Direct-photon collective flow and thermal photons as QGP thermometer

Heavy-Ion Journal Club

Lucia Leardini

Physikalisches Institut Heidelberg University

18 July 2014

Outline

Direct-photon collective flow

- v₂ of π⁰, inclusive and direct photons has been measured in Au-Au collisions at √s_{NN}=200 GeV
- ► v_2 of π^0 has been found consistent with inclusive photons v_2
- direct-photons v₂ is consistent with hadron and inclusive photons v₂ but vanishes at p_T >5 GeV/c

Thermal photons as QGP thermometer

- ➤ the photon spectra at p_T ~3 GeV/c can be characterized by their inverse logaritmic slope referred to as effective temperature T_{eff}
- hydrodynamic modelling can help study the contributing sources to T_{eff} and its relation with the fireball temperature
- theoretical prediction will be compared with data from RHIC and LHC

Observation of direct-photon collective flow in Au-Au collisions at $\sqrt{s_{NN}}$ =200 GeV

[arXiv:nucl-ex/1105.4126v2]

Direct-photons in the Quark-Gluon Plasma

- Direct-photons are electromagnetic probes which do not interact in the strongly interacting medium and can traverse it without further interaction
- ✓ Different production mechanisms ovelap in transverse momentum ranges but can be disentangled through their azimuthal distribution

✗ Photons are produced at every collision stages → large background for the direct-photon measurement

Photons in the Quark-Gluon Plasma

At high p_T (> 4GeV/c²):

- ▶ photons from hard scattering $(qg \rightarrow q\gamma, \text{ gluon Compton})$ scattering), isotropic $v_2=0$
- ➤ jet fragmentation photons, v₂ >0
- ▶ jet-conversion photons, $v_2 < 0$
- > bremsstralung, $v_2 < 0$
- \Rightarrow dependence from the path length, not dynamics

At low p_T (1 < p_T < 4GeV/c²):

thermal photons, dynamincs of medium expansion influence the azimuthal asymmetries and collectivity will persist in the hadronic phase, v₂ >0

⇒ thermal radiation will inherit the collective motion of the medium which can be described by near-ideal hydrodynamics

Experimental setup and dataset

- ➤ data from 2007 run, ~3.0×10⁹ minimum bias Au-Au collisions
- Beam-Beam counters (BBC, 3.1 < |η| < 3.9) for event triggering and centrality estimation
- reaction plane (RP) determined by the BBC and by a dedicated reaction plane detector (RxNP, 1.0 < |η| < 2.8) independently
- inclusive photons are measured with the electromagnetic calorimeter

Signal extraction

- Inclusive photons are measured with electromagnetic calorimeter
- PID, hadrons are rejected with a shower shape cut and veto on charged particles (Pad Chambers)
- ► Final photon sample divided in p_T ranges and binned according to $\Phi \Psi^{RP} \rightarrow$ distribution then fitted with

$$N_0[1+2v_2\cos 2(\Phi-\Psi^{RP})]$$

in order to extract $v_2^{\gamma,meas}$

- As a cross check to the fit value, v₂^{γ,meas} has also been measured as average cosine of particles with respect to the RP
- Further hadron correction ($p_T < 2 \text{ GeV/c}$):

$$v_2^{\gamma,obs} = rac{v_2^{\gamma,meas} - (N^{had}/N^{meas})v_2^{had}}{1 - N^{had}/N^{meas}}$$

The true v_2 for the inclusive photons is obtained by

$$v_2^{\gamma, \textit{incl}} = v_2^{\gamma, \textit{obs}} / \sigma_{RP}$$

where $\sigma_{RP} = \langle \cos 2(\Phi^{true} - \Psi^{RP}) \rangle$ is the RP resolution

- Large contribution to the inclusive photons comes from hadrons with photon decay channels (π⁰, η, η', ω, ρ)
 ⇒ hadron yields as input in a cocktail calculation for MC to estimate v₂^{γ,bg}
- As only the π^0 spectra has been measured, other hadron yields are obtained from the $v_2^{\pi^0}(p_T)$ through m_T-scaling, under assumption that they follow the same behavior

The direct photon v_2 is expressed through the excess ratio $R_{\gamma}(p_T)$

$$v_2^{\gamma, dir} = rac{R_\gamma(p_T)v_2^{\gamma, incl} - v_2^{\gamma, bg}}{R_\gamma(p_T) - 1}$$

where the direct-photon excess ratio is defined as

$$\mathcal{R}_{\gamma}(p_{T}) = N^{incl}(p_{T})/N^{bg}(p_{T}) = (N^{meas}(p_{T}) - N^{had}(p_{T}))/N^{bg}(p_{T})$$

Values for R_{γ} are given by the electromagnetic calorimeter above 5 GeV/c and by the internal conversion measurement below this p_{T} (larger accuracy)

Systematic uncertainties

Contributing	Source	p_T range	
via		1 - 3 GeV/c	10 - 16 GeV/c
(type B)			
$v_2^{\gamma,incl}$	remaining hadrons	2.2%	N/A
_	v_2 extraction method	0.4%	0.6%
<i>π</i> ⁰		2 70/	6.00/
V_2^n	particle ID	3.1%	6.0%
	normalization	0.4%	7.2%
	shower merging	N/A	4.0%
	D	2 10/	2.20/
subctration	κ_{γ}	5.1%	2.270
(type C)			
common	reaction plane	6.3%	6.3%

Type B: uncertainties correlated with p_T Type C: overall normalization uncertainty v_2 in minimum bias collision using the BBC (black points) and the RxNP (red points) detectors

Steps of the analysis with the minimum bias sample for BBC and RXN separately: $v_2^{\pi^0}$ ans $v_2^{\gamma,incl}$ are measured , $v_2^{\gamma,dir}$ is derived

- bias introduced depending on the pseudorapidity region used for RP measurement: at high p_T, v₂ obtained using BBC or RXN diverges → jets modify event structure and bias the RP measurement
- ▶ bias on π^0 larger \Rightarrow high p_T hadrons from jets fragments
- small bias for inclusive photons as they are a mixture of biased hadron decay photons and unbiased direct-photons

Results - R_{γ} in MB collisions

The R_{γ} distribution (left plot) is obtained combining the directphoton invariant yield measurements using internal conversion (low p_T) and real photons (high p_T)

The R_{v_2} (right plot) highlights the different behaviour of the directphoton v_2 compared to the $\pi^0 v_2$

Results - v_2 centrality dependence

- large direct-photon v₂ at low p_T, comparable with π⁰ flow, that descrease rapidly above 5 GeV/c
- predictions can reproduce the shape of the flow but underestimate the magnitude
- while the large direct-photon v₂ could be explained by a production mechanism at a stage at which the bulk flow is already developed, the vanishing starting at 5 GeV/c remains a puzzle

Results - integrated v_2 vs N_{part} at $p_T > 6$ GeV

The influence of the location in pseudorapidity of the reaction plane detector can be clearly seen at low N_{part}

- > $\pi^0 v_2$ higher than inclusive photon v_2 (effect of the direct-photon contribution)
- Direct-photon v₂ measurement consistent with zero at all multiplicity

- > π^0 , inclusive and direct photons v_2 has been measured in the range $1 < p_T < 13 \text{ GeV/c}$ in Au-Au collisions at $\sqrt{s_{NN}}=200 \text{ GeV}$
- > a positive direct-photons v_2 is observed in the thermal region at low p_T (< 4 GeV/c), comparable with the π^0 and inclusive photon flow but of larger magnitude than the one predicted by theory
- at high p_T, the direct-photons v₂ is consistent with zero at all centralities, as expected if the dominant source of photon production is initial hard scattering
- experiment not sensitive to negative/positive v_2

Thermal photons as a Quark-Gluon Plasma thermometer

[arXiv:nucl-th/1308.2440v4]

Effective temperature from photon spectra

- Photons interact only electromagnetically and thus are able to traverse the medium from which they are emitted without further interaction
- As photons are emitted at all the collisions stages, their spectra are access points to the evolution of the fireball and of its temperature
- ➤ the variable used as reference and comparison to the data is the effective temperature T_{eff} which, in the low p_T region, is the measured spectra inverse logaritmic slope

$$rac{dN}{dyp_Tdp_T} \propto e^{-p_T/T_{eff}}$$

- \blacktriangleright T_{eff} values measured are:
 - ♦ T_{eff}=211±19±19 MeV in 0-20% Au-Au collisions at $\sqrt{s_{NN}}$ =200 GeV at RHIC
 - ← T_{eff}=304±51±51 MeV in 0-40% PbP-b collisions at $\sqrt{s_{NN}}$ =2.76 TeV at LHC
- ➤ Both values are far larger than the critical temperature for hadronization, $T_c = 155 - 170 \text{ MeV} \Rightarrow$ alternative interpretation to a QGP emission involves radiation from hadrons at temperature below T_c but due to a strong radial flow the emission spectrum is blueshifted to $T_{eff} > T_c$
- hydrodynamic model used to study the effects of collective flow on T_{eff} and emitted thermal photon spectra

Hydrodynamic model

- dynamical evolution fireball modelled with VISH2+1 (boost-invariant hydrodynamic code)
- ensemble-averaged Monte-Carlo Glauber (MCGlb)
- initial condition propagated with the equation of state (EoS) s95p-PCE-v0 with η/s=0.08 (viscosity over entropy)
- ► the hydrodynamic evolution is started at τ_0 = 0.6fm/c \rightarrow corrisponding to a maximum temperature in the center of the fireball equal to T₀=452 MeV for LHC and T₀=370 MeV for RHIC
- the evolution is stopped when the isothermal hadronic freeze-out surface has temperature T_{surf}=120 MeV

VISH2+1

- it describes transverse evolution of longitudinally boost-invariant systems without azimuthal symmetry around the beam direction
- > shear viscosity included \rightarrow longer QGP lifetime, larger radial flow (final state), and flatter transverse momentum spectra for emitted hadrons

s95p-PCE-v0

 parametrization of the QCD equation of state that combines hadron resonance gas at low temperatures with lattice QCD at high temperatures

- the photon emission rates used are corrected for deviation from local themal equilibrium since the evolution model incorporates viscous effect (non-zero shear viscosity)
- ➤ the emission rate from QGP and hadron gas (HG) are interpoleted to avoid discontinuities in the temperature range 184 MeV < T < 220 MeV where the EoS interpoletes between the lattice QCD calculation and the HG model
- \blacktriangleright only 2 \rightarrow 2 scattering process are included in the model
- ➤ only photon below p_T < 4 GeV/c are considered, contribution from hard scattering are of no interest and do not affect the inverse slope in this p_T region

Condition used only here for the comparison model calculation - data:

- baryonic contribution included multiplying by a factor 2 the net mesonic contribution
- $\blacktriangleright~2 \rightarrow 2$ ideal QGP rate is replaced by the full leading order one

- extrapolation at low p_T using $A/(1 + P_T/p_0)^n$
- photon yield missing from the model: jet-plasma interactions and fluctuating initial states

▶ area of circles proportional to total photon yield emitted at that T

- viscous corrections to photon emission rates large at high T (larger longitudinal expansion rate), become negligible at lower T
- below T = 220 MeV the radial flow is strengthening and has a copensation effect on T_{eff} while the fireball is cooling
- below T_{ch} = 165 MeV no more radial flow is developed and the system cooling is not compensated anymore

- above 2 fm/c the effective photon temperature is strongly blueshifted by radial flow
- viscous effects on the photon emission rates are visible at early times
- ▶ while the T vs τ plot shows that early photons are associated with high yield, T_{eff} vs T plot shows that most photons are emitted from a narrow temperature band between 165 and 220 MeV

T and blue-shifted T_{eff}

- photons are emitted with a distribution of thermodynamic temperatures for a given proper time τ
- panel (a) and (c) contour plots show differential photon yield per time τ and temperature T
- panel (b) and (d) the corresponding distribution of blue-shifted effective temperatures T_{eff}
- > above 2 fm/c a shift to higher T_{eff} is visible

T and blue-shifted T_{eff}

- photons are emitted with a distribution of thermodynamic temperatures for a given proper time τ
- panel (a) and (c) contour plots show differential photon yield per time τ and temperature T
- panel (b) and (d) the corresponding distribution of blue-shifted effective temperatures T_{eff}
- > above 2 fm/c a shift to higher T_{eff} is visible

- thermal photons can be used as a thermometer for QGP but their interpretation requires careful and sophisticated modelling
- large observed effective temperatures of thermal photons do not prove the emission of photons from QGP at T > T_c and do not reflect the initial temperature of the system
- nevertheless, a hot and dense expanding medium is needed to account for the large radial flow causing the observed effective photon temperatures
- the explanation offered by the model is that thermal photons are mostly emitted at a late stage where a strong radial flow is present and it is consistent with the elliptic flow measured at RHIC and LHC

Back up

Heavy-Ion Journal Club Lucia Leardini

0.8

1.80

1.08

0.72

0.36

0.00

Relative photon yield as a function of T at which photons were radiated

▶ curves for different $p_T \Rightarrow$ thermal photons probability distribution

- > at $p_T \sim 1.5$ GeV, photons from transition region (T ~ 220 MeV)
- ➤ at higher p_T: large peak at T>300 MeV and smaller peak at T~150-220 MeV: shift to lower photon energies due to fireball cooling is compensated (blue-shifted) by the increasing radial flow

Centrality dependence of the thermal photon yield

Photon yields centrality dependence studied for QGP and HG: experimentally measured centrality dependence of thermal photons closer to what predicted for HG photons than for QGP photons \Rightarrow the hydrodynamic calculations underestimate photon production rate in HG phase or near phase transition