Journal Club Measurement of the direct photon cross section with conversions

Alexander Koch

July 11, 2014

Direct photon cross section with conversions at CDF

arXiv:hep-ex/0404022v2

Outline

Introduction

- What is measured
- Collider Detector at Fermilab

Datasets and Analysis

- Different Datasets
- π^0 and η background
- acceptance and efficency
- systematic uncertainties

Results

- cross section calculation
- results and comparison to theory
- conclusion

- motivation: measurment of the isolated direct photon cross section extract information about the parton distribution function (PDF)
- $\blacksquare \ p\bar{p}$ collisions ($\sqrt{s} = 1.8 \ TeV$ in 1994/1995
- photons produced by
 - Compton scattering $g + q \rightarrow q + \gamma$
 - Annihilation $q + \bar{q} \xrightarrow{} g + \gamma$
- pair production $\gamma \rightarrow e^+ e^-$
- \blacksquare contamination of $\pi^0 \to \gamma\gamma$ and $\eta \to \gamma\gamma$ photons

Collider Detector at Fermilab

Used Detectors

- Central Electromagnetic Calorimeter (CEM)
- Central EM Strip chamber (CES)
- Silicon vertex detector (SVX)
- Large central tracking chamber(CTC)

SVX and CTC are inside the 1.4T solenoid

CES is part of the CEM

8 GeV electron data	23 GeV photon data
1 CEM cluster > 8 GeV	1 CEM cluster $>$ 23 GeV
1 associated track with $p_T > 7.5~{\rm GeV}$	no associated track
1 associated CES cluster	1 CES cluster $> 0.5 {\rm ~GeV}$
EM shower energy spread over several CEM towers	neighboring calorimeter towers $E_T < 4 \text{ GeV}$ most energy is deposit in one CEM tower
several electron identification requirements	no electron identification requirements
integrated luminosity $73.6 pb^{-1}$	integrated luminosity $83.7 pb^{-1}$

1 tower event	2 tower event
measure summed E_T of both events in one CEM cluster	measure E_T of higher energy track and p_T of lower energy track
8 GeV electron data	
require to be an 2 tower event $ \eta < 0.9$ $ z_0 < 60$ cm cone energy cuts to suppress π^0 and missing energy $\tilde{E} < 25$ GeV to supp	f η ress $W ightarrow e u$
23 GeV photon data	
require to be an 1 tower event $ \eta < 0.9$ $ z_0 < 60$ cm cone energy cuts to suppress π^0 and no missing energy \tilde{E} cut 28 GeV offline cut	Ι η

 \rightarrow both datasets have no events in common

π^0 and η background

- Most π^0 and η are rejected by the previous cuts
- Build E_T/p_T ratio
 - 1-tower
 - E_T is the two-tracked summed energy p_T is the sum of both track momenta
 - 2-tower E_T of the higher energy track p_T is the momenta of the associated single track
- γ peak expected at 1.0
- \blacksquare meson distribution is simulated by Monte Carlo simulation using a η/π^0 production rate of 0.69 ± 0.08

π^0 and η background

23 GeV photon data (1 tower)

8 GeV electron data (2 towers)

acceptance and efficency

- total probability of the photon to convert in the CDF inner detector
- \blacksquare standard technique relies on a material map measured in the data gives conversion probability of $5.17\pm0.28\%$
- second technique compare Dalitz decays $\pi^0 \rightarrow e^+e^-\gamma$ to $\pi^0 \rightarrow \gamma\gamma$ gives conversion probability of $8.02 \pm 0.73(stat.) \pm 0.73(sys)\%$
- several J/ψ measurments at CDF also gives evidence that the standard matarial scale is too small

 \rightarrow choose central value of $6.40 \pm 1.43\%$

- Monte Carlo E/p uncertainties
- background due to prompt electrons
- possible time dependence on the trigger efficency
- conversion identification efficency

 \rightarrow total p_T independent systematic uncertainty is +28/-18% for both datasets

Systematic uncertainties

p_T (GeV)	p_T dep. sys. err. (%)
8 GeV ele	ectron (2-tower) data:
10-11	+10.6/-12.8
11-12	+9.3/-11.6
12-13	+9.4/-9.3
13-14	+8.5/-8.6
14-15	+6.7/-7.3
15-16.5	+6.7/-6.9
16.5-18	+5.7/-6.0
18-20	+7.6/-7.8
20-22	+7.0/-6.1
22-24.5	+4.3/-5.8
24.5-27	+5.1/-11.9
27-30	+5.7/-11.3
30-34	+4.1/-11.1
34-39	+4.1/-11.0
39-45	+5.6/-11.5
45-52	+4.1/-10.8
52-65	+8.8/-13.3

p_T (GeV)	p_T dep. sys. err. (%)
23 GeV photon (1-tower) data:	
30-34	+2.3/-4.9
34-39	+2.8/-4.9
39-45	+3.9/-5.6
45-52	+5.0/-4.7
52-65	+4.7/-8.2

 $\ensuremath{p_{T}}$ dependence of the systematic uncertainties

Cross section calculation

$$\frac{d\sigma^2}{dp_T d\eta} = \frac{N_{signal}}{A \cdot \epsilon \cdot \Delta p_T \cdot \Delta \eta \cdot \int \mathcal{L}}$$

$$\bullet -0.9 < \eta < 0.9 \Rightarrow \Delta \eta = 1.8$$

- Δp_T is the bin width
- $\int \mathcal{L}$ is the integrated luminosity
 - which is $73.6pb^{-1}$ for the 8 GeV electron data
 - which is $83.7pb^{-1}$ for the 23 GeV photon data

Results and comparison to theory

Results and comparison to theory

- the shape of the cross section is poorly described by next-to-leading-order (NLO) QCD calculations
- CES-CPR measurment agrees with that statement