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Multivariate ana ySiS: G. Cowan, Lecture on Statistical data analysis
An early example from particle physics
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https://www.pp.rhul.ac.uk/~cowan/stat/stat_6.pdf

Machine learning

"Machine learning is the subfield of computer science that gives computers
the ability to learn without being explicitly programmed” — Wikipedia

Traditional Programming Machine Learning Programs

J. Mayes, Machine learning 101
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https://docs.google.com/presentation/d/1kSuQyW5DTnkVaZEjGYCkfOxvzCqGEFzWBy4e9Uedd9k/preview?imm_mid=0f9b7e&cmp=em-data-na-na-newsltr_20171213&slide=id.g168a3288f7_0_58

Deep learning

"deep” In deep learning: artificial neural nets with multiple layers of
nonlinear processing units for feature extraction

Machine Learning

Deep Learning

N

I |
1950's 1960's 1970's 1980's 1990's 2000's 2010's

J. Mayes, Machine learning 101
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https://docs.google.com/presentation/d/1kSuQyW5DTnkVaZEjGYCkfOxvzCqGEFzWBy4e9Uedd9k/preview?imm_mid=0f9b7e&cmp=em-data-na-na-newsltr_20171213&slide=id.g168a3288f7_0_58

Machine learning: The "hello world" problem

Recognition of handwritten digits

<

MNIST database

(Modified National Institute of
Standards and Technology
database)

60,000 training images and
10,000 testing images labeled
with correct answer

28 pixel x 28 pixel

Algorithms have reached "near-
human performance”

Smallest error rate (2018): 0.18%
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Machine learning: Image recognition

ImageNet database
» 14 million images, 22,000 categories

» Since 2010, the annual ImageNet Large Scale Visual Recognition Challenge
(ILSVRO): 1.4 million images, 1000 categories

» In 2017, 29 of 38 competing teams got less than 5% wrong

https://en.wikipedia.org/wiki/lmageNet
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https://www.tensorflow.org/tutorials/image_recognition
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ImageNet: Large Scale Visual Recognition Challenge

Error rate:

2010 2011 2012 2013 2014 2014 2015 Human

Sanchez apd Krizhevsky et al Zeiler and &%gﬁ::‘nd Szegedy et al He et al

e Perronnin (AlexNet) Fergus e (GooglLeNet) (ResNet) Russakavsky et al

O. Russakovsky et al, arXiv:1409.0575
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Further examples (l):

Segmenting and Localizing Objects
|
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—urther examp
mage captioning

A man riding skis on a snow covered ski slope.
NP: a man, skis, the snow, a person, a woman, a snow covered slope,
a slope, a snowboard, a skier, man.

VP: wearing, riding, holding, standing on, skiing down.
PP: on, in, of, with, down.

A man wearing skis on the snow.

A slice of pizza sitting on top of a white plate.

NP: aplate, a white plate, a table, pizza, it, a pizza, food, a sandwich,
top, a close.

VP: topped with, has, is, sitting on, is on.

PP: of, on, with, in, up.

A table with a plate of pizza on a white plate.

es (II):

4 [Lebret, Pinheiro, Collobert 2015][Kulkarni 11][Mitchell 12][Vinyals 14][Mao 14]

o~ " ,

A man is doing skateboard tricks on a ramp.
NP: a skateboard, a man, a trick, his skateboard, the air, a
skateboarder, a ramp, a skate board, a person, a woman.

VP: doing, riding, is doing, performing, flying through.

PP: on, of, in, at, with.

A man riding a skateboard on a ramp.

A baseball player swinging a bat on a field.

NP: the ball, a game, a baseball player, a man, a tennis court, a ball,
home plate, a baseball game, a batter, a field.

VP: swinging, to hit, playing, holding, is swinging.

PP: on, during, in, at, of.

A baseball player swinging a bat on a baseball field.

¥ad

¥ R5 %

Py ol Y

tnds under the ambrella.

-

The girl with blue hair s

NP: a woman, an umbrella, a man, a person, a girl, umbrellas, that, a
little girl, a cell phone.

VP: holding, wearing, is holding, holds, carrying.

PP: with, on, of, in, under.

A woman is holding an umbrella.

A bunch of kites flying in the sky on the beach.
NP: the beach, a beach, a kite, kites, the ocean, the water, the sky,
people, a sandy beach, a group.

VP: flying, flies, is flying, flying in, are.

PP: on, of, with, in, at.

People flying kites on the beach.
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: LeCun 2018, Power And Limits of Deep Learning,
Three types Of |earn|ng https://www.youtube.com/watch?v=0tEhw5torhc

Reinforcement learning

» The machine ("the agent") predicts a
scalar reward given once in a while

» Weak feedback

ﬁ- ﬁ.

A '] |
arxXiv:1312.5602

Supervised learning

» The machine predicts a category
based on labeled training data

» Medium feedback

Unsupervised learning Feature 2 N Aurélien Géron,
. . . 4 N X‘ ° Hands-On Machine
» Describe/find hidden structure from R o o088 Learning with Scikit-
"unlabeled"” data ool 08 e Learn and TensorFlow
. . 0%, %80 &
» Cluster data in different sub-groups R Example: |
Wlth Slmllar properhes .. .. Training instances aﬂO£ﬂ8|y deteCtIOﬂ

Feature 1
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Material
Multivariate analysis
= Pushpalatha C. Bhat, Multivariate Analysis Methods in Particle Physics

= | ecture "Statistical Methods in Particle physics" (WS 2017/18)

» https://www.physi.uni-heidelberg.de/~reygers/lectures/2017/smipp/
stat_methods_ss2017_08_multivariate_analysis.pdf

Machine learning
= |an Goodfellow and Yoshua Bengio and Aaron Courville,
Deep Learning, http://www.deeplearningbook.org/

= Aurélien Géron, Hands-On Machine Learning with Scikit-Learn and
TensorFlow

= hittp://cs231n.stanford.edu/slides
= Michael Nielsen, https://neuralnetworksanddeeplearning.com/

= CERN academic training lecture:
Michael Aaron Kagan, Machine learning,
https://indico.cern.ch/event/619370/

Introduction: Multivariate analysis and machine learning | K. Reygers 13
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https://neuralnetworksanddeeplearning.com/
https://www.annualreviews.org/doi/10.1146/annurev.nucl.012809.104427

Contents

1.

2. A selection of methods for multivariate
classification
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Multivariate Classification

Consider events which can be either signal or background events.

Each event is characterized by n observables:

X =(x1, ..., Xn) "feature vector"

Goal: classify events as signal or background in an optimal way.

This is usually done by mapping the feature vector to a single variable, i.e.,
to scalar "test statistic”:

R" - R: y(X)

A cut y > ¢ to classify events as signal corresponds to selecting a
potentially complicated hyper-surface in feature space. In general superior
to classical "rectangular” cuts on the xi.

Introduction: Multivariate analysis and machine learning | K. Reygers 15



Classification: Different Approaches

rectangular cuts non linear

k-Nearest-Neighbor,
Boosted Decision Trees,
Multi-Layer Perceptrons,
Support Vector Machines

G. Cowan':
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Introduction: Multivariate analysis and machine learning | K. Reygers 16



Hypothesis testing

test statistic:

A » a (usually scalar) variable which is a function
[
S f (t‘ HO) of the data alone that can be used to test
hypotheses

» example: x2 w.r.t. a theory curve

f(t|H1)
background signal
p |a .
fou " fest statistic
B = (v "background efficiency’, I.e., prob. to misclassify bckg. as signal
es =1 — 3 "signal efficiency”
Hy is true Hy is false (i.e., Hy is true)
Hy is rejected Type | error () Correct decision (1 — f3)

Hy is not rejected Correct decision (1 — «) Type Il error (5)

Introduction: Multivariate analysis and machine learning | K. Reygers 17



Neyman—Pearson Lemma

The likelihood ratio
f(X|Hy) H; : signal hypothesis

t v —
(%) f(X|Hop) Hy : background hypothesis

IS an optimal test statistic, i.e., it provides highest "signal efficiency" 1 — (3 for a

given "background efficiency" a.

_ F(X]H)
f (X|Ho)

Accept hypothesis if  t(X) > C

Problem: the underlying pdf's are almost never known explicitly.

Two approaches:

1. Estimate signal and background pdf's and construct test statistic based on
Neyman-Pearson lemma

2. Decision boundaries determined directly without approximating the pdf's
(linear discriminants, decision trees, neural networks, ...)

Introduction: Multivariate analysis and machine learning | K. Reygers 18



—stimating PDFs from Histograms®?

Consider 2d example:

G. Cowan': https://www.pp.rhul.ac.uk/~cowan/stat_course.html

> > 5
Signal * g ":.'%._.:_._.s-.?: .‘ - ] * ..|. i : . baCk_
¥ :I“’;{:i “;‘ )} A I L O | ground
4 a - l’.
g ? vt -
. °

approximate PDF by N(x, y|S) and N(x, y|B)

M bins per variable in d dimensions: Md cells
— hard to generate enough training data (often not practical for d > 1)

In general in machine learning, problems related to a large number of
dimensions of the feature space are referred to as the "curse of dimensionality”

Introduction: Multivariate analysis and machine learning | K. Reygers 19



ROC Curve

Quality of the classification can be characterized by the receiver operating

characteristic (ROC curve)

Background rejection versus Signal efficiency
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Methods discussed in the following slides

Methods based on Neyman-Pearson lemma

» Naive Bayesian classifier

» k-Nearest Neighbor

Other methods

4

4

4

Fisher's linear discriminant

—eedforward Neural Network

Boosted decision trees

Introduction: Multivariate analysis and machine learning | K. Reygers
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Nalve Bayesian classifier
(also called "Projected likelihood classification")

Application of the Neyman-Pearson lemma
(ignoring correlations between the x):

f(x1,X2,...,Xn) approximated as L = fi(x1) - fa(x2) - ... - fa(Xn)
where fi(x1) = /dXQdX3...an f(x1, X2, ..., Xp)

fo(x2) = /dxldx3...dxn f(x1, %2, ..., Xp)

Classification of feature vector x :

L L® !
y(X) = L(X) + Lo(X) 1+ Lp(X)/Ls(X)

Performance not optimal if true PDF does not factorize

Introduction: Multivariate analysis and machine learning | K. Reygers 22



—xample: Electron ID with the ALICE TRD (I)

T - cathode pads

° ° A ‘ ‘ ‘ ‘ U ‘ ‘ ‘
amphﬁcat}on oy 4’ anode wires
region ' [— '
1o | T (@M .
X , cathode wires
|!
. {
drift ' |
region ' !
3.0 cm |
’i
v Enny drift
1 d electrode
radiator .t &
4.7 cm
€ZT v
\ 1 |
2 pion electron ALICE. arXiv:1709.02743
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—xample: Electron ID with the ALICE TRD (Il

Doctoral thesis A. Wilk:

ALICE, arXiv:1709.02743 https://inspirehep.net/record/1231193/
S\ _I T 1 T T 1 | T T 1 | T T 1 | T T T | T 1 I_ A I
£ 120 o e dE/dx + TR N g 008 . T
= I m e dE/dx i 8 I
D100 — v
o i 1 i
= T ) 0.06
S 80 - *
= - 1
Q [ ] !
) L _
O 60r i 0.04 _
O N A A A A A AAAAAA - f
q>) 40__ TomsmmEEEEEE T _ PEle)}{------
< | i |
i 0.02 .
20— p = 2 GeV/c PE) FF--1---- N
O_ II|IIII|IIII|IIII|IIII|IIII_ O \\\‘\\\\‘:\w\‘w\\\\\ L | L
0 0.5 1 1.5 2 2.5 3 0O 10 20 30 40 50 60 70 80 90 100
_ td (HS) Deposited Charge (arb. Units)
6 in case of the ALICE TRD
\ i
chambers Nchambers P
.. e
P, = H P(Eile), P, = H P(E;|m), test statistic t =
: : Pe + P7r
=1 =1 /

/

likelihoods can be multiplied here
(independent information)

high values (close to unity)
iIndicate high prob. for an electron
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k-Nearest Neighbor Method (l)

k-NN classifier
» Estimates probability density around the input vector

» p(X|S)and p(X|B) are approximated by the number of signal and background events in
the training sample that lie in a small volume around the point X

Algorithms finds k nearest neighbors:

k = ks + kg
Probabillity for the event to be of signal type:

ks(X)
ks(X) + kp(X)

ps()?) —

Introduction: Multivariate analysis and machine learning | K. Reygers 25



k-Nearest Neighbor Method (lI)

. , , TMVA manual
Simplest choice for distance https://root.cern.ch/guides/tmva-manual
measure in feature space is the 1.5 o e

Euclidean distance:

R=IX-y

Better: take correlations between
variables into account:

R=1/(%~7)TV-1(z )

V = covariance matrix

"Mahalanobis distance”

The k-NN classifier has best performance when the boundary that separates
signal and background events has irregular features that cannot e easily
approximated by parametric learning methods.

Introduction: Multivariate analysis and machine learning | K. Reygers 26



Fisher Linear Discriminant

Linear discriminant is simple. Can still be optimal if amount of training data is
limited.

Ansatz for test statistic: ~ y(X) = » wix; = W'

Choose parameters w; so that separation between signal and background
distribution is maximum.

.
Need to define "separation". f ) ;

Fisher: maximize J(w) =

Y
G. Cowan';
https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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-1sher Linear Discriminant:
Determining the Coefficients w;

Coefficients are obtained from:

linear decision boundary

Linear decision boundaries

Weight vector w can be interpreted as a
direction in feature space on which the
events are projected.

G. Cowan':
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Introduction: Multivariate analysis and machine learning | K. Reygers 28



Supervised Machine Learning (l)

Supervised Machine Learning requires labeled training data, i.e., a training
sample where for each event it is known whether it is a signal or background
event

» Decision boundary defined by minimizing a loss function ("training")

Bias-variance tradeoftf

» Classifiers with a small number of degrees of freedom are less prone to statistical
fluctuations: different training samples would result in a similar classification boundaries
("small variance")

» However, if the data contain features that a model with few degrees of freedom cannot
describe, a bias is introduced. In this case a classifier with more degrees of freedom
would be better.

» User has to find a good balance

Introduction: Multivariate analysis and machine learning | K. Reygers
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Supervised Machine Learning (ll)

Training, validation, and test sample
» Decision boundary fixed with training sample
» Performance on training sample becomes better with more iterations
» Danger of overtraining: Statistical fluctuations of the training sample will be learnt

» Validation sample = independent labeled data set not used for training
— check for overtraining

»  Sign of overtraining: performance on validation sample becomes worse
— Stop training when signs of overtraining are observed ("early stopping”)

» Performance: apply classifier to independent test sample

» Often: test sample = validation sample (only small bias)

Introduction: Multivariate analysis and machine learning | K. Reygers 30



Supervised Machine Learning (lll)

Rule of thumb If training data not expensive

» Training sample: 50%
» Validation sample: 25%

» Test sample: 25%

often test sample = validation sample,
.e., training : validation/test = 50:50

Cross validation (efficient use of scarce - gg't‘da“O” g“‘”g
training data)
» Split training sample in k independent - | run 1
subset T« of the full sample T |
» Train on T\ Tk resulting in k different - run 2
classifiers
. - [ ] run 3
» For each training event there is one
classifier that didn't use this event for I - un 4

training

» Validation results are then combined

Introduction: Multivariate analysis and machine learning | K. Reygers
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Rosenblatt, 1957

Retina

D) erce p't ron Associative area

Treshold element

sign(w’ x)

o~
==

oS I I

n /
Discriminant:  y(X) = h | wo + Z Wi Xj ?

=1
The nonlinear, monotonic function h IS original perceptron:
called activation function. activation function = step function
1 2 3 MR )]
Examples for h: ("sigmoid”), tanhx
14 eX
X
X1 L
0.8
0.6
X
y(X) o
0.2
X, sigmoid activation function
— "logistic regression” 0
-4 -2 0 2 4
X
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The Biological Inspiration: the Neuron

Cell body
Axon Telodendria
/ﬁv
Nucleus | /
P Axon hillock Synaptic terminals
. ) ‘?‘ o .
< ~——__  Human brain:
Golgi apparatus 101" neurons, each with on average
Endoplasmic 7000 synaptic connections
reticulum ~
L WP
Mitochondrion \ \ Dendrite Input

/ k Dendritic branches

https://en.wikipedia.org/wiki/Neuron
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Feedforward Neural Network with One Hidden Layer

superscripts indicates layer number

X, /
Gi(X) = h [ wig) + > w;'x
j=1
2) — h (2) (2) (v
y(X) Wio T Z Wi ;(X)
X, j=1

hidden layer

Straightforward to generalize to multiple hidden layers

Introduction: Multivariate analysis and machine learning | K. Reygers 34



Network Training

X, . training event, a=1,..., N

t, . correct label for training event a

\

e.g., ta = 1, O for signal and background, respectively

w : vector containing all weights
Loss function (example):
Ly 1 Lo ,
E(W) = 5 3 (5o, ) — ) = Y Eu(i)

Weights are determined by minimizing the loss function (also called error
function)

Introduction: Multivariate analysis and machine learning | K. Reygers 35



Back-propagation (l)

Start with an initial guess w'® for the weights an then update weights after

each training event:

Gradient descent:

Wi learning | K. Reygers 36



Back-propagation (ll)

Let's write network output as follows:

y(X) = h(u(X)) with u(X) = Z wy) 6i(%), 6j(%) = h (Z Wi Xk) = h(v(X))

Here we defined ¢o = xo = 1 and the sums start from O to include the offsets.

Weights from hidden layer to output:

1 OE ou
Ea:_ya_ta2 ? a:y_tah/
0= 8 = 2 = 0= LK WRD)

(Ya — ta)h/(u()?a))gbj()?a)

Further application of the chain rule gives weights from input to hidden layer.
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Neural Network Output and Decision

Boundaries

P. Bhat, Multivariate Analysis Methods in Particle Physics, inspirehep.net/record/879273

a Input Hidden Output b
layer layer layer 800="'|"'|"'|'--|---_
[ — Signal
. — Background ; Ou-tpu-t Of
g /g/ neural network
“g a0 I
0 !
£
2
200
00 0.2 04 0.6 0.8 1
Xj h; 0(x) = f(x,w) NN output
C
25 T
: Yo * | * Signal pd
A i
I B2 _ i |
decison  § KRG s signal
boundaries 3§ | EEESERAERS. ] ! probability
for different el ] p(s | x1, x2)
cuts on NN gL —
output i
00 50 100 150 200

Variable x,
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—xample of Overtraining

Too many neurons/layers make a neural network too flexible
— overtraining

A G. Cowan: https://www.pp.rhul.ac.uk/~cowan/stat_course.html
> >

- training sample - test sample

Network "learns” features that are merely
statistical fluctuations in the training sample

Introduction: Multivariate analysis and machine learning | K. Reygers 39



G. Cowan:

M on |tO ri N g Ove rt ral N | N g https://www.pp.rhul.ac.uk/~cowan/stat_course.ntml

Monitor fraction of misclassified events (or loss function:)

optimum = minimum of
error rate for test sample

error rate

overtraining =
Increase of error rate

test sample

training sample
>

flexibility (e.g., number
of nodes/layers)

Introduction: Multivariate analysis and machine learning | K. Reygers 40



Deep Neural Networks

Deep networks: many hidden layers with large numlber of neurons

Challenges Big progress in recent years
» Hard too train ("vanishing gradient » Interest in NN waned before ca. 2006
problem”) » Milestone: paper by G. Hinton (2006):
» Training slow "learning for deep belief nets”
» Risk of overtraining » Image recognition, AlphaGo, ...

» Soon: self-driving cars, ...

) hidden layer 1  hidden layer 2 hidden layer 3
input layer

output layer

http://neuralnetworksanddeeplearning.com
Introduction: Multivariate analysis and machine learning | K. Reygers 41



Fun with Neural Nets in the Browser

O Epoch Learning rate Activation Regularization Regularization rate Problem type
4
0 O, 251 0.03 v Tanh v v 0

None v Classification

DATA FEATURES + — 1 HIDDEN LAYER OUTPUT
Which dataset do Which properties do r * Test loss 0.000
you want to use? you want to feed in? Y — Training loss 0.000
6 neurons
o i ———————— g —
\\\\ - el T
~— /// - 'O‘,’;’/’
\\\ // ”’ " ,’////
X2 N pd T o’ S
L ./ — o
Ratio of training to /2\\{,«’ E ,o' / ///
test data: 50% S " S 77
° X2 /// vl ———— ——" ,/ g4
W 3 " Y
/ - s’
- /
. // /, 'l‘ ’l, 7/ //
Noise: 0 S e ya
ch 4 /, " - ————— — ’ 4 //
s 7’ Pl ’_—’_ // /
: P ,—" ” /
Batch size: 1 XiX2 I e /
. _-‘~:::: ___________________ y /
‘~\\\ /,’ 6 5 4 -3 2 -1 0 1 2 3 4 5 6
—~
sin(X") S —— "
REGENERATE v/ TTTmee—
Colors shows
o ( o data, neuron and I I L
in(X2 ) .
s (x ) This is the output h | 1 0 1
from one neuron. weight values.
Hover to see it
larger.

Show test data Discretize output

http://playground.tensorflow.org
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Decision Trees (l) arXiv:physics/0508045y

root node __

MiniBooNE Detector

> 100 branch node

PMT Hits?

(node with further
B branching)
4/37
<0.2 GeV >0.2 GeV

39/1

<500 cm z 500 cm MiniBooNE: 1520

photomultiplier signals,
goal: separation of ve
from v, events

Radius?

S B
7/1 2/9

/

leaf node (no further branching)

Leaf nodes classify events as either signal or background

Introduction: Multivariate analysis and machine learning | K. Reygers
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Decision Trees (ll) Ann.Rev.Nucl.Part.Sci. 61 (2011) 281-309

Easy to interpret and visualize:
Space of feature vectors split up into rectangular volumes
(attributed to either signal or background)

How to build a decision tree in an optimal way?

Introduction: Multivariate analysis and machine learning | K. Reygers 44



Finding Optimal Cuts

Separation btw. signal and background is often measured with the Gini index:

G =p(1-p)

Here p is the purity:

> ional Wi w; = weight of event /
signa

P = | |
Zsigna| Wi = Zbackgmund Wi lusefulness of weights will
become apparent soon]

Improvement in signal/background separation after splitting a set A into
two sets B and C:

A = WAGA — WBGB — W(:GC where WX = ZW,‘
X

Introduction: Multivariate analysis and machine learning | K. Reygers 45



Boosted Decision Trees: |dea

Drawback of decisions trees:
very sensitive to statistical fluctuations in training sample

Solution: boosting
» One tree — several trees ("forrest”)
» Trees are derived from the same training ensemble by reweighting events

» Individual trees are then combined: weighted average of individual trees

Boosting is a general method of combining a set of classifiers (not necessarily
decisions trees) into a new, more stable classifier with smaller error.

Popular example: AdaBoost (Freund, Schapire, 1997)
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Boosted Decision Trees: |dea Weight is increased f

event was misclassified

classifier by the previous classifier
R — o

| re-weight — "Next classifier should
T —" classifier pay more attention to
eighted Sample T . o "
° P C(x) misclassified events
1 re-weight
. classifier
Weighted Sample — CO(x)
. N .
1 re_We|ght Classifier (|)
. classifier > y(X) = Z w,C(x)
Weighted Sample e COI(x) i
1 re-weight
i
_ classifier
Weighted Sample

Cm)(x) j

H. Voss, Lecture: Graduierten-Kolleg, http://tmva.sourceforge.net/talks.shtml
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General Remarks on Multi-Variate Analyses

MVA Methods

» More effective than classic cut-based analyses

» Take correlations of input variables into account

Important: find good input variables for MVA methods
» Good separation power between S and B

» Little correlations among variables

» No correlation with the parameters you try to measure in your signal sample!

Pre-processing

»  Apply obvious variable transformations and let MVA method do the rest

» Make use of obvious symmetries: if e.g. a particle production process is symmetric in
polar angle 6 use |cos 6| and not cos 6 as input variable

» It is generally useful to bring all input variables to a similar numerical range

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics
http://tmva.sourceforge.net/talks.shtml
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—xample of a feature transformation

var0Q' =+/var0? + var 1? . . .
\ In this case a linear classifier works well

varQ .
after feature transformation

var1

var1 = atan
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atan(var0O/var1)

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics
http://tmva.sourceforge.net/talks.shtml
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Classifiers and Their

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics
http://tmva.sourceforge.net/talks.shtml

Properties

Classifiers

oriere Cuts ';]'gg'('j '7?(_ENRNS H-Matrix ~ Fisher BDT  RuleFit SVM
oror | oo | @ O © © © © @ © ©
T s | @ ® 0 @ @ © © © ¢
Training ® © © © © © 6 S &

Speed Response | © © O/ © © © 6 6 6
ooy | Overtraining © © © © © ® 6 S S
TlNes| o 0 & 0 © e e e e
ool L@ e @ 0 0. 0 0. 0. a
Transparency © © © © © ® 6 ® S
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Contents

1. Quick tour of methods and applications

2. A selection of methods for multivariate
classification

3. More on neural networks
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Universal approximation theorem

https://en.wikipedia.org/wiki/Universal_approximation_theorem

"A feed-forward network with a single
hidden layer containing a finite number
of neurons (i.e., a multilayer perceptron),
can approximate continuous functions

on compact subsets of Rn."

YANN

One of the first versions of the theorem
was proved by George Cybenko in
1989 for sigmoid activation functions

The theorem does not touch upon the
algorithmic learnability of those
parameters
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Gradient Descent

= Stochastic gradient descent
» just uses one training event at a
time
» fast, but quite irregular approach
to the minimum
» can help escape local minima

» one can decrease learning rate to
settle at the minimum ("simulated
annealing")

= Batch gradient descent

» use entire training sample to
calculate gradient of loss function

» computationally expensive
= Mini-batch gradient descent

» calculate gradient for a random
sub-sample of the training set

3.8}
3.6
3.4+
01 3.2}
3.0F
2.8
2.6

2.4+
2.5

Stochastic Gradient Descent
iz

Cost

=—a Stochastic
+—  Mini-batch
—e Batch

3.0 3.5 4.0 4.5
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Softmax output layer

Classification with n exclusive
categories (y =1, 2, ..., n):

"\ Softmax
, output layer

Score of category / for
a given input:

*, Hidden layer

,' (e.g., ReLU)
Softmax function:

Pj:=Ply =Jj) =

e

D iq €°

Translate n dimensional vector of "scores” (arbitrary real values) to n
dimensional vector of values P; with

0<P<1, » P=1
J

Values P interpreted as probabilities (cf. logistic regression for binary
classification).
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?eg U |arizati0ﬂ http://cs231n.stanford.edu/slides

N
1
LW) =+ 2; Li(f(z:, W), yi) + AR(W)
7=
N J J
Y Y
Data loss: Model predictions Regularization: Model
should match training data should be “simple”, so it

works on test data

Occam’s Razor:

"Among competing hypotheses,
the simplest is the best”

William of Ockham, 1285 - 1347

In common use:
L2 regularization = EW) =X, 2 Wy,
L1 regularization R(W) =321 22 Wiy
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Sigmoid 1* Leaky RelLU )
o) = ie max(0.1x, )
= 0 - _ i

tanh

Maxout
tanh(x)

max(wi x + b1, wa x + bo)

ReLU | ELU
max(0,2) ey S2
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1
7(x) = 1+ e
1-
= Saturated neurons “kill” the
gradients
= Sigmoid outputs are not zero-
0 . centered
-10 10
- - = exp() is a bit compute expensive

Sigmoid

Introduction: Multivariate analysis and machine learning | K. Reygers 57



?e |_U http://cs231n.stanford.edu/slides

f(x) = max(0, x)

10;

= Does not saturate (in +region)
= Very computationally efficient

= Converges much faster than
sigmoid/tanh in practice (e.g. 6X)

o 10 = Actually more biologically
plausible than sigmoid
RelLU
(Rectified Linear Unit) But: gradient vanishes for x < 0
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Practical tips

- Use RelLU. Be careful with your learning rates
- Try out Leaky RelLU / Maxout / ELU

- Try out tanh but don't expect much

- Don’t use sigmoid

Fei-Fei Li & Justin Johnson & Serena Yeung,
Convolutional Neural Networks for Visual Recognition,
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture6.pdf
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xavier and He initialization

= |nitial weights determine speed of
convergence and whether
algorithm converges at all

\\ Softmax

$ $
e e e , output layer

= Xavier Glorot and Yoshua Bengio

» Paper "Understanding the
Difficulty of Training Deep
-eedforward Neural Networks”

» ldea: Variance of the outputs of
each layer to be equal to the

variance of its inputs just uses Neuron with nin inputs connected to
one training event at a time Nout NEUrons in the next layer

Activation function  Uniform distribution [—r, r] Normal distribution (u = 0)

LOgIStIC r — \/ninfnout 0 = \/ninfnout
tanh r=4 ° o =4 :

o Nin 4+ Nout o Nin+ Nout
ReLU (and variants) r = \ﬁ\/n f,, ) 0 = ﬁ\/n fn :
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