Problem 13: HBT correlations for an extended static source

For an extended static spatial distribution $\rho(\vec{x})$ of incoherent sources (with $\int d^3x \rho(\vec{x}) = 1$) the probability to detect a pair of pions with momenta \vec{k}_1 and \vec{k}_2 is given by

$$P(\vec{k}_1, \vec{k}_2) = \frac{1}{2} \int d^3 x_1 d^3 x_2 \,\rho(\vec{x}_1) \rho(\vec{x}_2) |\psi(\vec{k}_1, \vec{k}_2)|^2$$

where $|\psi(\vec{k}_1, \vec{k}_2)|^2 = \frac{1}{V^2} (1 + \cos(\Delta \vec{k} \cdot \Delta \vec{x}))$. Show that the correlation function $C_2 = \frac{2P(\vec{k}_1, \vec{k}_2)}{P(\vec{k}_1)P(\vec{k}_2)}$ is given by

 $C_2 = 1 + |\tilde{\rho}(\Delta \vec{k})|^2$

where $\tilde{\rho}(\vec{k}) = \int d^3x \rho(\vec{x}) e^{i\vec{k}\vec{x}}$ is the Fourier transform of $\rho(\vec{x})$.

Problem 14: Simple energy loss model

- a) Find the formula for the charged-hadron $R_{AA}(p_T)$ for a transverse momentum spectrum described by $1/p_T dn/dp_T \sim 1/p_T^n$ assuming a constant absolute energy loss Δ of the partons.
- b) Determine the value Δ which describes the $R_{AA}(p_T)$ measured in central (0–5%) Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ (arXiv:1611.01664) for $p_T \gtrsim 25 \text{ GeV}/c$ best by extending the jupyter notebook charged_hadron_Raa_homework.ipynb. This notebook reads a data file obtained from hepdata.net.

Problem 15: Moving thermal photon source

A photon source at rest emits photons in the directions of a detector with an energy spectrum

$$\frac{\mathrm{d}n_{\gamma}}{\mathrm{d}E^*} \propto \frac{{E^*}^2}{\exp\left(E^*/T\right) - 1}$$

What energy spectrum dn_{γ}/dE is measured in the detector if the photon source moves with a velocity β towards the detector? Plot the energy spectrum dn_{γ}/dE for $\beta = 0$ and $\beta = 0.6$.