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Multivariate analysis:  
An early example from particle physics

�4

Signal: e+e− → W+W−

Background: e+e− → qqgg 
often 4 well separated hadron jets

4 less well separated hadron jets

←  input variables based on jet 
structure, event shape, ... 
none by itself gives much 
separation.

Neural network output:

(Garrido, Juste and Martinez, ALEPH 96-144)

G. Cowan, Lecture on Statistical data analysis 

https://www.pp.rhul.ac.uk/~cowan/stat/stat_6.pdf
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Machine learning
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"Machine learning is the subfield of computer science that gives computers 
the ability to learn without being explicitly programmed" – Wikipedia 

J. Mayes, Machine learning 101

https://docs.google.com/presentation/d/1kSuQyW5DTnkVaZEjGYCkfOxvzCqGEFzWBy4e9Uedd9k/preview?imm_mid=0f9b7e&cmp=em-data-na-na-newsltr_20171213&slide=id.g168a3288f7_0_58
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Deep learning
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J. Mayes, Machine learning 101

"deep" in deep learning: artificial neural nets with multiple layers of 
nonlinear processing units for feature extraction

https://docs.google.com/presentation/d/1kSuQyW5DTnkVaZEjGYCkfOxvzCqGEFzWBy4e9Uedd9k/preview?imm_mid=0f9b7e&cmp=em-data-na-na-newsltr_20171213&slide=id.g168a3288f7_0_58
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Machine learning: The "hello world" problem
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Recognition of handwritten digits  
‣ MNIST database  

(Modified National Institute of 
Standards and Technology 
database)  

‣ 60,000 training images and 
10,000 testing images labeled 
with correct answer 

‣ 28 pixel x 28 pixel 
‣ Algorithms have reached "near-

human performance" 
‣ Smallest error rate (2018): 0.18% https://en.wikipedia.org/wiki/MNIST_database
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Machine learning: Image recognition
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ImageNet database 
‣ 14 million images, 22,000 categories 
‣ Since 2010, the annual ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC): 1.4 million images, 1000 categories 
‣ In 2017, 29 of 38 competing teams got less than 5% wrong

https://en.wikipedia.org/wiki/ImageNet

https://www.tensorflow.org/tutorials/image_recognition
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ImageNet: Large Scale Visual Recognition Challenge

�9

Lecture 1 -  Fei-Fei Li & Justin Johnson & Serena Yeung 4/4/201724

Steel drumThe Image Classification Challenge: 

1,000 object classes 

1,431,167 images

Russakovsky et al. arXiv, 2014O. Russakovsky et al, arXiv:1409.0575

Error rate:
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Further examples (I):  
Segmenting and Localizing Objects

�10

Y LeCun
Results
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Further examples (II):  
Image captioning
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Y LeCun
Image captioning: generating a descriptive sentence

[Lebret, Pinheiro, Collobert 2015][Kulkarni 11][Mitchell 12][Vinyals 14][Mao 14]
[Karpathy 14][Donahue 14]...
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Three types of learning
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Supervised learning 
‣ The machine predicts a category 

based on labeled training data 
‣ Medium feedback

Reinforcement learning 
‣ The machine ("the agent") predicts a 

scalar reward given once in a while 
‣ Weak feedback

Unsupervised learning 
‣ Describe/find hidden structure from 

"unlabeled" data 
‣ Cluster data in different sub-groups 

with similar properties

LeCun 2018, Power And Limits of Deep Learning,  
https://www.youtube.com/watch?v=0tEhw5t6rhc

arXiv:1312.5602 

Example: 
anomaly detection

Aurélien Géron, 
Hands-On Machine 
Learning with Scikit-
Learn and TensorFlow
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Material

■ Ian Goodfellow and Yoshua Bengio and Aaron Courville,  
Deep Learning, http://www.deeplearningbook.org/ 

■ Aurélien Géron, Hands-On Machine Learning with Scikit-Learn and 
TensorFlow 

■ http://cs231n.stanford.edu/slides 
■ Michael Nielsen, https://neuralnetworksanddeeplearning.com/ 
■ CERN academic training lecture: 

Michael Aaron Kagan, Machine learning, 
https://indico.cern.ch/event/619370/

�13

Multivariate analysis
■ Pushpalatha C. Bhat, Multivariate Analysis Methods in Particle Physics 
■ Lecture "Statistical Methods in Particle physics" (WS 2017/18) 

‣ https://www.physi.uni-heidelberg.de/~reygers/lectures/2017/smipp/
stat_methods_ss2017_08_multivariate_analysis.pdf 

Machine learning

http://www.deeplearningbook.org/
http://cs231n.stanford.edu/slides
https://neuralnetworksanddeeplearning.com/
https://www.annualreviews.org/doi/10.1146/annurev.nucl.012809.104427
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Multivariate Classification
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Consider events which can be either signal or background events.

Each event is characterized by n observables:

~x = (x1, ..., xn) "feature vector"

Goal: classify events as signal or background in an optimal way.

This is usually done by mapping the feature vector to a single variable, i.e., 
to scalar "test statistic":

A cut y > c to classify events as signal corresponds to selecting a 
potentially complicated hyper-surface in feature space. In general superior 
to classical "rectangular" cuts on the xi.

Rn ! R : y(~x)
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Classification: Different Approaches
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H0

rectangular cuts

linear

non linear

G. Cowan':  
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

k-Nearest-Neighbor, 
Boosted Decision Trees,  
Multi-Layer Perceptrons,  
Support Vector Machines 
…
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Hypothesis testing
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124 7 Hypothesis Tests

t

f(t)
signal

background

tcut

Fig. 7.1 Probability distribution functions for a discriminating variable t.x/ D x which has two
different PDFs for the signal (red) and background (yellow) hypotheses under test

One simple example is to use a single variable x which has discriminating power
between two hypotheses, say signal = “muon” versus background = “pion”, as
shown in Fig. 7.1. A good “separation” of the two cases can be achieved if the
PDFs of x under the hypotheses H1 = signal and H0 = background are appreciably
different.

On the basis of the observed value Ox of the discriminating variable x, a simple
test statistics can be defined as the measured value itself:

Ot D t.Ox/ D Ox : (7.1)

A selection requirement (in physics jargon sometimes called cut) can be defined
by identifying a particle as a muon if Ot ! tcut or as a pion if Ot > tcut, where the value
tcut is chosen a priori.

Not all real muons will be correctly identified as a muon according to this
criterion, as well as not all real pions will be correctly identified as pions. The
expected fraction of selected signal particles (muons) is usually called signal
selection efficiency and the expected fraction of selected background particles
(pions) is called misidentification probability.

Misidentified particles constitute a background to positively identified signal
particles. Applying the required selection (cut), in this case t ! tcut, on a data
sample made of different detected particles, each providing a measurements of
x, the selected data sample will be enriched of signal, reducing the fraction of
background in the selected data sample with respect to the original unselected
sample. The sample will be actually enriched if the selection efficiency is larger
than the misidentification probability, which is the case considering the shapes of
the PDFs in Fig. 7.1 and the chosen selection cut.

f (t|H0)

f (t|H1)

test statistic

β α
signal

background

test statistic:  
‣ a (usually scalar) variable which is a function 

of the data alone that can be used to test 
hypotheses 

‣ example: χ2 w.r.t. a theory curve 

"background efficiency", i.e., prob. to misclassify bckg. as signal
"signal efficiency"

✏B ⌘ ↵

✏S ⌘ 1� �

H0 is true H0 is false (i.e., H1 is true)

H0 is rejected Type I error (↵) Correct decision (1� �)

H0 is not rejected Correct decision (1� ↵) Type II error (�)
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Neyman–Pearson Lemma
The likelihood ratio
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t(~x) =
f (~x |H1)

f (~x |H0)

Problem: the underlying pdf's are almost never known explicitly.

1. Estimate signal and background pdf's and construct test statistic based on 
Neyman-Pearson lemma 

2. Decision boundaries determined directly without approximating the pdf's 
(linear discriminants, decision trees, neural networks, …)

Two  approaches:

is an optimal test statistic, i.e., it provides highest "signal efficiency" 1 – β for a 
given "background efficiency" α.

H1 : signal hypothesis

H0 : background hypothesis

Accept hypothesis if t(~x) =
f (~x |H1)

f (~x |H0)
> c
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Estimating PDFs from Histograms?

�19G. Cowan  iSTEP 2014, Beijing / Statistics for Particle Physics / Lecture 2 15 

Approximate LR from 2D-histograms 
Suppose problem has 2 variables.  Try using 2-D histograms: 

Approximate pdfs using N (x,y|s), N (x,y|b) in corresponding cells. 
But if we want M bins for each variable, then in n-dimensions we 
have Mn cells; can’t generate enough training data to populate. 

 → Histogram method usually not usable for n > 1 dimension. 

signal back- 
ground 

Consider 2d example:

approximate PDF by N(x , y |S) and N(x , y |B)

G. Cowan': https://www.pp.rhul.ac.uk/~cowan/stat_course.html

M bins per variable in d dimensions: Md cells  
→ hard to generate enough training data (often not practical for d > 1)
In general in machine learning, problems related to a large number of 
dimensions of the feature space are referred to as the "curse of dimensionality" 
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ROC Curve
Quality of the classification can be characterized by the receiver operating 
characteristic (ROC curve) 

�20

12 3 Using TMVA

Signal efficiency
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MVA Method:
Fisher
MLP
BDT
PDERS
Likelihood

Background rejection versus Signal efficiency

Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training
phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

good

better

1 – εB

εB: background 
efficiency
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Methods discussed in the following slides

Methods based on Neyman-Pearson lemma 
‣ Naïve Bayesian classifier 
‣ k-Nearest Neighbor  

Other methods 
‣ Fisher's linear discriminant 
‣ Feedforward Neural Network 
‣ Boosted decision trees

�21
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Naïve Bayesian classifier  
(also called "Projected likelihood classification")

�22

Application of the Neyman-Pearson lemma  
(ignoring correlations between the xi):

f (x1, x2, ..., xn) approximated as L = f1(x1) · f2(x2) · ... · fn(xn)

where f1(x1) =

Z
dx2dx3...dxn f (x1, x2, ..., xn)

f2(x2) =

Z
dx1dx3...dxn f (x1, x2, ..., xn)

...
Classification of feature vector    : 

y(~x) =
Ls(~x)

Ls(~x) + Lb(~x)
=

1

1 + Lb(~x)/Ls(~x)

~x

Performance not optimal if true PDF does not factorize
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Example: Electron ID with the ALICE TRD (I)
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pion electron ALICE, arXiv:1709.02743
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Example: Electron ID with the ALICE TRD (II)
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98 Chapter 6: Particle Identification with the Transition Radiation Detector
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Figure 6.6: Deposited charge for electrons (red) and pions (blue) in one TRD module. This data was taken
during the test beam of 2002. The momentum of the particles was 2 GeV/c.

another particle to deposit the charge can be calculated analogously to Equation 6.2. For
pions it is:

P
�
Q|p

�
=

nY

j=1

P j �Q j|p
�

=
6Y

j=1

P
�
Q j|p

�
. (6.3)

Using these probabilities it is possible to estimate the likelihood L
�
e|Q

�
that the

charges Q have been deposited by an electron. In case k particles are taken into account
for the likelihood calculation, it is:

L
�
e|Q

�
=

P
�
Q|e

�
P
k

P
�
Q|k

� , with 0 L 1. (6.4)

In test beam data k stands for electrons or pions, in the real experiment (in AliRoot) for
electrons, muons, pions, kaons, or protons. The sum of all likelihoods equals unity:

X

k

L
�
k|Q

�
= 1. (6.5)
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Doctoral thesis A. Wilk: 
https://inspirehep.net/record/1231193/

Pe =
nchambersY

i=1

P(Ei |e), P⇡ =
nchambersY

i=1

P(Ei |⇡), test statistic t =
Pe

Pe + P⇡

high values (close to unity) 
indicate high prob. for an electron

6 in case of the ALICE TRD

ALICE, arXiv:1709.02743

likelihoods can be multiplied here 
(independent information)
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k-Nearest Neighbor Method (I)

�25

k-NN classifier  
‣ Estimates probability density around the input vector 
‣            and             are approximated by the number of signal and background events in 

the training sample that lie in a small volume around the point

Algorithms finds k nearest neighbors:

k = ks + kb

Probability for the event to be of signal type:

ps(~x) =
ks(~x)

ks(~x) + kb(~x)

p(~x |S) p(~x |B)
~x
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k-Nearest Neighbor Method (II)
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8.5 k-Nearest Neighbour (k-NN) Classifier 85
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Figure 14: Example for the k-nearest neighbour algorithm in a three-dimensional space (i.e., for three
discriminating input variables). The three plots are projections upon the two-dimensional coordinate planes.
The full (open) circles are the signal (background) events. The k-NN algorithm searches for 20 nearest points
in the nearest neighborhood (circle) of the query event, shown as a star. The nearest neighborhood counts 13
signal and 7 background points so that query event may be classified as a signal candidate.

Like (more or less) all TMVA classifiers, the k-nearest neighbour estimate su↵ers from statistical
fluctuations in the training data. The typically high variance of the k-NN response is mitigated by
adding a weight function that depends smoothly on the distance from a test event. The current
k-NN implementation uses a polynomial kernel

W (x) =

(
(1� |x|

3)3 if |x| < 1 ,

0 otherwise .
(59)

If Rk is the distance between the test event and the kth neighbour, the events are weighted according
to the formula:

WS(B) =

kS(B)X

i=1

W

✓
Ri

Rk

◆
, (60)

where kS(B) is number of the signal (background) events in the neighbourhood. The weighted signal
probability for the test event is then given by

PS =
WS

WS +WB

. (61)

The kernel use is switched on/o↵ by the option UseKernel.

Regression

The k-NN algorithm in TMVA also implements a simple multi-dimensional (multi-target) regression
model. For a test event, the algorithm finds the k-nearest neighbours using the input variables, where
each training event contains a regression value. The predicted regression value for the test event is
the weighted average of the regression values of the k-nearest neighbours, cf. Eq. (39) on page 70.

Simplest choice for distance 
measure in feature space is the 
Euclidean distance:

Better: take correlations between 
variables into account:

R = |~x � ~y |

R =
q

(~x � ~y)TV�1(~x � ~y)

V = covariance matrix

"Mahalanobis distance"

The k-NN classifier has best performance when the boundary that separates 
signal and background events has irregular features that cannot be easily 
approximated by parametric learning methods.

TMVA manual 
https://root.cern.ch/guides/tmva-manual
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Fisher Linear Discriminant

�27

Linear discriminant is simple. Can still be optimal if amount of training data is 
limited. 

Ansatz for test statistic: y(~x) =
nX

i=1

wixi = ~wT~x

Choose parameters wi so that separation between signal and background 
distribution is maximum.

Fisher: maximize

23 Glen Cowan Multivariate Statistical Methods in Particle Physics

Ansatz:

→  Fisher:  maximize

Choose the parameters w1, ..., wn so that the pdfs
have maximum ‘separation’.  We want:

s b

y

f (y)
tb

large distance  between 
mean values, small widths

t
s

Linear test statistic
y x=∑

i=1

n

wi xi=
wT x

f  y∣s , f  y∣b

J  w=
s−b

2

s

2b

2

J(~w) =
(⌧s � ⌧b)2

⌃2
s + ⌃2

b

G. Cowan':  
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Need to define "separation".
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Fisher Linear Discriminant:  
Determining the Coefficients wi

�28

G. Cowan':  
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

@J

@wi
= 0

Coefficients are obtained from:

linear decision boundary

Weight vector    can be interpreted as a 
direction in feature space on which the 
events are projected.

Linear decision boundaries

~w
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Supervised Machine Learning (I)

�29

Bias-variance tradeoff 
‣ Classifiers with a small number of degrees of freedom are less prone to statistical 

fluctuations: different training samples would result in a similar classification boundaries 
("small variance") 

‣ However, if the data contain features that a model with few degrees of freedom cannot 
describe, a bias is introduced. In this case a classifier with more degrees of freedom 
would be better. 

‣ User has to find a good balance 

Supervised Machine Learning requires labeled training data, i.e., a training 
sample where for each event it is known whether it is a signal or background 
event 
‣ Decision boundary defined by minimizing a loss function ("training")
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Supervised Machine Learning (II)

�30

Training, validation, and test sample 
‣ Decision boundary fixed with training sample 
‣ Performance on training sample becomes better with more iterations 
‣ Danger of overtraining: Statistical fluctuations of the training sample will be learnt 
‣ Validation sample = independent labeled data set not used for training  
→ check for overtraining 

‣ Sign of overtraining: performance on validation sample becomes worse  
→ Stop training when signs of overtraining are observed ("early stopping") 

‣ Performance: apply classifier to independent test sample 
‣ Often: test sample = validation sample (only small bias)
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Supervised Machine Learning (III)

�31

Cross validation (efficient use of scarce 
training data) 
‣ Split training sample in k independent 

subset Tk of the full sample T 
‣ Train on T \ Tk resulting in k different 

classifiers 
‣ For each training event there is one 

classifier that didn't use this event for 
training 

‣ Validation results are then combined

Rule of thumb if training data not expensive 
‣ Training sample: 50% 
‣ Validation sample: 25% 
‣ Test sample: 25% 

often test sample = validation sample,  
i.e., training : validation/test = 50:50

Cross Validation 

•  Especially when dataset is small, split training set into K-folds 
–  Train on (K-1) folds, validate on 1 fold, then iterate 
–  Use average estimated performance on K-folds 
–  Allows for estimate of  performance RMS 

•  Even when dataset not small, useful technique to estimate 
variance of  expected performance, and for comparing different 
models / hyperparameters 

59	

Training	set	

ValidaZon	set	

[Bishop]	

validation 
set

training 
set
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Perceptron
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Discriminant: y(~x) = h

 
w0 +

nX

i=1

wixi

!

The nonlinear, monotonic function h is 
called activation function.

Examples for h: 1

1 + e�x
(”sigmoid”), tanh x

x1

xn

y(~x)
h(
x)

x

original perceptron: 
activation function = step function

Y LeCun
1957: The Perceptron (the first learning machine)

A simple simulated neuron with adaptive “synaptic weights”
Computes a weighted sum of inputs 

Output is +1 if the weighted sum is above a thresold, -1 otherwise.

y=sign(∑
i=1

N

W i X i+ b)

Rosenblatt, 1957

sigmoid activation function 
→ "logistic regression" 
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The Biological Inspiration: the Neuron
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8.10 Artificial Neural Networks (nonlinear discriminant analysis) 99
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Figure 15: Multilayer perceptron with one hidden layer.

ylj

wl−11j
wl−12j..

.
yl−12
yl−11

wl−1njyl−1n

Σ

Output

Input

ρ

Figure 16: Single neuron j in layer ` with n input connections. The incoming connections carry a weight of

w
(l�1)
ij .

perceptron is the input layer, the last one the output layer, and all others are hidden layers. For
a classification problem with nvar input variables the input layer consists of nvar neurons that hold
the input values, x1, . . . , xnvar , and one neuron in the output layer that holds the output variable,
the neural net estimator yANN.

For a regression problem the network structure is similar, except that for multi-target regression
each of the targets is represented by one output neuron. A weight is associated to each directional
connection between the output of one neuron and the input of another neuron. When calculating
the input value to the response function of a neuron, the output values of all neurons connected to
the given neuron are multiplied with theses weights.

https://en.wikipedia.org/wiki/Neuron

Human brain: 
1011 neurons, each with on average 
7000 synaptic connections
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Feedforward Neural Network with One Hidden Layer

�34

y(~x) = h

0

@w (2)
10 +

mX

j=1

w (2)
1j �j(~x)

1

A

y(~x)

�1(~x)

�m(~x)

superscripts indicates layer number

Straightforward to generalize to multiple hidden layers

�i (~x) = h

0

@w (1)
i0 +

nX

j=1

w (1)
ij xj

1

A
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Network Training

�35

E (~w) =
1

2

NX

a=1

(y(~xa, ~w)� ta)
2 =

NX

a=1

Ea(~w)

~xa : training event, a = 1, ...,N

ta : correct label for training event a

e.g., ta = 1, 0 for signal and background, respectively 

Loss function (example):

~w : vector containing all weights

Weights are determined by minimizing the loss function (also called error 
function)
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Back-propagation (I)

�36

~w (⌧+1) = ~w (⌧) � ⌘rEa(~w
(⌧))

Start with an initial guess         for the weights an then update weights after 
each training event:

~w (0)

learning rateStochastic Gradient Descent and Variants  
•  Gradient descent is computationally 

costly (since we compute gradient 
over full training set) 

•  Stochastic gradient descent 
–  Compute gradient on one event at a 

time (in practice a small batch) 
–  Noisy estimates average out 
–  Stochastic behavior can allow “jumping” 

out of  bad critical points 

–  Scales well with dataset and model size 
–  But can have some convergence 

difficulties 

–  Improvements include: 
Momentum, RMSprop, AdaGrad, … 

74	

w2	

w1	

w2	

w1	h'p://danielnouri.org/notes/category/deep-learning/		

Gradient descent:
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Back-propagation (II)

Let's write network output as follows:

Here we defined φ0 = x0 = 1 and the sums start from 0 to include the offsets.

Weights from hidden layer to output:

Ea =
1

2
(ya � ta)

2 ! @Ea

@w (2)
1j

= (ya � ta)h
0(u(~xa))

@u

@w (2)
1j

= (ya � ta)h
0(u(~xa))�j(~xa)

y(~x) = h(u(~x)) with u(~x) =
mX

j=0

w (2)
1j �j(~x), �j(~x) = h

 
nX

k=0

w (1)
jk xk

!
⌘ h (vj(~x))

Further application of the chain rule gives weights from input to hidden layer.
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Neural Network Output and Decision Boundaries

�38

P. Bhat, Multivariate Analysis Methods in Particle Physics, inspirehep.net/record/879273

NS61CH12-Bhat ARI 17 September 2011 7:17
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Figure 3
(a) A schematic representation of a three-layer feed-forward neural network (NN). (b) Distributions of NN
output (discriminant) trained on data shown in panel c (same data as in Figure 2). (c) Equi-probability
contours (decision boundaries) corresponding to cuts of 0.02, 0.1, 0.4, 0.8, and 0.95 on the NN output
shown in panel b, superposed on signal and background data distributions. The data points to the right of
each contour have NN output values above the displayed cut. (d ) Signal-probability surface as given by the
NN output, D(x1, x2) ∼ p(s|x1, x2), in the feature space.

3.5. Neural Networks
Feed-forward NNs (Figure 3a), also known as multilayer perceptrons (MLPs), are the most
popular and widely used multivariate methods. An MLP consists of an interconnected group of
neurons or nodes arranged in layers; each node processes the information it receives with an
activation (or transformation) function, then passes the result to the next layer of nodes. The
first layer, known as the input layer, receives the feature variables. This is followed by one or
more hidden layers of nodes. The last layer outputs the final response of the network. Each
interconnection is characterized by a weight, and each processing node may have a bias or a
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Example of Overtraining

�39

Too many neurons/layers make a neural network too flexible 
→ overtraining  

training sample test sample

Network "learns" features that are merely 
statistical fluctuations in the training sample

G. Cowan: https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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Monitoring Overtraining

�40

Monitor fraction of misclassified events (or loss function:)

er
ro

r r
at

e

flexibility (e.g., number 

of nodes/layers)

test sample

training sample

optimum = minimum of 
error rate for test sample

overtraining = 
increase of error rate

G. Cowan: 
https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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Deep Neural Networks

�41
http://neuralnetworksanddeeplearning.com

Deep networks: many hidden layers with large number of neurons 

Challenges 
‣ Hard too train ("vanishing gradient 

problem") 
‣ Training slow 
‣ Risk of overtraining

Big progress in recent years 
‣ Interest in NN waned before ca. 2006 
‣ Milestone: paper by G. Hinton (2006): 

"learning for deep belief nets" 
‣ Image recognition, AlphaGo, … 
‣ Soon: self-driving cars, …
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Fun with Neural Nets in the Browser

�42

http://playground.tensorflow.org
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Decision Trees (I)

�43

S/B
52/48

B
4/37

S/B
48/11

S/B
9/10

S
39/1

S
7/1

B
2/9

PMT Hits?
< 100 ≥ 100

Energy?
< 0.2 GeV ≥ 0.2 GeV

Radius?
< 500 cm ≥ 500 cm

arXiv:physics/0508045v1

MiniBooNE: 1520 
photomultiplier signals, 
goal: separation of νe 
from νμ events

root node

branch node 
(node with further 
branching)

leaf node (no further branching)

Leaf nodes classify events as either signal or background
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Decision Trees (II)

�44

Ann.Rev.Nucl.Part.Sci. 61 (2011) 281-309

Easy to interpret and visualize:  
Space of feature vectors split up into rectangular volumes  
(attributed to either signal or background)  

NS61CH12-Bhat ARI 17 September 2011 7:17
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Figure 5
(a) A schematic of a binary decision tree with two feature variables x1 and x2. (b) Illustration of the
corresponding partitions of the two-dimensional feature space. (c) Signal probability calculated as the ratio of
signal counts divided by the sum of signal and background counts in bins of two-dimensional histograms for
the data set shown in Figure 4. (d ) Signal probability approximated with five decision trees (DTs) (through
the use of AdaBoost) using the same data.

Note that, geometrically, the DT procedure amounts to recursively partitioning the feature
space into hypercubic regions or bins with edges aligned with the axes of the feature space.
Essentially, a DT creates M disjoint regions or a d-dimensional histogram with M bins of varying
bin size, and a response value is assigned to each bin. A DT, therefore, gives a piecewise constant
approximation to the function being modeled, say, the discriminant D(x). As the training data set
becomes arbitrarily large and as the bin sizes approach zero, the predictions of a DT approach
those of the target function, provided that the number of bins also grows arbitrarily large (but at
a rate slower than that of the data-set size).

The DT algorithm is applicable to discrimination of n classes, even though what I have de-
scribed is the binary DT method used in two-class signal/background discrimination. Figure 5
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How to build a decision tree in an optimal way?
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Finding Optimal Cuts

�45

Separation btw. signal and background is often measured with the Gini index:

G = p(1� p)

Here p is the purity:

p =

P
signal wiP

signal wi +
P

background wi

wi = weight of event i

[usefulness of weights will 
become apparent soon]

Improvement in signal/background separation after splitting a set A into 
two sets B and C:

� = WAGA �WBGB �WCGC where WX =
X

X

wi
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Boosted Decision Trees: Idea

�46

Drawback of decisions trees:  
very sensitive to statistical fluctuations in training sample  

Solution: boosting 
‣ One tree → several trees ("forrest") 
‣ Trees are derived from the same training ensemble by reweighting events 
‣ Individual trees are then combined: weighted average of individual trees

Boosting is a general method of combining a set of classifiers (not necessarily 
decisions trees) into a new, more stable classifier with smaller error.

Popular example: AdaBoost (Freund, Schapire, 1997)
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Boosted Decision Trees: Idea

�47
12Helge Voss Graduierten-Kolleg, Freiburg,  11.-15. Mai 2009  ― Multivariate Data Analysis and Machine Learning 

Boosting

Training Sample
classifier 

C(0)(x)

Weighted Sample

re-weight
classifier 

C(1)(x)

Weighted Sample

re-weight
classifier 

C(2)(x)

Weighted Sample

re-weight

Weighted Sample

re-weight

classifier 
C(3)(x)

classifier 
C(m)(x)

ClassifierN
(i)

i
i

y(x) w C (x)= ∑

H. Voss, Lecture: Graduierten-Kolleg, http://tmva.sourceforge.net/talks.shtml

Weight is increased if 
event was misclassified 
by the previous classifier

→ "Next classifier should 
pay more attention to 
misclassified events"

http://tmva.sourceforge.net/talks.shtml
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General Remarks on Multi-Variate Analyses

�48

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics 
http://tmva.sourceforge.net/talks.shtml

Important: find good input variables for MVA methods  
‣ Good separation power between S and B 
‣ Little correlations among variables 
‣ No correlation with the parameters you try to measure in your signal sample! 

Pre-processing 
‣ Apply obvious variable transformations and let MVA method do the rest 
‣ Make use of obvious symmetries: if e.g. a particle production process is symmetric in 

polar angle θ use |cos θ| and not cos θ as input variable  
‣ It is generally useful to bring all input variables to a similar numerical range

MVA Methods 
‣ More effective than classic cut-based analyses  
‣ Take correlations of input variables into account
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Example of a feature transformation

�49

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics 
http://tmva.sourceforge.net/talks.shtml

20Helge Voss Graduierten-Kolleg, Freiburg,  11.-15. Mai 2009  ― Multivariate Data Analysis and Machine Learning 

Linear Discriminant and non linear correlations
assume the following non-linear correlated data:
� the Linear discriminant obviousl doesn’t do a very good job here:

� Of course, these can easily de-correlated:
Æhere: linear discriminator works perfectly 
on de-correlated data

l 2 2

|

var 0 var 0 var1
var 0var1 a tan
var1

= +

⎛ ⎞= ⎜ ⎟
⎝ ⎠
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Linear Discriminant and non linear correlations
assume the following non-linear correlated data:
� the Linear discriminant obviousl doesn’t do a very good job here:

� Of course, these can easily de-correlated:
Æhere: linear discriminator works perfectly 
on de-correlated data

l 2 2

|

var 0 var 0 var1
var 0var1 a tan
var1

= +

⎛ ⎞= ⎜ ⎟
⎝ ⎠

In this case a linear classifier works well 
after feature transformation
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Classifiers and Their Properties

�50

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics 
http://tmva.sourceforge.net/talks.shtml

17Helge Voss Graduierten-Kolleg, Freiburg,  11.-15. Mai 2009  ― Multivariate Data Analysis and Machine Learning 

Summary of Classifiers and their Properties

The properties of the Function discriminant (FDA) depend on the chosen function A

Classifiers

Criteria
Cuts Likeli-

hood
PDERS
/ k-NN H-Matrix Fisher MLP BDT RuleFit SVM

☺

☺

/

.

.

.

.

/

Curse of 
dimensionality / ☺ / ☺

.

☺ . ☺

☺.☺

.

☺

.

Perfor-
mance

Speed

Robust
-ness

/

☺

/

.

/

☺

/

.

/

.

☺

Transparency

.

.

.

.

.

☺

☺

/ /

☺

☺

☺

/

☺

☺

☺

☺

☺

☺

☺

☺

//.

.
Weak input 
variables ☺ ☺ /

☺ ☺ .

no / linear 
correlations .
nonlinear 

correlations

Training

Response

Overtraining 

.

/

☺

☺

☺

/

☺

☺

.
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Contents

1. Quick tour of methods and applications  
2. A selection of methods for multivariate 

classification 
3. More on neural networks

�51
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Universal approximation theorem

�52

"A feed-forward network with a single 
hidden layer containing a finite number 
of neurons (i.e., a multilayer perceptron), 
can approximate continuous functions 
on compact subsets of ℝn."

v cascading of neurons: multilayer networks

for example: double layer perceptron

output signal is a function of an inner (hidden) layer of neurons

t x s a0 aiyi x

with

yi x s w0 wikxk

‹ N1 input layer neurons

‹ N2 hidden layer neurons

‹ N1 N2 N2 2 parameters

Introduction to (T)MVA - Multivariate classifiers M. Schmelling, January 31, 2018 14

One of the first versions of the theorem 
was proved by George Cybenko in 
1989 for sigmoid activation functions

The theorem does not touch upon the 
algorithmic learnability of those 
parameters

https://en.wikipedia.org/wiki/Universal_approximation_theorem
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Gradient Descent
■ Stochastic gradient descent 
‣ just uses one training event at a 

time 
‣ fast, but quite irregular approach 

to the minimum 
‣ can help escape local minima 
‣ one can decrease learning rate to 

settle at the minimum ("simulated 
annealing") 

■ Batch gradient descent 
‣ use entire training sample to 

calculate gradient of loss function 
‣ computationally expensive  

■ Mini-batch gradient descent 
‣ calculate gradient for a random 

sub-sample of the training set

�53

Stochastic Gradient Descent
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Softmax output layer

�54

si = ~wT
i
~h + bi

Translate n dimensional vector of "scores" (arbitrary real values) to n 
dimensional vector of values Pj with

Pj := P(y = j) =
esjPn
i=1 e

si

Classification with n exclusive 
categories (y = 1, 2, …, n):

Score of category i for 
a given input:

Softmax function:

0  Pj  1,
X

j

Pj = 1

Values Pj interpreted as probabilities (cf. logistic regression for binary 
classification).
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Regularization

�55

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 201733

Data loss: Model predictions 
should match training data

Regularization: Model 
should be “simple”, so it 
works on test data

Occam’s Razor: 
“Among competing hypotheses, 
the simplest is the best”
William of Ockham, 1285 - 1347

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 2017

Regularization

34

= regularization strength
(hyperparameter)

In common use: 
L2 regularization
L1 regularization
Elastic net (L1 + L2)
Max norm regularization (might see later)
Dropout (will see later)
Fancier: Batch normalization, stochastic depth

http://cs231n.stanford.edu/slides
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Activation functions

�56

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201796

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Activation functions

http://cs231n.stanford.edu/slides
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Sigmoid activation function

■ Saturated neurons “kill” the 
gradients  

■ Sigmoid outputs are not zero-
centered  

■ exp() is a bit compute expensive 

�57

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 201722

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients

2. Sigmoid outputs are not 
zero-centered

3. exp() is a bit compute expensive

�(x) =
1

1 + e�x

http://cs231n.stanford.edu/slides
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ReLU

■ Does not saturate (in +region)  
■ Very computationally efficient  
■ Converges much faster than  

sigmoid/tanh in practice (e.g. 6x)  
■ Actually more biologically 

plausible than sigmoid 

�58

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 201725

Activation Functions

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)
- Actually more biologically plausible 

than sigmoid

- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?

f (x) = max(0, x)

But: gradient vanishes for x < 0

http://cs231n.stanford.edu/slides
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Practical tips

�59

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 201733

TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU
- Try out tanh but don’t expect much
- Don’t use sigmoid
Fei-Fei Li & Justin Johnson & Serena Yeung,  
Convolutional Neural Networks for Visual Recognition,  
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture6.pdf
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Xavier and He initialization
■ Initial weights determine speed of 

convergence and whether 
algorithm converges at all 

■ Xavier Glorot and Yoshua Bengio 
‣ Paper "Understanding the 

Difficulty of Training Deep 
Feedforward Neural Networks" 

‣ Idea: Variance of the outputs of 
each layer to be equal to the 
variance of its inputs just uses 
one training event at a time

�60

Activation function Uniform distribution [�r , r ] Normal distribution (µ = 0)

Logistic r =
q

6
nin+nout

� =
q

2
nin+nout

tanh r = 4
q

6
nin+nout

� = 4
q

2
nin+nout

ReLU (and variants) r =
p
2
q

6
nin+nout

� =
p
2
q

2
nin+nout

Neuron with nin inputs connected to 
nout neurons in the next layer

http://goo.gl/1rhAef
http://goo.gl/1rhAef
http://goo.gl/1rhAef
http://goo.gl/1rhAef

