Problem 19: Initial QGP temperature

Under the assumption of entropy conservation during the space-time evolution of a heavy-ion collision one can estimate the initial temperature of the QGP from the measured charged-particle multiplicity dN_{ch}/dy . In the Bjorken model, the initial entropy density of the QGP at time τ_0 is given by

$$s_{\rm Bj} = \frac{1}{A\tau_0} k \frac{\mathrm{d}N_{\rm ch}}{\mathrm{d}y}$$

where the entropy per charged particle is $k \approx 7.2$. *A* is the transverse area.

- a) Plot the initial temperature of the QGP as a function of τ_0 for central Pb–Pb collisions at the LHC $(dN_{ch}/dy \approx 1800, R_{Pb} = 6.62 \text{ fm})$. Use a degeneracy factor $g_{QGP} = 42.25$ corresponding to 2.5 active quarks flavors.
- b) What is the initial temperature for $\tau_0 = 1 \text{ fm}/c$?

Problem 20: Dissociation temperatures

When the screening mass $\mu(T)$ of the QGP reaches a critical value μ_D , the corresponding quarkonium state cannot form in the QGP (take $\mu_D = 0.699, 0.357, 1.565, 0.671 \text{ GeV}$ for J/ψ , ψ' , $\Upsilon(1S)$, $\Upsilon(2S)$, respectively). The screening mass is approximately given by

$$\mu(T) = \sqrt{1 + \frac{n_f}{6}}g(T/T_c)T$$

where the coupling g is given by

$$g^2\left(\frac{T}{T_c}\right) \approx \text{const} = \frac{48\pi^2}{(33 - 2n_f)\ln(F^2)}, \quad F \approx 35.$$

Assume three active quarks flavors ($n_f = 3$).

- a) Plot $\mu(T)$ as a function of T/T_c along with the μ_D values of the four quarkonium states.
- b) Calculate the dissociation temperature T_D/T_c of the four states.