JET FRAGMENTATION

DENNIS WEISER

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

OUTLINE

• **Physics introduction**

- Introduction to jet physics
- Jets in heavy-ion-collisions
- Jet reconstruction

• **Paper discussion**

- The CMS experiment
- Data selection and track/jet reconstruction
- Analysis
- Physics outcome

PROTON SUBSTRUCTURE

- **Proton substructure is described by Parton distribution functions**
- **Parton distribution functions give the probability to find a parton with a given momentum fraction**

 $\mathbf{x} =$ **P**parton **_{hadron} in the proton.**

Deep inelastic scattering @ HERA (1992-2007)

Production of Jets in hadron collisions:

- **Scattering of partons inside the hadrons**
- **Subsequent fragmentation of the scattered partons will lead to hadronspray: Jets**
- Only back-to-back in φ due to different **momenta of initial partons**

Hadronisation/Fragmentation

HADRONISATION MODELLING

- **QCD potential:** $V(r) \sim -\frac{1}{r}$ \boldsymbol{r} $+ \kappa r \text{ with } \kappa \sim 1 \frac{GeV}{\epsilon m}$ $\boldsymbol{f}\boldsymbol{m}$
- \cdot $q\overline{q}$ connected via flux tube ("string")
- **String can break into new** $q\overline{q}$ **pairs**

HIGH p_T HADRON PRODUCTION

- **QCD asymptotic freedom:** $\alpha_S(Q^2 \to \infty) \to 0$
- **High energy parton-parton scattering → pQCD**
- **QCD factorization theorem: High-** p_T **hadron production cross-section in hadron hadron collisions can be writtten (to some order):**

$$
d\sigma_{AB\to h}^{\text{hard}} = f_{a/A}(x_1, Q^2) \otimes f_{b/B}(x_2, Q^2) \otimes d\sigma_{ab\to c}^{\text{hard}}(x_1, x_2, Q^2) \otimes D_{c\to h}(z, Q^2)
$$

PDF's Parton-parton crosssection Fragmentation function

• **Fragmentation functions encode the probability of a parton to fragment into a hadron with a momentum fraction** $Z=\frac{p^{hadron}}{n^{parton}}$ $\mathbf{1}$

= **Also useful:**

Z

JETS IN HEAVY-ION-COLLISIONS

- **High- partons are produced early in the collision**
- **They will propagate through the entire medium**
- **Jet quenching → "Smoking gun" of QGP formation**

JET QUENCHING

- **A parton traversing the medium will lose energy by scattering or bremsstrahlung**
- **Energy loss will depend on particle and plasma properties**

• **BDMPS approach: (Rad. E loss)**

 $\Delta E \propto \alpha_s C_{_F} \hat{q} L^2$. Energy loss ΔE in a static medium
of length L for $E \rightarrow \infty$

 λ :

Mean free path

 $C_F = \begin{cases} 3 & \text{for gluon jets} \\ 4/3 & \text{for quark jets} \end{cases}$

FRAGMENTATION FUNCTIONS IN THE MEDIUM

• **Some models of jet quenching predict an "Q-Pythia":effective change of the shape of the fragmentation function** $\frac{dN^{parton}}{d\xi}$ E_{μ} =100 GeV • **Changes of the fragmentation function would give access to the properties of the medium** vacuum $\hat{\sigma} = 5$ GeV²/fm **"Kinematic rescaling": Fragmentation in the** $\hat{\mathbf{q}}$ =50 GeV²/fm **vacuum with rescaled energy** hadron h; energy E_h $(1-\varepsilon)E_q$ E_q energy parton loss $P(\varepsilon)$ $D_{h=a}(z; Q^2)$ Prob. distr. for parton energy loss ε ("Quenching weight") $\xi = log(E_{\mu\tau}/p)$

JET RECONSTRUCTION

- **Idea: Reconstruct energy and direction of initial parton**
- **Two main classes of jet finding algorithms:**

Cone algorithms:

Sum up all momenta in cone with given radius around seed particle *i*

$$
\Delta_{ij}^2 = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2 < R^2
$$

Sequential recombination:

Merge hadrons wich have smallest difference in transverse momentum

SEQUENTIAL RECOMBINATION

 $d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta_{ij}^2}{R^2}$ $d_{iB} = k_{ti}^{2p}$ • **Introduce distances**

p=1: k_T **p=0: Cambridge/Aachen p=-1:** Anti- k_T

$$
\Delta_{ij}^2 = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2
$$

• **Find smallest of the distances and**

if it is a $d_{ij} \longrightarrow$ recombine entities **(e.g. add 4-momenta) if it is a** $d_{iR} \longrightarrow \text{move entities to list of jets}$

- **Procedure is repeated until no entities are left**
- **Anti-: Soft particles will tend to cluster with hard ones long before clustering among themselves**

COMPARISON OF DIFFERENT ALGORITHMS:

PAPER DISCUSSION

• **Measurement of jet fragmentation into charged particles in** ${\bm p}{\bm p}$ and PbPb collisions at $\sqrt{{\bf s}_{{\bf NN}}}=2.76\ {\rm TeV}$

 The CMS Collaboration, 2013 [arXiv:1205.5872]

THE CMS EXPERIMENT

CMS: Compact Muon Solenoid

Used in this analysis

DATA SELECTION

- **Use 2010/11** $E_{cmsNN} = 2.76 TeV$ pp and PbPb Data
- Use HLT to select events containing high p_T jets in calorimeters (pp: $p_T > 40 \text{ GeV}/c$, PbPb: $p_T > 35 \text{ GeV}/c$)
- **Standard event selection criteria**
- **Determine centrality from transverse energy in HF**

HO: Hadron Outer calorimeter HB: Hadron Barrel calorimeter HE: Hadron Endcap calorimeter HF: Hadron Forward calorimeter

$$
3\leq|\eta|\,\leq 5.2
$$

Beam

TRACK AND JET RECONSTRUCTION

- **Particle-flow approach: Reconstruct all stable particles first using tracking and calorimetric information**
- **In PbPb: Substract underlying event with iterative pile-up method:**

Calculate average tower energies in rings of and substract from event

Find jets and recalculate average energy using initial towers outside jet

Substract new average energy from initial event and find jets again

Reconstruct jets with Anti- k_T **algorithm with R=0.3**

SYSTEMATIC UNCERTAINTIES

• **Jet finding efficiency:** >95% for jets with p_T >40 GeV/c

 $>99\%$ for jets with $p_T > 50$ GeV/c

- **Jet momentum resolution:** pp: 19%(13%) at $p_T = 40(100)$ GeV/c **central PbPb: 24%(16%) at** $p_T = 40(100)$ **GeV/c**
- **Reconstructed jet momenta are corrected to final state stable particle level using factors derived from PYTHIA**
- **Jet energy scale uncertainty:**

 pp: 3% ⟶ **per-bin-yield uncertainty: 15%**

peripheral PbPb: 4% \rightarrow **per-bin-yield uncertainty: 20%**

 central PbPb: 5% ⟶ **per-bin-yield uncertainty: 25%**

- **Track finding efficiency: 60-70%** → **reweighting of tracks**
- **Track momentum reconstruction resolution: ~1-3%**

ANALYSIS

Leading jet: $p_{T,1} > 100 \text{ GeV}/c$

 $|\eta| < 2$

Subleading jet: $p_{T,2} > 40 \text{ GeV}/c$

 $\Delta\phi_{12} > \frac{2}{3}$ 3 π

• **Compare to Pythia (pp) and Pythia events embedded in Hydjet PbPb collision**

Observation of parton energy loss in central PbPb collisions

Fragmentation functions:

- **Momentum components and angles are calculated in dijet centre-ofmass frame**
- **Estimate remaining UE contribution by selecting tracks in** background cone obtained by flipping the jetcone around $\eta = 0$

Comparison of fragmentation functions in pp and PbPb

- **Take momentum resolution deterioration in PbPb into account** \rightarrow Smear reconstructed \boldsymbol{p}_T of jets in pp data by quadratic difference of **UE contribution**
- **Match** p_T **distributions** \rightarrow **apply** p_T **dependent reweighting to pp data (Compare FF for matching** p_T **spectra)**

OTHER SOURCES OF SYSTEMATIC UNCERTAINTIES

- **Uncertainties in jet response**
	- Smearing of jet energy due to fluctuations
	- Miscalibration of the overall energy scale
	- Residual offset in jet energy
- **Uncertainties from track reconstruction**
	- Failure to reconstruct high- p_T charged particle
	- Momentum resolution of reconstructed charged particle tracks
	- → **Study with Monte-Carlo**
	- → Combine all uncertainties in quadrature

Fragmentation of the most central events in different dijet momentum asymmetry classes:

Journal Club Ultra Relativistic Heavy Ion Physics Jet Fragmentation 22

PHYSICS OUTCOME

- **Partons in PbPb collisions are reconstructed as jets with significantly reduced momentum**
- **The partition of the smaller momentum that remains within** the jet cone into $p_T > 4$ GeV/c particles corresponds within **the uncertainties to that observed for jets fragmenting in the vacuum (pp)**