JET FRAGMENTATION

DENNIS WEISER

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

OUTLINE

Physics introduction

- Introduction to jet physics
- Jets in heavy-ion-collisions
- Jet reconstruction

Paper discussion

- The CMS experiment
- Data selection and track/jet reconstruction
- Analysis
- Physics outcome

PROTON SUBSTRUCTURE

- Proton substructure is described by Parton distribution functions
- Parton distribution functions give the probability to find a parton with a given momentum fraction

 $x = \frac{p_{parton}}{p_{hadron}}$ in the proton.

Deep inelastic scattering @ HERA (1992-2007)

Production of Jets in hadron collisions:

- Scattering of partons inside the hadrons
- Subsequent fragmentation of the scattered partons will lead to hadronspray: Jets
- Only back-to-back in φ due to different momenta of initial partons

Hadronisation/Fragmentation

HADRONISATION MODELLING

- QCD potential: $V(r) \sim -\frac{1}{r} + \kappa r$ with $\kappa \sim 1 \frac{GeV}{fm}$
- $q\overline{q}$ connected via flux tube ("string")
- String can break into new $q\overline{q}$ pairs

HIGH p_T HADRON PRODUCTION

- QCD asymptotic freedom: $\alpha_{S}(Q^{2} \rightarrow \infty) \rightarrow 0$
- High energy parton-parton scattering → pQCD
- QCD factorization theorem: High- p_T hadron production cross-section in hadron hadron collisions can be written (to some order):

$$d\sigma_{AB \to h}^{\text{hard}} = f_{a/A}(x_1, Q^2) \otimes f_{b/B}(x_2, Q^2) \otimes d\sigma_{ab \to c}^{\text{hard}}(x_1, x_2, Q^2) \otimes D_{c \to h}(z, Q^2)$$

PDF's Parton-parton Fragmentation function

 $\xi = ln\frac{1}{z}$

Fragmentation functions encode the probability of a parton to fragment into a hadron with a momentum fraction

Also useful:

JETS IN HEAVY-ION-COLLISIONS

- High- p_T partons are produced early in the collision
- They will propagate through the entire medium
- Jet quenching \rightarrow "Smoking gun" of QGP formation

JET QUENCHING

- A parton traversing the medium will lose energy by scattering or bremsstrahlung
- Energy loss will depend on particle and plasma properties

BDMPS approach: (Rad. E loss)

 λ :

Mean free path

for gluon jets for quark jets

 $C_F = \begin{cases} 3 \\ 4/3 \end{cases}$

FRAGMENTATION FUNCTIONS IN THE MEDIUM

Some models of jet quenching predict an • "Q-Pythia": effective change of the shape of the fragmentation function dN^{parton} dξ E_{et}=100 GeV Changes of the fragmentation function would ٠ give access to the properties of the medium vacuum ĝ=5 GeV²/fm "Kinematic rescaling": Fragmentation in the q=50 GeV²/fm vacuum with rescaled energy hadron h: energy E_h $(1-\varepsilon)E_q$ Eq energy parton loss $P(\varepsilon)$ $D_{h=q}(z; Q^2)$ Prob. distr. for parton 2 3 4 6 energy loss ε ("Quenching weight") ξ=log(E_{pt}/p)

JET RECONSTRUCTION

- Idea: Reconstruct energy and direction of initial parton
- Two main classes of jet finding algorithms:

Cone algorithms:

Sum up all momenta in cone with given radius around seed particle *i*

$$\Delta_{ij}^{2} = (\eta_{i} - \eta_{j})^{2} + (\phi_{i} - \phi_{j})^{2} < R^{2}$$

Sequential recombination:

Merge hadrons wich have smallest difference in transverse momentum

SEQUENTIAL RECOMBINATION

• Introduce distances $d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta_{ij}^2}{R^2}$ $d_{iB} = k_{ti}^{2p}$

p=1: k_T
p=0: Cambridge/Aachen
p=-1: Anti-k_T

$$\Delta_{ij}^2 = \left(\eta_i - \eta_j\right)^2 + \left(\phi_i - \phi_j\right)^2$$

• Find smallest of the distances and

if it is a $d_{ij} \longrightarrow$ recombine entities (e.g. add 4-momenta) if it is a $d_{iB} \longrightarrow$ move entities to list of jets

- Procedure is repeated until no entities are left
- Anti-k_T: Soft particles will tend to cluster with hard ones long before clustering among themselves

COMPARISON OF DIFFERENT ALGORITHMS:

PAPER DISCUSSION

• Measurement of jet fragmentation into charged particles in pp and PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

The CMS Collaboration, 2013 [arXiv:1205.5872]

THE CMS EXPERIMENT

CMS: Compact Muon Solenoid

Used in this analysis

DATA SELECTION

- Use 2010/11 $E_{cmsNN} = 2.76 TeV$ pp and PbPb Data
- Use HLT to select events containing high p_T jets in calorimeters (pp: $p_T > 40 \ GeV/c$, PbPb: $p_T > 35 \ GeV/c$)
- Standard event selection criteria
- Determine centrality from transverse energy in HF

HO: Hadron Outer calorimeterHB: Hadron Barrel calorimeterHE: Hadron Endcap calorimeterHF: Hadron Forward calorimeter

$$3 \leq |\eta| \leq 5.2$$

Journal Club Ultra Relativistic Heavy Ion Physics

TRACK AND JET RECONSTRUCTION

- Particle-flow approach: Reconstruct all stable particles first using tracking and calorimetric information
- In PbPb: Substract underlying event with iterative pile-up method:

Calculate average tower energies in rings of η and substract from event Find jets and recalculate average energy using initial towers outside jet

Substract new average energy from initial event and find jets again

• Reconstruct jets with Anti- k_T algorithm with R=0.3

SYSTEMATIC UNCERTAINTIES

• Jet finding efficiency: >95% for jets with p_T >40 GeV/c

>99% for jets with p_T >50 GeV/c

- Jet momentum resolution: pp: 19%(13%) at $p_T = 40(100)$ GeV/c central PbPb: 24%(16%) at $p_T = 40(100)$ GeV/c
- Reconstructed jet momenta are corrected to final state stable particle level using factors derived from PYTHIA
- Jet energy scale uncertainty:

pp: 3% \rightarrow per-bin-yield uncertainty: 15% peripheral PbPb: 4% \rightarrow per-bin-yield uncertainty: 20%

central PbPb: 5% \rightarrow per-bin-yield uncertainty: 25%

- **Track finding efficiency:** 60-70% → reweighting of tracks
- Track momentum reconstruction resolution: ~1-3%

ANALYSIS

• Leading jet: $p_{T,1} > 100 \ GeV/c$

 $|\eta| < 2$

• Subleading jet: $p_{T,2} > 40 \ GeV/c$

 $\Delta \phi_{12} > \frac{2}{3}\pi$

 Compare to Pythia (pp) and Pythia events embedded in Hydjet PbPb collision

Observation of parton energy loss in central PbPb collisions

Fragmentation functions:

- Momentum components and angles are calculated in dijet centre-ofmass frame
- Estimate remaining UE contribution by selecting tracks in background cone obtained by flipping the jetcone around $\eta = 0$

Comparison of fragmentation functions in pp and PbPb

- Take momentum resolution deterioration in PbPb into account

 → Smear reconstructed p_T of jets in pp data by quadratic difference of
 UE contribution
- Match p_T distributions \rightarrow apply p_T dependent reweighting to pp data (Compare FF for matching p_T spectra)

OTHER SOURCES OF SYSTEMATIC UNCERTAINTIES

- Uncertainties in jet response
 - Smearing of jet energy due to fluctuations
 - Miscalibration of the overall energy scale
 - Residual offset in jet energy
- Uncertainties from track reconstruction
 - Failure to reconstruct high- p_T charged particle
 - Momentum resolution of reconstructed charged particle tracks
 - → Study with Monte-Carlo
 - \rightarrow Combine all uncertainties in quadrature

Fragmentation of the most central events in different dijet momentum asymmetry classes:

PHYSICS OUTCOME

- Partons in PbPb collisions are reconstructed as jets with significantly reduced momentum
- The partition of the smaller momentum that remains within the jet cone into $p_T > 4 \ GeV/c$ particles corresponds within the uncertainties to that observed for jets fragmenting in the vacuum (pp)