QGP Physics − from Fixed Target to LHC

8. Hard scattering, Jets, and Jet Quenching

Prof. Dr. Johanna Stachel, Prof. Dr. Klaus Reygers Physikalisches Institut, Universität Heidelberg SS 2015

Hard Scattering

More than 99% of all particles (the bulk) have transverse momenta less than 2 GeV/c.

High- $p_{\tau}^{\,}$ particles in A+A can be used as a probe of the created medium

Jet Quenching: Basic Idea

What Can We Hope to Learn from Particles at High p_{7}^{\prime} and Jets?

- \bullet In heavy-ion physics, particles at high $p_{_{\cal T}}$ and jets are of great interest because
	- ‣ they are produced in the early stage of a heavy-ion collisions, prior to the formation of the quark-gluon plasma
	- ‣ their initial production rate can be calculated with perturbative QCD
- **•** Observables related to jet quenching may help to
	- ‣ characterize the new state of matter above *T^c*
	- ‣ understand the mechanism of parton energy loss
- **•** Basic logic

How Can We Study Jet Quenching?

Measurement of particle multiplicities at high p_{τ}

- Measurement of two-particle angular correlations
- Jet reconstruction on an event-by-event basis
	- Challenging in central nucleus-nucleus collisions at RHIC due to large particle multiplicity from the underlying event
	- Situation improves significantly for Pb+Pb at the LHC due to the increased cross section for jet production

Hard Scattering in p+p

Theoretical Description of High-*p***^T Particle Production: Perturbative QCD**

- **•** Scattering of pointlike partons described by QCD perturbation theory (pQCD)
- **•** Soft processes described by universal, phenomenological functions
	- Parton distribution function from deep inelastic scattering
	- ▶ Fragmentation functions from e⁺e collisions

Hadron Production in Leading Order QCD

Point Cross Sections at Leading Order

Parton Distributions: High Precision Data from HERA

Parton Distributions for Nuclei

J. Stachel. K. Reygers | QGP physics SS2015 | 8. Hard Scattering, Jets and Jet Quenching 11

Example: Gluon and u-Quark Fragmentation Functions

Albino, Kniehl, Kramer, Nucl. Phys. B 725 (2005), 181

Fragmentation functions: Number density for the production of a hadron h with fractional energy *z* in the fragmentation of a parton (e.g. determined from $e^+e^- \rightarrow Z^0 \rightarrow q\bar{q}$

J. Stachel. K. Reygers | QGP physics SS2015 | 8. Hard Scattering, Jets and Jet Quenching 12

 p_{parton}

Heavy Quark Fragmentation

- Heavy quark jets fragment hard into leading heavy meson
- Qualitatively different than g/uds $\rightarrow \pi$
- J.D. Bjorken, Phys Rev D17, 171 (1978)) Qualitative argument: heavy quark Q only marginally slowed down when picking up a light quark to form a heavy meson

Jet Quenching

Jet Quenching History

Energy Loss of Energetic Partons in Quark-Gluon Plasma: Possible Extinction of High p_T Jets in Hadron-Hadron Collisions.

> J. D. BJORKEN Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510

Abstract

High energy quarks and gluons propagating through quark-gluon plasma suffer differential energy loss via elastic scattering from This mechanism is very similar in structure to quanta in the plasma. ionization loss of charged particles in ordinary matter. The dE/dx is roughly proportional to the square of the plasma temperature. For this effect. An interesting signature may be events in which the hard collision occurs near the edge of the overlap region, with one jet escaping without absorption and the other fully absorbed.

FERMILAB-Pub-82/59-THY August, 1982

- \blacksquare Energy loss via elastic scattering was later believed to have only a minor effect on jets
- Radiative energy loss was discussed in the literature from 1992 on by Gyulassy, Pluemer, Wang, Baier, Dokshitzer, Mueller, Peigne, Schiff, Levai, Vitev, Zhakarov, Wang, Salgado, Wiedemann, …

Analogy: Energy loss of Charged Particles in Normal Matter

- μ^+ on Cu: Radiational energy loss ("bremsstrahlung") starts to dominate over collisional energy loss ("Bethe-Bloch formula") for $p \gg 100$ GeV/c
- **•** For energetic quarks and gluons in QCD matter, radiative energy loss via induced gluon emission is/was expected to be the dominant process

Collisional vs. Radiative Parton energy loss

- \blacksquare Elastic scatterings with medium constituents
- **Dominates at low particle** momenta

Collisional energy loss: Radiative energy loss:

- Inelastic scatterings within the medium
- Dominates at higher momenta

Parton Energy Loss

Review: U. Wiedemann, arXiv:0908.2306 (\rightarrow link)

Consider electric charge passing through matter. At sufficiently high energy it loses energy via bremsstrahlung. At very high energies, the charge scatters coherently off many medium constituents, leading to destructive interference. This so-called Landau-Pomeranchuk-Migdal (LPM) effect greatly reduces the radiatve energy loss.

Formation time of a radiated gluon: ("time for the fast parton to get rid of its virtuality")

$$
t_c \simeq \frac{\omega}{k_T^2} \simeq \frac{1}{\omega \theta^2} \qquad \qquad \overbrace{\hspace{2.5cm}}^{k, \omega}
$$

The gluon acquires additional transverse momentum if it scatters with medium constituents within its formation time (or formation length *z^c*):

$$
k_T^2 \simeq \hat{q} z_c = \frac{\mu^2}{\lambda} z_c
$$

This results in a medium-modified formation length:

$$
z_c \simeq \frac{\omega}{k_T^2} \simeq \sqrt{\frac{\omega}{\hat{q}}}
$$

 $\lambda < z_c$: Coherent scattering with destructive interference

 $\lambda > z_c$: incoherence

For fixed medium thickness *L*, z_c = *L* defines a critical energy ω_c : $\omega_c = \hat{q}L^2$ Gluons can be emitted with energies up to this critical energy.

There are three regimes for radiative energy loss:

1. Incoherent regime (mean free path $\lambda > z_c$):

$$
-\frac{dE}{dz} \simeq \frac{3\alpha_s}{\pi} \frac{E}{\lambda}
$$

2. Coherent regime (λ < *zc*) with medium thickness *L* > *zc* (saturated LPM regime)

$$
-\frac{dE}{dz} \simeq \frac{3\alpha_s}{\pi} \sqrt{\frac{E}{\hat{q}}}
$$

3. Coherent regime (λ < *zc*) with *L* < *zc*

$$
-\frac{dE}{dz} \simeq \frac{3\alpha_s}{\pi} \hat{q} L
$$

Medium-Modified Fragmentation Functions

In many parton energy-loss models the fragmentation of the quark and gluon jets is assumed to happen in the vacuum like in p+p. Parton energy loss can then be conveniently included in a pQCD calculation via modified fragmentation functions:

hadron h;	hadron h;		
E_q	$(1-\varepsilon)E_q$	$z = \frac{E_h}{(1-\varepsilon)E_q}$	$x = \frac{E_h}{E_q}$
$\blacktriangle P(\varepsilon)$	$D_{h=q}(z; Q^2)$	$= \frac{x}{(1-\varepsilon)}$	

\nProb. distr. for parton

\nEXAMPLE 18.8. (i) graphing weight".

energy loss ε ("Quenching weight")

Consider fixed parton energy loss ε:

$$
\frac{dn}{dx} = \frac{dn}{dz} \cdot \frac{dz}{dx} = D_{h/q}(z, Q^2) \cdot \frac{1}{1 - \varepsilon}
$$

Average over energy loss probability: Hadrons resulting

$$
D_{h/q}^{\text{med}}(x, Q^2) = \int_0^1 d\varepsilon \, P(\varepsilon) \, D_{h/q}(\frac{x}{1-\varepsilon}, Q^2) \, \frac{1}{1-\varepsilon}
$$

from gluon bremsstrahlung neglected

Energy loss in the GLV Formalism for Pb+Pb at the LHC

I. Vitev, Phys.Lett.B639:38-45,2006

Central Pb+Pb at $\sqrt{s_{NN}}$ = 5500 GeV:

 $L \approx 6$ fm, dN^g/dy = 2000, 3000, 4000

 ΔE_{gluon} / ΔE_{quark} = 9/4 only in the limit $E \rightarrow \infty$

The Discovery of Jet Quenching at RHIC

Discovery of Jet Quenching at RHIC (ca. 2000 - 2003) (I)

$$
R_{AB} = \frac{dN/dp_T|_{A+B}}{\langle T_{AB} \rangle \times d\sigma_{\text{inv}}/dp_T|_{p+p}},
$$

where $\langle T_{AB} \rangle = \langle N_{\text{coll}} \rangle / \sigma_{\text{ine}}^{\text{NN}}$

- **•** Hadrons are suppressed, direct photons are not
- **•** No suppression in d+Au (see below)
- **•** Evidence for parton energy loss

PHENIX: Phys.Rev.Lett.88:022301, 2002 PHENIX: Phys.Rev.Lett.91:072301, 2003 PHENIX: Phys.Rev.Lett.94:232301, 2005

STAR: Phys.Rev.Lett.89:202301,2002 STAR: Phys.Rev.Lett.90:082302,2003 STAR: Phys.Rev.Lett.91:172302,2003

Discovery of Jet Quenching at RHIC (ca. 2000 - 2003) (II)

Centrality Dependence of the π^0 and direct γ R_{AA}:

Direct photons follow T_{AB} scaling as expected for a hard probe not affected by the medium

Discovery of Jet Quenching at RHIC (ca. 2000 - 2003) (III)

Au+Au peripheral Au+Au central

 $p+p$ min bias p+p min. bias 02 0.2 1/N_{rigger} dN∕d(∆ \upphi) 1/N_{Trigger} dN/d(∆¢) ★ Au+Au Peripheral * Au+Au Central 0.1 0.1 **and ellip. flow subtracted** -1 0 $\mathbf{2}$ 2 -1 0 $\Delta \phi$ (radians) $\Delta \phi$ (radians) **Trigger particle:** *p***^T > 4 GeV/***c* **trigger particleAssociated particle:** *p***^T > 2 GeV/***c* **•** No jet correlation around 180° in central Au+Au

• Consistent with jet quenching picture

Discovery of Jet Quenching at RHIC (ca. 2000 - 2003) (IV)

No pion suppression in min. bias d+Au collisions \Rightarrow pion suppression is a final state effect caused by the created medium Further RHIC Results Related to Jet Quenching

π ⁰ *R AA* **with Higher Statistics (Run 4)**

Simple Interpretation of the Constant R_{AA}

 π ⁰ spectrum without energy loss: without energy loss π^o spectra at RHIC energy (√s_{NN} = 200 GeV) described with *n* ≈ 8 Constant fractional energy loss: $\varepsilon_{\rm loss}:=-\frac{\Delta p_T}{p_T}\;\;,\text{i.e.,}\;p_T'=(1-\varepsilon_{\rm loss})p_T$ with energy loss $(\epsilon_{\text{loss}} = 0.2)$ (However, QCD expectation is $\varepsilon_{\text{loss}} \sim \log(p_T)/p_T$)

This leads to:

$$
R_{AA} = (1 - \varepsilon_{\text{loss}})^{n-2} \implies \varepsilon_{\text{loss}} = 1 - R_{AA}^{1/(n-2)} \approx 0.2 \text{ for } R_{AA} \approx 0.25
$$

$$
R_{AA} \text{ depends on the parton energy loss and the shape of the } p_\tau \text{ spectrum}
$$

In this simplistic view the constant $R_{AA} \approx 0.25$ implies a constant fractional energy loss of about 20% in central Au+Au collisions at 200 GeV

J. Stachel. K. Reygers | QGP physics SS2015 | 8. Hard Scattering, Jets and Jet Quenching 32

 $p_T^{\text{}}$ (GeV)

Interpretation of the Rather Flat *R AA* **at RHIC**

Horowitz, Gyulassy, arXiv:1104.4958

Upper panel: Red: Fraction *f* of gluon jets as a function of jet $p_{\overline{T}}$ Black: fraction of π $^{\rm o}$ from gluons as a fct. of pion $\bm{\rho}_{_{\cal T}}$.

Lower panel: Partonic spectral index *n*($p_{_{\cal T}}$):

The rather flat $R_{_{\mathcal{A}\mathcal{A}}}^{}$ at RHIC can be interpreted as an accidental cancellation between

- 1) The fraction of high- p_{T} gluons to quarks
- 2) The hardening of the parton spectrum (increase of *n*(*p*₇))
- 3) The decrease in energy loss as a function of $p_{_{\cal T}}$

J. Stachel. K. Reygers | QGP physics SS2015 | 8. Hard Scattering, Jets and Jet Quenching 33

Further Results from Two-Particle Correlations: Away-Side Jets Visible Again For Higher Jet p_{τ}

- **•** Charged hadron correlation
- Trigger particle: $p_T > 8$ GeV/*c*
- Associated particle: $p_T > 6$ GeV/*c*

Results from the LHC: 1. Spectra

Increase of Hard Scattering Yields with √*s*

Hard probes more abundant at the LHC
Charged Hadron R_{AA} **in Pb-Pb at** \sqrt{s} **= 2.76 TeV**

$$
A = \frac{dN/dp_{\mathcal{T}}(A + A)}{\langle T_{AA} \rangle \times d\sigma/dp_{\mathcal{T}}(p + p)}
$$

$$
\langle T_{AA} \rangle = \langle N_{\text{coll}} \rangle / \sigma_{\text{inel}}^{pp}
$$
from Glauber calculation

- Expect R_{AA} = 1 in the hard scattering regime without nuclear effects $(p_T > 2 \text{ GeV/c})$
- Suppression by a factor 7 at $p_T \approx 6$ -7 GeV/c
- Rise of R_{AA} for $p_T > 7$ GeV/c indicates decrease of relative parton energy loss Δ*E*/*E* with increasing *E*

*R***AA for Identified Particles in Central Pb+Pb**

 $R_{AA}(p)$ > $R_{AA}(K) \approx R_{AA}(T)$ for $3 < p_T < 8$ GeV/c

Similar p, K and π R_{AA} for $p_T > 8$ GeV/c

Leading-parton energy loss followed by fragmentation in QCD vacuum (as in pp) for $p_{T,hadron} > 8$ GeV/c?

√sNN Dependence: π⁰ RAA for Heavy Nuclei at $\sqrt{s_{NN}}$ = 17.3, 62.4, and 200 GeV

R_{AA} at the LHC smaller than at RHIC: Increased Δ*E* apparently more important than effect of flatter initial parton spectra

Jet Transport Parameter from Data

- Fit of various models to $R_{AA}(p)$ at RHIC and the LHC
- **Jet transport parameter** (for E_{parton} = 10 GeV, QGP thermalization at τ_0 = 0.6 fm/*c*):

$$
\frac{\hat{q}}{T^3} \approx \begin{cases} 4.6 \pm 1.2 & \text{at RHIC,} \\ 3.7 \pm 1.4 & \text{at LHC,} \end{cases}
$$

$$
\hat{q} \approx \begin{cases} 1.2 \pm 0.3 & \text{GeV}^2/\text{fm at} \\ 1.9 \pm 0.7 & \text{GeV}^2/\text{fm at} \\ 1.9 \pm 0.7 & \text{Jet Coll., Phys. Rev. C90 (2014) 014909} \end{cases}
$$

■ Result relies on standard hydro description of the medium evolution

p+Pb at √s = 5.02 TeV: No Suppression

$$
R_{pPb} = \frac{dN/dp_{\mathcal{T}}(p+Pb)}{\langle T_{pPb} \rangle \times d\sigma/dp_{\mathcal{T}}(p+p)}
$$

$$
\langle T_{pPb} \rangle = \langle N_{\text{coll}} \rangle / \sigma_{\text{inel}}^{PP}
$$

pp reference interpolated from measurements at \sqrt{s} = 2.76 and 7 TeV

Absence of suppression in p-Pb confirms that suppression in Pb-Pb is a final-state effect

Verification of *T AB* **Scaling with Hard Photons**

Z Bosons as Penetrating Probes of the Hot, Dense Medium

Summary of Single Particle R_{AA} **results**

J. Stachel. K. Reygers | QGP physics SS2015 | 8. Hard Scattering, Jets and Jet Quenching 44

Hierarchy Expected for Different Types of Partons

$$
\Delta E_{\text{Gluon}} > \Delta E_{\text{Quark},m=0} > \Delta E_{\text{Quark},m\neq0}
$$
\nlarger color factor

\nlarger color factor

\nfor gluons:

\n1

\n2

\n2

\n3

\n4

\n4/3

\n5

\n6

\n7

\n8

\n1

Dokshitzer & Kharzeev, PLB 519(2001)199

Radiative vs. Collisional (i.e., Elastic) Energy Loss: Maybe ∆Ecollisional More Important Than Initially Thought?

D Meson RAA: Charm Quark Energy Loss Surprisingly Similar to Quark and Gluon Energy Loss

Radiative parton energy loss:

- Strong suppression also for D mesons (which cannot be explained by shadowing)
- Suppression of D mesons and pions surprisingly similar
	- **‣** pions mainly from gluons
	- dead cone effect for c and b
- Little indication for expected hierarchy

(however, need to carefully consider also the steepness of the initial parton spectra)

First Indication of a Different Energy Loss for c and b Quarks

B Mesons identified via displaced (non-prompt) J/ψ

 $B⁺$ (cτ = 491 μm)

+

 J/ψ

Results from the LHC: 2. Jets

Jet Event in a p+p Collision at √*s* **= 63 GeV**

Jets were discovered in e+e- in the late 1970's and then also observed in p+p

Evolution of a Jet Event

describable with pQCD

not describable with pQCD (only phenomenological models)

Jet-Finding Algorithms

- **•** Objective: reconstruct energy and direction of initial parton
- **•** Must be unambiguously applicable at the level of experimental data (tracks/towers) and in perturbative QCD calculation (parton level)
- **•** Starting point: list of calorimeter towers and/or charged hadron tracks
- **•** Two classes of algorithms:
	- ‣ Cone algorithm: traditional choice in hadron-hadron collisions
	- \triangleright Sequential recombination: traditional choice in e^+e^- collisions $(k_{\tau}$ algorithm, anti- k_{τ} algorithm)

Cone algorithm:

Sum content in cone with radius

$$
R = \sqrt{\left(\Delta \eta\right)^2 + \left(\Delta \phi\right)^2}
$$

Typical choice in p+p: $R = 0.7$

*k***T algorithm:**

Successively merge "particles" in order of relative transverse momentum ("run parton cascade backwards"). Termination of merging controlled by a parameter *D*

kT **jet algorithm**

- Algorithms starts with a list of preclusters (calorimeter cells, particles, or partons)
- **Calculate** p_T **and rapidity** *y* **for each precluster**
- For each precluster define $d_i = p_{T,i}^2$
- For each pair (*i*,*j*) of preclusters define

$$
d_{ij} = \min (p_{T,i}^2, p_{T,j}^2) \frac{\Delta \mathcal{R}_{ij}^2}{D^2}
$$

=
$$
\min (p_{T,i}^2, p_{T,j}^2) \frac{(y_i - y_j)^2 + (\phi_i - \phi_j)^2}{D^2}
$$

- For *D* = 1 and ΔR_i^2 << 1, d_{ij} is the minimal transverse momentum k_{τ} (squared) of one vector with respect to the other
- **Find minimum** d_{\min} **of all** d_i **and** d_{ij}
- **Merge preclusters** *i* **and** *j* **if** d_{\min} **is a** d_{ij}
- Else: Remove precluster *i* with $d_{min} = d_i$ from list of preclusters and add it to the list of jets
- \blacksquare Repeat until list of preclusters is empty

Anti-*k^T* **algorithm**

- **Jets reconstructed with the** k_T **algorithm don't have a well defined** shape/area
- This makes the subtraction of the energy from the underlying event difficult
- **Therefore, the anti-** K_T **algorithm is the standard choice for the LHC** experiments

$$
d_{ij} = \min(p_{T,i}^{2p}, p_{T,j}^{2p}) \frac{\Delta_{i,j}^2}{R^2}, \quad d_i = p_{T,i}^{2p}
$$

 $p=1:k_T$ algorithm

 $p = -1$: anti- k_T algorithm

Anti- $\boldsymbol{k}_{\mathcal{T}}$ algorithm vs. $\boldsymbol{k}_{\mathcal{T}}$ algorithm

arXiv:0802.1189

Two-Jet Event in Pb+Pb at √*s* **NN = 2.76 TeV (ATLAS)**

Dijet Energy Asymmetry in Pb+Pb

 ATLAS and CMS find large asymmetry in energy of dijets in Pb+Pb

Observations

 Dijets in Pb+Pb still back-to-back [no angular decorrelation]

Jet *R* λ_{AA} in Pb+Pb at √ $s_{_{\rm NN}}$ = 2.76 TeV ATLAS, arXiv:1411.2357 $R_{\textrm{M}}$ **ATLAS** anti- k_t , $R = 0.4$ jets 2011 Pb+Pb data, 0.14 nb⁻¹
²2013 *pp* data, 4.0 pb⁻¹ $\sqrt{s_{_{NN}}}$ = 2.76 TeV $\overline{}$ ╺ ╺● \blacksquare -8 ٠ 点点 0.5 ▔●▔ $|y| < 2.1$ 0 40 60 200 400 100 p_{τ} [GeV] $R_{\textrm{AA}}$ anti- k , $R = 0.4$ jets 2011 Pb+Pb data, 0.14 nb⁻¹ $\sqrt{s_{\text{min}}}$ = 2.76 TeV 2013 *pp* data, 4.0 pb^{-1} \bullet \bullet \bullet Θ Θ ⊖ 0.5 $80 < p_{\text{t}} < 100 \text{ GeV}$ $|y|$ < 2.1 0^L_O 50 100 150 200 250 300 350 400 $\langle N_{\text{part}} \rangle$ Jet $R_{_{AA}} \approx 0.5$ in central Pb+Pb (anti- k_T , $R = 0.4$)

J. Stachel. K. Reygers | QGP physics SS2015 | 8. Hard Scattering, Jets and Jet Quenching 58

CMS Jet Results in Pb+Pb

Single particle R_{AA} and jet R_{AA} consistent $(z = p_{\tau}$ (track)/ p_{τ} (jet) = 0.4 – 0.6 for charged particles with p_{τ} = 50-100 GeV)

b-quark jet suppression similar to light quark jet suppression

Modification of Jet Fragmentation in central Pb+Pb

Gamma-Jet Correlations

Gamma-Jet Correlations

 $p_{T}^{\gamma} > 60$ GeV/c $| \eta^{\gamma} | < 1.44$

Average fraction of isolated photons with an associated jet above 30 GeV/c

 p_{T}^{jet} > 30 GeV/c ln^{jet} < 1.6

Average ratio of jet p_T to photon p_T

Points to Take Home

- High- p_7 particles can be regarded as a probe of the medium created in heavy-ion collisions
- The suppression of high- p_7 particles in A+A collisions can be described by parton energy loss in a medium of high color charge density
- **Many open issues in parton energy loss theory:**
	- ◆ Reaction plane dependence of $R_{\rm A4}$
	- Heavy-quark energy loss
	- ◆ Similar R_{AA} at RHIC and LHC
	- \bullet ...
- Full jet reconstruction is challenging at RHIC due to large backgrounds
- The increased jet cross section allows one to study parton energy loss in Pb+Pb collisions with full jet reconstruction at the LHC

Extra slides

RAA for Electrons from c- and b-Quark Decays

e⁺ and e⁻ from c and b decays as strongly suppressed as pions: $\Delta E_{\rm Gluon} > \Delta E_{\rm Quark,m=0} > \Delta E_{\rm Quark,m\neq0}$ not observed!

v2 > 0 at Large pT: Parton Energy Loss in plane out-of-planeALICE, Physics Letters B 719 (2013) 18 0.3 • v_2 (ALICE) • v_3 (ALICE) • $v_{4/\Psi}$ (ALICE) 30-40% \circ v₂ (ATLAS) \Box v₃ (ATLAS) \triangle v_{4/ Ψ}[°] (ATLAS) \mathbf{v}_2 (CMS) \star v₂ (STAR) 0.2 v_2 expected due to different path lengths in the QGP in plane and out-of-plane 0.1 圓 囜 0 ALICE Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV -0.1 2 6 8 10 12 14 18 4 16 20 p_T (GeV/c)

J. Stachel. K. Reygers | QGP physics SS2015 | 8. Hard Scattering, Jets and Jet Quenching 66

Š,

Particle Species Dependence of *R AA*

Dependence on the Size of the Nucleus: √sNN Dependence of the π⁰ RAA for Cu+Cu (*A* **= 63)**

62.4 and 200 GeV π⁰ production less suppressed than in Au+Au

22.4 GeV

- **•** No suppression
- **•** Enhancement consistent with a calculation that describes Cronin effect in p+A

Phenix, Physical Review Letters 101,162301 (2008)

Same conclusion as for heavier nuclei: Parton energy loss starts to prevail over Cronin enhancement between $\sqrt{s_{NN}}$ = 22.4 GeV and 62.4 GeV

RAA for Electrons from Heavy Quarks: Not Understood with Current Energy Loss Models

• Radiative energy loss not sufficient to describe excess electron R_{AA} **•** Including elastic scattering improves the situation only slightly

Charged Hadron R_{AA} **at high** p_{T}

- \blacksquare Rise of $R_{\sf AA}$ with ρ_{τ} for the first time established at the LHC
- **E** Large p_{τ} reach helps unveil dependence of parton energy loss on initial parton energy

Z Bosons as Penetrating Probes of the Hot, Dense Medium

Z bosons in Pb+Pb follow T_{AB} scaling

Why is Jet Reconstruction Difficult in Central Au+Au Collisions at RHIC ?

- Background energy large compared to jet energy in A+A at RHIC.
- Increased jet cross section helps at LHC

J. Stachel. K. Reygers | QGP physics SS2015 | 8. Hard Scattering, Jets and Jet Quenching 72

Central Au+Au collision at $\sqrt{s_{NN}}$ = 130 GeV:

$$
\left. \frac{dE_T}{d\eta} \right|_{\eta=0} \approx 500\,\mathrm{GeV}
$$

Consider jet cone with radius *R*:

$$
R=\sqrt{\left(\Delta\eta\right)^2+\left(\Delta\phi\right)^2}=0.4
$$

Total transverse energy in this cone:

 Ω \sim

 $E_T^{\rm cone}$

$$
= \frac{d^2 E_T}{d\eta d\phi} \cdot \pi R^2
$$

$$
= \frac{1}{2\pi} \frac{dE_T}{d\eta} \cdot \pi R^2 \approx 40 \,\text{GeV}
$$
