

Glauber modelling in high-energy nuclear collisions

Jeremy Wilkinson

- Proton-proton collisions: large multiplicities of charged particles produced through multi-parton interactions (fluctuations in gluon PDFs)
- Heavy-ion collisions: Larger system → much higher overall multiplicity. High-multiplicity events also occur due to nucleonnucleon collisions

 Additional measurement parameter – centrality – defined in terms of N_{part} (number of participants, aka "wounded nucleons") and N_{coll} (number of binary collisions); characterises shape & size of overlap region

J. Wilkinson

- Problem: Impossible to directly measure centrality \rightarrow Impact parameter (b) on order of femtometres, $N_{part} \& N_{coll}$ can't be
 - directly measured
 - → Theoretical models developed to estimate
- Leading technique: Glauber model, named after Roy Glauber (right)
- Basic assumptions ("optical limit"):
 - → Nucleons at high energy → undeflected due to large momentum (linear trajectory)
 - → Nucleus large compared to nucleon-nucleon force
 - → Motion of nucleons independent of nucleus
 → overall cross-section described in terms of nucleon-nucleon cross section

Roy Glauber (Nobel Prize, 2005)

- Input for Glauber: inelastic nucleonnucleon cross section, density profile of nucleus
- Woods-Saxon distribution describes nuclear density profile:

$$\rho(r) = \frac{\rho_0 \left(1 + wr^2/R^2\right)}{1 + \exp((r - R)/a)}$$

- Parameters (see table) determined via e⁻-nucleus scattering (depends only on charge distribution of nucleus)
- Differences between distributions for protons and neutrons negligible

Nucleus	Α	R (fm)	a (fm)	W
Au	197	6.38	0.535	0
Pb	208	6.68	0.546	0
H. DeVries, C.W. De Jager, C. DeVries, 1987				

- "Projectile" B colliding with "Target" A at relativistic speed
- Impact parameter **b**, flux tube of nucleon at **s** relative to nucleus centre

- Probability per unit transverse area of nucleon in flux tube: $\hat{T}_A(\mathbf{s}) = \int \hat{\rho}_A(\mathbf{s}, z_A) dz_A$
- ρ_A = prob. of location per unit volume

Product of T_A, T_B can be used to define nuclear "thickness function"

$$\hat{T}_{AB}(\mathbf{b}) = \int \hat{T}_{A}(\mathbf{s}) \hat{T}_{B}(\mathbf{s} - \mathbf{b}) d^{2}s.$$

- Units: inverse area → effective overlap area of specific nucleons in A and B
- T(**b**) σ_{inel}^{NN} = probability of interaction (σ_{inel}^{NN} = inelastic cross section; elastic processes have little energy loss)
- Probability of *n* interactions then given by binomial distribution

$$P(n, \mathbf{b}) = {\binom{AB}{n}} \left[\hat{T}_{AB}(\mathbf{b}) \,\sigma_{\text{inel}}^{\text{NN}}\right]^n \left[1 - \hat{T}_{AB}(\mathbf{b}) \,\sigma_{\text{inel}}^{\text{NN}}\right]^{AB-n}$$

• Can be used to calculate $N_{coll'}$ $N_{part'}$ σ_{inel}^{tot}

$$\sigma_{\text{inel}}^{\text{A+B}} = \int_{0}^{\infty} 2\pi b db \left\{ 1 - \left[1 - \hat{T}_{AB}\left(b\right) \sigma_{\text{inel}}^{\text{NN}} \right]^{AB} \right\} \quad N_{\text{coll}}\left(b\right) = \sum_{n=1}^{AB} nP\left(n,b\right) = AB\hat{T}_{AB}\left(b\right) \sigma_{\text{inel}}^{\text{NN}}$$

$$\begin{aligned} N_{\text{part}}\left(\mathbf{b}\right) &= A \int \hat{T}_{A}\left(\mathbf{s}\right) \left\{ 1 - \left[1 - \hat{T}_{B}\left(\mathbf{s} - \mathbf{b}\right)\sigma_{\text{inel}}^{\text{NN}}\right]^{B} \right\} d^{2}s + \\ & B \int \hat{T}_{B}\left(\mathbf{s} - \mathbf{b}\right) \left\{ 1 - \left[1 - \hat{T}_{A}\left(\mathbf{s}\right)\sigma_{\text{inel}}^{\text{NN}}\right]^{A} \right\} d^{2}s, \end{aligned}$$

- Simple approach to Glauber calculations
- Nucleons have straight-line trajectories, σ independent of prev. interactions
- Nucleons distributed in 3D space according to Woods-Saxon (e.g. Au+Au, $\sqrt{s_{NN}} = 200 \text{ GeV}$)

• Impact parameter drawn at random from $d\sigma/db = 2\pi b$, collision happens if distance between nucleons $< \sqrt{(\sigma_{inel}^{NN}/\pi)}$

Impact parameter distribution shown for Au+Au, Cu+Cu and d+Au collisions

 Optical approach in Au+Au leads to larger cross section – perturbation seems small, but is significant (will come back to this later)

- Optical approach doesn't consider spatial coordinates of nucleons
- Nucleons see target as having smooth density (eikonal approach)
 - → Doesn't account for full physics of collision
 - \rightarrow Distortions between approaches in calculation of calculated $N_{\text{part}} \& N_{\text{coll}}$

esp. at large σ , or for small A / B

• σ^{AB} converges between approaches for pointlike $\sigma_{_{NN}}$ (left); little difference for geometric quantities (right)

J. Wilkinson

- As mentioned, N_{part} & N_{coll} not measured directly
 - → Observables (e.g. dN_{Evt}/dN_{ch}) must be mapped to these quantities via Glauber calculations
 - → "Centrality classes": percentiles (fraction of total integral) of centrality distribution.
- Convention: 0% = most central, 100% = most peripheral
- Classes justifiable as we expect monotonic relation between *b* and *N*_{ch}; peripheral → low mult, central → high mult

18/07/2014

- N_{ch} scales with q² (hardness) of collision; jet events have higher mult than minimum-bias collisions
- Assume majority of nucleon-nucleon collisions analogous to MB pp events
- Can estimate N_{ch} online via (energy deposited)/(<E> per charged particle) (e.g. PHOBOS paddles), or offline by counting charged tracks (e.g. STAR Time Projection Chamber, ALICE Silicon Pixel Detector)
- Below: $dN_{ch}/d\eta$ in PHOBOS for Au+Au collisions

- Monte Carlo approach can be adapted to include detector effects
 - → Detectors have finite resolution; no perfect 1-to-1 relation between b and measured N_{ch}
 - → Detector effects in simulation allow direct comparison between calculated + real distributions of N_{ch}
- Allows e.g. trigger inefficiencies to be accounted for

- Total geometric cross section (integral of distribution to right) simple in Glauber MC approach
- de Broglie wavelength small \rightarrow quantum effects small $\rightarrow \sigma_{_{geo}} \sim \sigma_{_{inel}}$
- Systematic uncertainty ~10%, mostly due to nuclear density profile
- Differences between optical + MC approaches lead to systematic differences in centrality binning for events

 Definition: participant (or "wounded") nucleon takes part in at least one collision.

- Smearing accounted for by fluctuations in random distribution
- Shape of N_{part}, N_{coll} distributions due to peripheral events being more likely

Estimating geometric quantities: systematic uncertainties

- Systematics can be estimated by varying model parameters:
 - → Value of nucleon-nucleon cross section
 - → Woods-Saxon parameters
 - → Detector resolution parameters
 - → Gaussian, instead of "black disc", overlap function
 - → Centrality cuts in experiment
 - → Trigger efficiencies
- Lower plot: Systematic difference of N_{part} when considering optical and MC approaches

Estimating geometric quantities: eccentricity

- Overlap region of nuclei is not spherically symmetric; more "almondshaped" → hydrodynamic evolution leads to momentum anisotropy → "elliptic flow"
- Eccentricity:

$$\epsilon = \frac{\langle Y^2 - X^2 \rangle}{\langle Y^2 + X^2 \rangle}$$

- Can be calculated in Glauber model in "standard" or "participant" method
 - → measuring eccentricity along reaction plane or principal axis of participant distribution
- Limiting behaviour for two methods very different

18/07/2014

Phenomena in p-A and A-A: charged-particle yields UNIVERSITÄT HEIDELBERG

- Multiplicity determined in 1970s to be proportional to N_{part}
- Found to be roughly true for Au+Au collisions at varying RHIC energies (right, PHOBOS)
- But particle density does not scale linearly with N_{part} (below, STAR)
- Model agreements vary depending on approximation used for N_{part} (optical or

ZUKUNFT

 Number of hard-scattering events proportional to T_{AB}

 $N_{\rm hard}^{\rm A+B,enc}(b) = T_{\rm AB}(b)\,\sigma_{\rm hard}^{\rm pp}$

- Particle yields at RHIC + LHC usually measured vs. transverse momentum $p_{\rm T}$
- Can define nuclear modification factor $R_{AB} \rightarrow$ effectively ratio of spectrum to that from protonproton collisions

$$R_{\rm AB}(p_{\rm T}) = \frac{(N_{\rm inel}^{\rm AB})^{-1} \,\mathrm{d}N_x^{\rm A+B}/\mathrm{d}p_{\rm T}}{\langle T_{\rm AB}\rangle_{\rm f} \,\mathrm{d}\sigma_x^{\rm pp}/\mathrm{d}p_{\rm T}}$$

Can be used to study energy loss
 in high-density medium

- Direct photons follow T_{AB} scaling;
 pions suppressed
 - → energy loss of partons due to hard scattering in QGP ("jet quenching")

Phenomena in p-A and A-A: eccentricity

- Hydrodynamics: initial-state spatial anisotropy → final-state momentum anisotropy
- Second term in Fourier expansion of dN/d ϕ : 2 v_2 cos[2($\phi - \Psi_R$)]; Ψ_R = angle of reaction plane
- Assumption: v_2 scales linearly with ϵ
- Dividing measured v_2 by ϵ : ϵ_{part} drives hydrodynamic evolution of system

18/07/2014

• RMS width of v_2 also measured; L: STAR, R: PHOBOS

- Agreement with ϵ_{part} implies fluctuations accounted for by fluctuations in initial-state geometry, meaning other sources such as Colour-Glass Condensate unnecessary for description

Phenomena in p-A and A-A: J/Y absorption in nuclear TURE T 1386 Phenomena in p-A and A-A: J/Y absorption in nuclear matter

- Due to large mass (> Λ_{QCD}), charm quarks produced in early stages of collision, not through thermal processes
 → Can use pQCD calculations to determine production rate
- J/Ψ suppression in heavy-ion collisions considered signature of QGP (due to screening of cc binding by free colour charges → but suppression also noticed in p-A collisions
 - → must be quantified before concluding on suppression in A-A collisions (p-A system size considered too small to create QGP)
- Possible "cold nuclear matter" effects: modification of PDFs in nucleus (shadowing); absorption of pre-resonant cc pairs
 → Glauber model can be used for latter

Phenomena in p-A and A-A: J/Y absorption in nuclear Matter

- Φ
- Processes inhibiting formation can be parametrised with constant absorption cross section σ_{abs} .
- Break-up probability p_{abs}:

$$p_{\text{abs}}(\mathbf{b}, z_{\text{A}}) = \sigma_{\text{abs}} \hat{T}_{\text{A}>}(\mathbf{b}, z_{\text{A}}) \text{ with } \hat{T}_{\text{A}>}(\mathbf{b}, z_{\text{A}}) = \int_{-\infty}^{\infty} \hat{\rho}_{\text{A}}(\mathbf{b}, z) \, \mathrm{d}z$$

• "Normal" suppression level classified as:

$$S_{\rm A+B} = \exp(-L\,\rho_0\,\sigma_{\rm abs})$$

 "Anomalous" suppression beyond this (as seen at SPS energies at CERN) seen as possible signal for QGP formation

- Glauber model in nuclear physics depends only on nuclear geometry
- Gives access to quantities that are otherwise unmeasurable ($N_{coll'}$ N_{part})
- N_{part} allows centrality-dependent measurements to be made and compared between different experiments
 - → Calculation simple, implemented in very similar way
 - → Theoretical bias small
- Many heavy-ion phenomena explicable through geometry
 Multiplicity scaling with M
 - \rightarrow Multiplicity scaling with N_{part}
 - → Role of anisotropy fluctuations in understanding elliptic flow
- Glauber model plays major role in understanding nuclear geometry in experiments at RHIC & LHC