	-
virtual $\gamma ightarrow$ hadrons	(13.50 ± 0.30) %	-
ggg	(64.1 ±1.0)%	-
γgg	(8.8 ±1.1)%	-
e+ e-	(5.94 ±0.06) %	1548
$e^+e^-\gamma$	[kkkk] (8.8 \pm 1.4) \times 10 ⁻	-3 1548
$\mu^+\mu^-$	($5.93\ \pm 0.06$) %	1545

Data analysis 00000 Conclusions

Data taking

Both decay modes are measured with ALICE:

- $\mu^+\mu^-$ using forward muon arm
- e^+e^- in central barrel using ITS and TPC
- For event characterization (N $_{part}$) and triggering: ZDC and VZERO

Introduction 0000000	Data analysis •0000	Systematic uncertainties	Results 00000	Conclusions
Data ana	lysis			

- + J/ Ψ candidates: Opposite-sign electron or muon tracks
- typical background: e^+e^- -pairs from photon conversion in detector material
- $\bullet \rightarrow$ demand hit in one of two innermost ITS layers
- e^- identification: TPC e^- hypothesis of $(-2.0;+3.0)\sigma$ resp. $(-1.5;+3.0)\sigma$ for 2010 resp. 2011 data
- J/ Ψ yield: number of events in range 2.92 $< m_{e^+e^-} < 3.16 {\rm GeV/c^2}$

TPC particle identification

Background analysis $\mu^+\mu^-$

- Background: Variable Width Gaussian
- Signal: "extended Crystal Ball" function (Gaussian core with power-law low-end tail)

Data analysis ○○○●○ Systematic uncertainties

Results

Conclusions

Background analysis e^+e^-

Introduction Data analysis Systematic uncertainties Results Conclusions J/Ψ yield and R_{AA}

 J/Ψ yield:

$$Y_{J/\Psi}^{i} = \frac{N_{J/\Psi}^{i}}{\text{BR}_{J/\Psi \to l^{+}l^{-}} N_{\text{events}}^{i} A \times \epsilon^{i}}$$
(3)
$$A < 1, \epsilon < 1$$
(4)

Nuclear modification factor:

$$R_{\rm AA} = \frac{Y_{J/\Psi}^{\rm Pb-Pb}}{\langle T_{\rm AA} \rangle \times \sigma_{J/\Psi}^{\rm Pp}}$$
(5)

with nuclear overlap function $\langle {\cal T}_{AA} \rangle$

Data analysis 00000

Systematic uncertainties - overview

- tracking efficiency (up to 11%)
- trigger efficiency (2%)
- signal extraction procedure (1-3% in μ channel)
- input MC parameterization (3-5%)
- nuclear overlap function $\langle T_{
 m AA}
 angle$ (3-8%)
- J/ Ψ pp cross-section $\sigma^{
 m pp}_{J/\Psi}$ (9-12%)
- matching efficiency (1%)
- centrality limits (0-5%)

- Mid-rapidity centrality integrated $R_{\rm AA}^{0-90\%}=0.72\pm0.06({\rm stat.})\pm0.10({\rm syst.})$
- Forward-rapidity ${\it R}_{\rm AA}^{0-90\%} = 0.58 \pm 0.01 ({\rm stat.}) \pm 0.09 ({\rm syst.})$

Introduction Data analysis Systematic uncertainties Results Conclusions 00000

Results: (Re)combination

Data analysis

Systematic uncertainties

Results 00000 Conclusions

Recombination at higher energies

- less suppression at LHC PbPb collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ compared to RHIC (PHENIX) AuAu collisions at $\sqrt{s_{\rm NN}} = 0.2 \text{TeV}$
- LHC energy higher \rightarrow higher charm quark density \rightarrow recombination of individual c and $\bar{c} \rightarrow J/\Psi$ can happen

P. Braun-Munzinger and J. Stachel. Nature 448 (2007) 302.

SEIT 1386 19/22

UNIVERSITÄT HEIDEL BERG ZUKUNE

Results: J/Ψ suppression as function of $p_{\rm T}$

Results: J/Ψ suppression as function of rapidity

Introduction	
0000000	

Data analysis 00000

Conclusions

- Clear suppression of J/Ψ
- No significant dependence of $R_{\rm AA}$ on centrality for $\langle N_{part}
 angle > 70$
- High p_{T} J/ Ψ more suppressed than low p_{T}
- R_{AA} : p_T dependence in contrast to PHENIX result \rightarrow suggest recombination of charm quarks at LHC $\sqrt{s_{NN}}$

