$\label{eq:lower} \begin{array}{l} \mbox{Journal Club presentation} \\ \mbox{Neutral pion production in Au+Au collisions} \end{array}$

Nicolas Schmidt

July 4, 2014

Neutral pion production with respect to centrality and reaction plane in Au+Au collisions at $\sqrt{s_{\rm NN}}=200~{\rm GeV}$

arXiv:1208.2254 [nucl-ex]

Outline

Introduction

- Neutral pion π^0
- Centrality
- Reaction plane and event plane
- $R_{AA}(p_T)$ and $R_{AA}(\Delta \phi, p_T)$

Experiment and Signal extraction

- Dataset and PHENIX
- EMCal and Signal extraction
- Acceptance and efficiency
- Systematic uncertainties

Results from paper

- Invariant Yield of π^0
- π^0/η ratio
- $R_{AA}(p_T)$ and $R_{AA}(\Delta \phi, p_T)$ in different centrality classes

Neutral pion π^0

$$|\pi^{0}\rangle = \frac{1}{\sqrt{2}} \left(|u\overline{u}\rangle - |d\overline{d}\rangle \right)$$

- Meson mass 134.976 MeV/c²
- Average lifetime $(8.52 \pm 0.18) \cdot 10^{-17}$ s
- Decay:

$$\pi^0 \rightarrow \gamma \gamma$$
 with 98.823% probability

•
$$\pi^0 \rightarrow e^+ + e^- + \gamma$$
 with 1.174% probability

- Used as a probe for azimuthal asymmetries in collective flow and nuclear suppression
- Can be identified over a very wide p_T range (crucial for systematic uncertainties)

Results

0000000

Centrality in heavy ion collisions

- defined by impact parameter b
- central collisions (small b):
 - large participating zone (hot/dense, also called fireball)
 - large $N_{\rm part}$
- peripheral collisions (large b):
 - large spectators (cold, flying away undisturbed)

Centrality measurement

- In PHENIX the Beam-Beam Counters (BBC, 3.0 < |η| < 3.9) and the Zero-Degree Calorimeters (ZDC) are used
- From Monte-Carlo calculation based on Glauber model N_{part}, N_{coll} and b are estimated

Event plane and reaction plane

- Reaction plane given by the beam direction and the impact parameter vector of the collision (cannot be directly observed)
- Event plane method is used and estimates the angle of the reaction plane
- Event plane is determined for the 2nd harmonic of the Fourier expansion of the azimuthal distribution (assumed to be the dominant coefficient)
- Event flow vector \vec{Q} and azimuth of the event plane Ψ_2 for 2^{nd} harmonic can be expressed as

$$\vec{Q} = \left(\begin{array}{c} \sum_{i}^{M} w_{i} \cos(2\phi_{i}) \\ \sum_{i}^{M} w_{i} \sin(2\phi_{i}) \end{array} \right)$$
$$\Psi_{2} = \frac{1}{2} \tan^{-1} \left(\frac{Q_{y}}{Q_{x}} \right)$$

M - number of particles for event plane determination (multiplicity of event)

 ϕ_i - azimuthal angle of each particle w_i - weight for optimization of resolution

Event plane measurement in PHENIX

- In PHENIX two detectors are used:
 - Pair of muon-piston calorimeters (MPC) with PbWO₄ crystals
 - Pair of reaction-plane detectors (RxNP) with plastic szintillators
- Event plane resolution is defined as

 $\langle \cos[2(\Psi_N-\Psi_S)] \rangle$

(N = north detector, S = south detector)

Event plane resolution

• Event plane resolution in PHENIX:

- Higher values indicate better resolution
- Resolution is centrality dependent (maximum at 40-50%)

Suppression of high p_{τ} hadrons ("jet quenching")

- Nuclear modification factor R_{AA} used for medium properties extraction
- Decrease from unity interpreted as loss of parton momentum due to a medium (QGP)

$$R_{AA}(p_{\rm T}) = \frac{(1/N_{\rm AA}^{\rm evt}) {\rm d}^2 N_{\rm AA}^{\pi^0}/{\rm d} p_{\rm T} {\rm d} y}{\langle T_{\rm AB} \rangle \times {\rm d}^2 \sigma_{\rm pp}^{\pi^0}/{\rm d} p_{\rm T} {\rm d} y} \qquad (1)$$

$$\langle T_{\rm AB} \rangle = \langle N_{\rm coll} \rangle / \sigma_{\rm pp}^{\rm inel}$$
 (2)

To constrain $\langle L \rangle$ of the parton, $R_{\rm AA}$ is measured as a function of $\Delta \phi$

$$F(\Delta\phi_i, p_{\rm T}) = \frac{N(\Delta\phi_i, p_{\rm T})}{\frac{1}{6}\sum_{i=1}^6 N(\Delta\phi_i, p_{\rm T})}$$
(3)
$$R_{AA}(\Delta\phi_i, p_{\rm T}) = F(\Delta\phi_i, p_{\rm T}) \times R_{AA}(p_{\rm T})$$
(4)

Nicolas Schmidt

Λd

event plane

Journal Club presentation // PHENIX paper

Au

Āц

Ψn

Correction of $R_{AA}(\Delta \phi, p_{\tau})$ with v_2

 v₂ is second Fourier expansion coefficient of the single inclusive azimuthal distribution with Δφ = Ψ - φ

$$\frac{\mathrm{d}N}{\mathrm{d}\Delta\phi} = \frac{N}{2\pi} (1 + 2\nu_2 \cos(2\Delta\phi)) \quad (5)$$

 Assumption that v₂ is dominant in expansion and used for correction of F(Δφ_i, p_T)

$$F(\Delta\phi_i, p_{\mathsf{T}}) = F(\Delta\phi_i, p_{\mathsf{T}})^{\text{meas}} \times \frac{1 + 2v_2^{\text{corr}}\cos(2\Delta\phi)}{1 + 2v_2^{\text{raw}}\cos(2\Delta\phi)} \quad (6)$$
$$v_2^{\text{corr}} = \frac{v_2^{\text{raw}}}{\sqrt{1 + 2v_2^{\text{corr}}\cos(2\Delta\phi)}} \quad (7)$$

$$\sum_{2}^{\text{corr}} = \frac{2}{\langle \cos[2(\Psi_N - \Psi_S)] \rangle}$$
(7)

Nicolas Schmidt

Journal Club presentation // PHENIX paper

Dataset and the PHENIX experiment

- 3.8e09 minimum bias Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV from the PHENIX experiment at RHIC in 2007
- BBC and ZDC for centrality measurement
- PbSc and PbGl calorimeters for photon measurement

EMCal

- Two processes form the shower: Pair production and bremsstrahlung
- Identifies photons by using cuts on the shower shape and comparing it to an ideal shape
- In this analysis hadron contamination is small due to p_T region above 5 GeV/c

Signal extraction

• $m_{\gamma\gamma}$ calculated in bins of photon pair $p_{\rm T}$

$$m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos(\phi))} \qquad (8)$$

- Pair has to pass asymmetry cut $\alpha = |E_{\gamma_1} - E_{\gamma_2}| / (E_{\gamma_1} + E_{\gamma_2}) < 0.8 (9)$
- Distance between impact position of the photons larger than 8cm
- Combinatorial background with event mixing method and then normalized to spectrum and substracted
- Yields are extracted by integrating over ±2.5σ range around peak

Acceptance and efficiency

Acceptance: Limited detector dimensions, dead areas, ... Efficiency: Ratio of $N_{\rm measured}/N_{\rm emitted}$

- Important factor is merging in the EMCal where photons are too close to each other and cannot be resolved
- Two sources of π^0 not coming from the vertex:
 - π^0 produced by hadrons interacting with the detector material
 - Feed-down products from weak decays of higher mass hadrons
- \blacksquare Both sources were found to be negligible at 1% for $p_{\rm T}>2.0~{\rm GeV}/c$
- In analysis single π^0 generated in GEANT3 framework uniform in ϕ and $|\eta| < 0.5$, output is tuned to fit real data and to reproduce inactive detector areas

Systematic uncertainties

$p_{T}[GeV/c]$	indep	6	8	10	16
Yield extr. (%)		5.0	4.0	3.0	2.0
E scale (%)		6.0	6.0	7.0	7.0
PID (%)		4.0	3.0	4.0	5.0
Merging (%)				4.5	28.0
Acceptance (%)	1.0				
Off-vertex (%)	1.5				
Total (%)	1.8	8.8	7.8	9.7	29.4

periment and Signal extraction

Results

Invariant Yield of π^0

 Distributions well described by power law function [f(p_T) = A · p_T⁻ⁿ] 						
System	А	n				
Au+Au 0-5%	$23.3^{+3.67}_{-3.11}$	7.58 ± 0.07				
Au+Au 0-10%	$26.3^{+2.9}_{-2.6}$	7.66 ± 0.05				
Au+Au 10-20%	$32.1^{+\overline{3.9}}_{-3.4}$	7.81 ± 0.05				
Au+Au 20-30%	$25.6^{+3.3}_{-2.9}$	$7.81^{+0.06}_{-0.05}$				
Au+Au 30-40%	$24.9^{+\overline{3.9}}_{-3.3}$	7.96 ± 0.06				
Au+Au 40-50%	$20.0^{+3.9}_{-3.2}$	8.02 ± 0.08				
Au+Au 50-60%	$15.0^{+3.6}_{-2.8}$	8.09 ± 0.10				
Au+Au 60-70%	$5.04^{+1.73}_{-1.24}$	7.92 ± 0.13				
Au+Au 70-80%	6.32 ± 3.12	$8.33^{+0.19}_{-0.18}$				
Au+Au 80-93%	$5.16^{+4.85}_{-2.38}$	$8.79_{-0.29}^{+0.31}$				
Au+Au 0-93%	$16.4^{+0.93}_{-0.87}$	7.86 ± 0.02				
$p+p(\sigma) 2005$	$16.7^{+1.73}_{-1.55}$	8.14 ± 0.05				

experiment and Signal extraction

Results

η/π^0 ratio as function of p_{τ}

 Compared to data from 2004 the new data shows smaller uncertainties and higher p_T reach

 New data is also consistent with 2004 data and with PYTHIA-6.131 p+p calculation

• Data is within 1- σ consistent with a constant fit of $\eta/\pi^0 = 0.45 \pm 0.01$ for minbias, $\eta/\pi^0 = 0.47 \pm 0.01$ for 0-20% $\eta/\pi^0 = 0.51 \pm 0.01$ for 20-60% $\eta/\pi^0 = 0.51 \pm 0.02$ for 60-93%

$R_{\rm AA}$ in different centrality classes

Nicolas Schmidt

Journal Club presentation // PHENIX paper

19/23

Slope of R_{AA} in high p_{T}

- In central collisions R_{AA} slowly rises at higher p_T (left plot)
- Slope is significantly different from zero (right plot)

Experiment and Signal extraction	Results	
		0000000

Centrality dependence of $R_{AA}(p_{\tau}, \Delta \phi)$

Nicolas Schmidt

Journal Club presentation // PHENIX paper

Centrality and $\Delta \phi$ dependence of $R_{AA}(p_{\tau}, \Delta \phi)$

- Elliptical overlap region with short axis in reaction plane \rightarrow small $\Delta \phi$ leads to larger $R_{AA}(p_T, \Delta \phi)$
- Difference in in-plane and out-of-plane suppression increases with eccentricity (decreasing N_{part}) \rightarrow values converge with increasing centrality

Take home message

- R_{AA}(p_T) alone fails to describe the different path lengths in the medium (it averages the energy loss over different paths)
- Instead R_{AA}(p_T, Δφ) with respect to the event plane shows the strong path lengths dependence of the parton momentum loss
- Elliptic/Asymmetric shape of the overlap region and the medium was observed

000000

Backup

Nicolas Schmidt

Journal Club presentation // PHENIX paper

$S_{\rm loss}$ calculation and comparison to ALICE

Nicolas Schmidt

Journal Club presentation // PHENIX paper